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sions: Using high-density microarrays and real-time PCR we 
identified several AII-inducible proinflammatory mesangial 
genes that exhibited augmented mRNA responses in high-
glucose milieu. Valsartan blocked the AII-induced mRNA ex-
pression of proinflammatory genes (i.e. MCP-1, LIF and COX-
2) maintained in normal and high glucose. These observations 
add to the mounting evidence that ARBs have anti-inflam-
matory effects in the kidney, a beneficial effect that may be 
more important in protecting renal function in diabetic 
 patients. While simvastatin inhibited expression of some 
mRNAs encoding chemokines/cytokines, it enhanced ex-
pression of mRNA encoding COX-2, a key mediator of inflam-
mation. Thus, the non-cholesterol effects of statins on in-
flammatory responses appear complex. 

 Copyright © 2009 S. Karger AG, Basel 

 Introduction 

 Angiotensin II (AII) is a multifunctional peptide 
found in organisms as evolutionarily distant as inverte-
brates and man  [1, 2] . In invertebrates the renin-angio-
tensin system (RAS) regulates not only osmoregulation 
but also inflammatory responses  [1–3] . Thus the immu-
noregulatory role of RAS is as ancient as its vasoconstric-
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 Abstract 

 Background: Hyperglycemia may potentiate the adverse re-
nal effects of angiotensin II (AII). In the kidney, the major tar-
get of AII action is the glomerular mesangial cell, where its 
hemodynamic and proinflammatory action contributes to 
renal injury. AII action is mediated by several types of cell 
receptors. Among those, the AT 1  receptor has been best 
studied using specific AII receptor blockers (ARBs). These 
agents have emerged as major new modalities in the pre-
vention and amelioration of renal disease where the ARB 
renoprotective anti-inflammatory properties could be more 
important than previously appreciated. Like the ARBs, statins 
may also modulate inflammatory responses that are reno-
protective and complement their cholesterol-lowering ef-
fects. Aim: The aim of this project was to (i) identify a reper-
toire of proinflammatory mesangial cell AII-inducible mRNAs; 
(ii) determine if the AII-induced proinflammatory mRNA re-
sponses depend on ambient glucose, and (iii) test the anti-
inflammatory effectiveness of an ARB, valsartan, either alone 
or in combination with a statin, simvastatin. Results/Conclu-
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tive action. Still, it is only recently that the proinflamma-
tory action of AII has been more widely appreciated  [4–
8] . Many of the AII inflammatory responses are mediated 
by reactive oxygen species (ROS)  [9]  resulting in the ac-
tivation of NF- � B, a transcriptional factor central to the 
inflammatory response  [8, 10] .

  Angiotensin type 1 (AT 1 ) and type 2 (AT 2 ) are the two 
major classes of receptors that mediate the action of AII 
 [11, 12] . The AT 1  receptor is expressed ubiquitously, but 
the tissue expression of AT 2  is more restricted  [11–13] . In 
mesangial cells the number of AT 1  receptors expressed on 
the cell surface far exceeds that of AT 2   [14] . Although sig-
naling through AT 1  is thought to be the major contribu-
tor to the glomerular inflammatory lesion  [15] , signaling 
through AT 2  may also play a role in renal damage  [16, 
17] .

  Although the etiology of micro- and macrovascular 
complications of diabetes is multifactorial, low grade in-
flammation is increasingly being recognized as one of the 
systemic hallmarks not only associated with increased 
cardiovascular complications but also with diabetic ne-
phropathy  [18] . In diabetic nephropathy the dysfunc-
tional mesangial cell is one of the major effectors of glo-
merular injury. When exposed to the diabetic metabolic 
milieu, mesangial cells display growth abnormalities, in-
creased expression and synthesis of prosclerotic growth 
factors and cytokines, accumulation of normal compo-
nents of extracellular matrix, as well as increased synthe-
sis of proinflammatory ligands  [19–21] .

  Based on the abundant evidence spanning from in vi-
tro studies in various renal cell types to large clinical tri-
als, RAS and its major effector AII have been implicated 
in the pathophysiology of diabetic nephropathy. There is 
increasing evidence that the proinflammatory action of 
AII is directly involved where the mesangial cell plays a 
key role in the pathogenesis of diabetic nephropathy. In-
hibition of RAS with angiotensin-converting enzyme in-
hibitors or AII receptor blockers (ARBs) plays a pivotal 
role in the treatment of this disorder, and these beneficial 
effects in the diabetic kidney are at least in part attribut-
able to amelioration of ROS generation and proinflam-
matory signal transduction  [22] .

  Thus, studies in a variety of experimental settings, in-
cluding studies in patients with diabetes, have suggested 
synergistic actions of hyperglycemia and AII in diabetic 
renal pathophysiology  [15, 23, 24] . On the molecular lev-
el, these synergistic actions involve stimulation of proin-
flammatory signal transduction pathways and genes. 
High ambient glucose by itself activates some of the same 
proinflammatory signaling mediators as those triggered 

through the AT 1  receptor, such as ROS, NF- � B, JAK/
STAT, and others  [16, 17, 23, 25, 26] . These observations 
suggest a possibility that the glucose milieu could modu-
late AII-mediated expression of genes that drive progres-
sion of diabetic nephropathy, such as the proinflamma-
tory cytokines, enzymes and transcription factors.

  The 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) 
reductase inhibitors, or statins, are potent inhibitors of 
cholesterol biosynthesis that are used extensively to treat 
hypercholesterolemia  [27] . Although traditionally the 
beneficial effects of statins were thought to result from 
the competitive inhibition of cholesterol synthesis  [28] , it 
has become increasingly apparent that statins exert ad-
ditional cellular effects  [29] . These studies indicate that 
statins exert cholesterol-independent effects by modulat-
ing signal transduction pathways and suggest that, like 
the ARBs, statins modulate inflammatory responses in-
dependent of HMG-CoA reductase inhibition  [30] . In-
deed, evidence is accumulating that statins confer reno-
protection in a variety of glomerular diseases, including 
diabetic nephropathy  [31–33] , and in models of AII-in-
duced injury, statins have been shown to be beneficial 
 [34–37] .

  Until now a comprehensive study of the mesangial cell 
repertoire of inflammatory genes activated by AII, and 
the modulatory effects of high glucose on these AII-in-
duced mesangial cell responses has not been done. To ad-
dress this issue, we used high-density microarrays and 
real-time PCR to identify several AII-inducible proin-
flammatory mesangial gene mRNAs that exhibit aug-
mented responses in a high-glucose milieu. Furthermore, 
we evaluated whether these proinflammatory responses 
were influenced by the AT 1  receptor blocker, valsartan, 
or the HMG-CoA inhibitor, simvastatin, common treat-
ments for diabetic nephropathy.

  Material and Methods 

 Cells 
 Primary human glomerular mesangial cells (6–9 passages) 

were grown in Dulbecco’s modified Eagle’s medium (Hyclone, 
Logan, Utah, USA). Culture medium was supplemented with 16% 
(vol/vol) fetal calf serum, 2 m M   L -glutamine, 100 U/ml penicillin, 
100  � g/ml streptomycin, 8  � g/ml insulin, 1 m M  sodium pyruvate 
and 10 m M  HEPES buffer. Cells were incubated at 37   °   C in hu-
midified 5% CO 2 –95% air.

  Study Design 
 AII enhances renal production of a host of proinflammatory 

polypeptides including TNF- � , MCP-1 and IL-6  [38, 39] . The in-
creased synthesis of these cytokines/chemokines, at least in part, 
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reflects NF- � B-mediated transcription observed as early as 30–
60 min following AII stimulation  [39] . Thus to identify inducible 
proinflammatory genes in human mesangial cells we have chosen 
to assess transcript levels at 0 and 60 min following treatment 
with AII. A wide range of AII levels in renal interstitial fluid has 
been reported  [40–43] . For example, in rats the intrarenal AII 
concentration was reported to be in the range of 1–4 n M   [42] , 
while in the dogs the levels have been reported to be as high as 740 
n M   [41] . The concentration of AII in the human mesangium is not 
known. We have chosen to use 100 n M  AII  [44, 45] .

  For microarray profiling, serum-deprived (24 h) cells main-
tained in normal glucose (100 mg/ml) and preincubated with or 
without Val (100 n M , 30 min) were treated with or without AII 
(100 n M , 60 min).

  For real-time PCR, cells maintained in either normal (NG; 100 
mg/dl) or high (HG; 450 mg/dl) glucose (72 h) were serum de-
prived for 24 h and then stimulated with AII (100 n M ) for 60 min 
in normoglycemic or hyperglycemic conditions in the absence or 
presence of ARB valsartan (100 n M ) or the HMG-CoA inhibitor 
simvastatin (1  �  M ). The study conditions are summarized in  ta-
ble 1 .

  Reagents 
 AII purchased from AnaSpec (San Jose, Calif., USA) was dis-

solved in water 10 –4   M . Valsartan (a gift from Novartis) was dis-
solved in ethanol to a concentration of 10 –4   M  and aliquots were 
stored frozen (–20   °   C). Simvastatin, carboxylate-activated (Cat. 
No. 567020, Calbiochem, San Diego, Calif., USA), was dissolved 
in ethanol to a concentration of 10 –3   M  and aliquots were stored 
frozen (–20   °   C).

  RNA Extraction 
 TRIzol was used to purify RNA according to the manufactur-

er’s protocol (Invitrogen Corp., Carlsbad, Calif., USA). Total ex-
tracted  RNA  was  dissolved  in  20   � l sterile water and stored at 
–80   °   C. The RNA concentration was measured with a spectropho-
tometer (Bio Mate3, Thermo Fisher Scientific) and the 260/280 
ratio of RNA was  1 1.7.

  Microarrays 
 Mesangial cell transcripts were profiled using the Affymetrix 

Human Genome U133 Plus 2.0 gene array (HG-U133 Plus). A sin-
gle GeneChip �  array contains probe sets representing more than 
47,000 transcripts derived from approximately 33,000 well-sub-
stantiated human genes. The probes were made by one round of 
linear amplification by the Eberwine method used at the Center 
for Expression Arrays (CEA), University of Washington  [46] . 
 Labeled probes were hybridized using the Affymetrix protocol. 

Four separate experiments were done using 14 Affymetrix chips. 
GeneTraffic software (http://www.stratagene.com) was used for 
microarray data management and statistical analysis (ANOVA).

  Reverse Transcription 
 First strand cDNA was synthesized by priming 1  � g total RNA 

with 10  �  M  random hexamers (Promega Co, Madison, Wisc., 
USA) then by heating at 65   °   C for 10 min, and snap-cooling on ice. 
Reverse transcription (37   °   C for 1 h) was performed in the pres-
ence of 10 m M  each of dATP, dCTP, dTTP and dGTP (Invitrogen 
Corp.), 4  � l 5 !  first strand buffer (Invitrogen Corp.), 0.1  M  DTT 
(Invitrogen Corp.), 200 units of Moloney-murine leukemia virus 
(M-MLV) reverse transcriptase (Invitrogen Corp.), and 20 units 
of RNase inhibitor (Invitrogen Corp.). Following the reaction the 
sample was heated at 94   °   C for 5 min, cooled on ice and, after add-
ing 180  � l water, samples were stored –80   °   C.

  Real-Time PCR 
 PCR primers were designed using the Primer3 software (http://

frodo.wi.mit.edu/). The reaction mixture contained 5  � l 2 !  
SYBR Green PCR Master Mix (ABI), 2.5  � l DNA template and 0.3 
 �  M  primers (10  � l final volume) in 384-Well Optical Reaction 

Table 1. Design of the real-time PCR experiment

Glucose Untreated AII

Normal (100 mg/ml) UNT VAL SMV VAL+SMV UNT VAL SMV VAL+SMV
High (450 mg/ml) UNT VAL SMV VAL+SMV UNT VAL SMV VAL+SMV

AII = Angiotensin II (100 nM); UNT = untreated; VAL = valsartan (100 nM); SMV = simvastatin (1 �M).

Table 2. PCR primer list

MCP-1 (CCL2) fwd 5�-TGTTGATGTGAAACATTATGCC-3� 
Gene ID 6347 rev 5�-AATGATTCTTGCAAAGACCCTC-3� 
LIF fwd 5�-ATTCAGTGATGCTGTGCAGG-3�
Gene ID 3976 rev 5�-ATCACCTCATCTCCCTGTGG-3�

FGF5 fwd 5�-TCCTAAACCTTTGGTGGCTG-3�
Gene ID 2250 rev 5�-GTTCAAGAATGAGGGCAAGG-3�

COX-2 (PTGS2) fwd 5�-TCCCTGAGCATCTACGGTTT-3�
Gene ID 5743 rev 5�-TACTCTGTTGTGTTCCCGCA-3�

FOSL1 fwd 5�-ATGTGGGATACTGTCCAGGC-3�
Gene ID 8061 rev 5�-CATCGCAAGAGTAGCAGCAG-3�

TIEG wd 5�-ATCCTGGGTGGCTACAGATG-3�
Gene ID 7071 rev 5�-GTGCAGAGTTCAAAGCCTCC-3�

IER3 fwd 5�-CTCCTACTTTGCCGCAGTTC-3�
Gene ID 8870 rev 5�-CGTCCTCCTAGGTGATGGAG-3�

EGR-1 fwd 5�-TGAACAACGAGAAGGTGCTG-3�
Gene ID 1958 rev 5�-GGTCATGCTCACTAGGCCAC-3�

�-Actin fwd 5�-AGAGCTACGAGCTGCCTGAC-3�
Gene ID 60 rev 5�-AAGGTAGTTTCGTGGATGCC-3�
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Plate (ABI). Amplification (three steps, 40 cycles), data acquisi-
tion and analysis were done using the 7900HT Real-Time PCR 
system and SDS Enterprise Database (ABI). Standard curves were 
generated for each primer set by serial dilution of human genom-
ic DNA. Primer sequences are shown in  table 2 . mRNA levels 
were calculated relative to untreated cells grown in normal glu-
cose and all results were corrected to the  � -actin transcript.

  Statistics 
 Real-time PCR mRNA results were compared by four-way 

ANOVA for each gene  [47] . The model included main effects for 
normal versus high glucose, presence or absence of AII, presence 
or absence of valsartan and presence or absence of simvastatin 
along with all two-way interactions. mRNA levels were log trans-
formed due to skewness and robust standard error estimates were 
used to protect against departures from the constant variance as-
sumption. The level of significance was taken to be 0.05, and p 
values were not adjusted for multiple comparisons due to the ex-
ploratory nature of the analysis. The statistical analysis is sum-
marized in  table 3 .

  Results 

 Expression microarray profiling of the RNA identified 
27 genes that were induced by AII and 7 that were sup-
pressed (100 n M , 60 min treatment; ANOVA p  !  0.05; 
 fig. 1 ). In all cases the AII-induced effects were blocked 
by pretreatment of cells with the AT 1  receptor blocker 
valsartan (100 n M ). In agreement with reported domi-
nant expression of AT 1   [12] , our results suggest that in 
primary human mesangial cell culture AII-responsive 
gene expression is largely mediated by the AT 1  receptor. 
Several of the AII-responsive genes identified by micro-

arrays encode proteins, such as cytokines, enzymes and 
transcription factors that could be involved in inflamma-
tory responses. Among the candidate genes, mRNAs en-
coding proteins potentially involved in inflammatory re-
sponses, including MCP-1  [8, 48] , LIF  [49] , PTGS2 (COX-
2)  [9] , FOSL1  [50]  and NFIL3  [51]  were previously shown 
to be induced in response to AII treatment. The list of the 
genes and link to iHOP (Information Hyperlinked over 
Proteins) is http://www.ihop-net.org.

  Next we used real-time PCR (i) to confirm microarray 
data, (ii) to test if ambient glucose modulates these mRNA 
responses, and (iii) to compare the effectiveness of AT 1  
blockade with or without pretreatment with a statin, sim-
vastatin. The outline of the treatment groups is shown in 
 table 1 . The AII-induced inflammatory gene mRNAs can 
be grouped into three classes, cytokines/chemokines, en-
zymes, and transcription factors. Each functional class of 
genes will be presented as a group.

  A summary of the statistical analyses is shown in  ta-
ble 3  and to the right of  figures 2–4 .

  Cytokines/Chemokines 
 Leukemia inhibitory factor (LIF) belongs to the IL-6 

family of cytokines that share the common co-receptor 
gp130 and activate similar cellular responses  [49] . Sev-
eral studies reported AII-induced LIF and IL-6 gene ex-
pression in different cell types  [49, 52–54] . Importantly, 
it has been shown that increased systemic  [18]  and renal 
 [55]  expression of IL-6 is associated with diabetic ne-
phropathy. Thus, the involvement of the IL-6 family of 
cytokines in mediating adverse cardiovascular  [49]  and 

Table 3. Summary of statistical analysis

Comparison PTGS2
(COX-2)

CCL2
(MCP-1)

EGR-1 FOSL1 LIF TIEG
(KLF10)

FGF5 IER3

HG vs. LG control <0.001 <0.001 <0.001 <0.001 <0.001 NS <0.01 NS
NG AII vs. NG control <0.001 0.001 <0.001 NS <0.001 <0.001 NS <0.001
HG AII vs. HG control <0.001 0.001 <0.001 0.1 <0.001 <0.001 NS <0.001
HG AII vs. NG AII <0.001 <0.001 <0.001 <0.001 <0.001 0.001 0.02 0.01
NG AII Val vs. NG AII <0.001 <0.001 <0.001 NS <0.001 0.001 NS 0.01
HG AII Val vs. HG AII <0.001 <0.001 <0.001 NS <0.001 0.001 NS 0.02
NG AII Val Sim vs. NG AII Val <0.001 <0.001 NS NS NS <0.001 <0.001 NS
HG AII Val Sim vs. HG AII Val <0.001 <0.001 NS <0.001 <0.001 <0.001 <0.001 NS
�HG AII vs. cont – �LG AII vs. cont NS NS NS NS <0.05 NS NS NS
NG vs. NG Sim <0.05 <0.001 NS NS <0.001 <0.001 <0.001 <0.05

NG = Normal glucose; HG = high glucose; AII = angiotensin II; Val = valsartan; Sim = simvastatin; NS = statistically not signifi-
cant; cont = control.



Hyperglycemia Augments Angiotensin II: 
Valsartan and Simvastatin Interaction

Am J Nephrol 2009;30:99–111 103

renal  [18, 55]  outcomes appears well documented. HG by 
itself increased LIF mRNA levels 2.71  8  0.35-fold over 
NG (p  !  0.001;  fig. 2 ). AII-increased LIF mRNA levels 
3.56  8  0.63-fold in NG (p  !  0.001) and 14.15  8  2.93-fold 
in HG (p  !  0.001), and the AII-induced mRNA level was 
greater in HG (HG AII vs. NG AII, p  !  0.001;  fig. 2 ). The 
AII-induced increase in high ambient glucose was great-
er than the sum of AII and HG alone ( � HG AII vs. con-
trol –  � LG AII vs. control, p  !  0.05;  table 3 ), suggesting 
synergism. Valsartan inhibited the AII-induced LIF 

mRNA response in both NG (p  !  0.001) and HG (p  !  
0.001) to 1.12  8  0.05 and 5.66  8  1.46 levels, respectively. 
Valsartan was a slightly more effective inhibitor of AII-
induced LIF mRNA response compared to when used in 
combination with simvastatin in HG (p  !  0.001) but not 
NG (p = 0.071, NS).

  The chemokine MCP-1 (CCL2) is considered key me-
diator of AII-induced inflammation in the kidney and 
other organs  [8, 15, 25, 48, 52, 53] . Production of MCP-1 
by mesangial cells has been postulated to be part of an 
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  Fig. 1.  Heat map showing AII-induced transcripts in untreated 
and valsartan-pretreated (Val) primary human mesangial cells. 
Serum-deprived (24 h) cells maintained in normal glucose (100 
mg/ml) and preincubated with or without Val (100 n M , 30 min) 
were treated with or without AII (100 n M , 60 min). Total RNA 
extracted was labeled for hybridization of high-density oligonu-

cleotide microarrays (Material and Methods). Data were acquired 
and analyzed using the Gene Traffic program. The list of genes 
and link to iHOP (Information Hyperlinked over Proteins) can be 
found at http://www.ihop-net.org. The AII-inducible genes en-
coding putative mediators of inflammatory responses are labeled 
in red in the online version. 
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  Fig. 2.  AII effects on cytokine mRNAs ex-
pressed in primary human mesangial cells 
maintained in normal and high glucose: 
effects of valsartan and/or simvastatin. 
Cells were grown to 75–85% confluence in 
NG (100 mg/dl) or HG (450 mg/ml), fol-
lowing serum deprivation (24 h) cells were 
incubated with or without 1  �  M  simvas-
tatin (24 h). After pretreatment with or 
without valsartan (100 n M , 30 min) cells 
were stimulated with or without AII (100 
n M , 60 min; table 1). Total RNA was ex-
tracted, reverse transcribed and transcript 
levels were assessed by real-time PCR done 
in triplicates using specific primers. Re-
sults are reported as relative expression 
normalized to  � -actin mRNA. Results 
shown as mean  8  SE from the data of 
three separate cell experiments. Statistical 
analysis is shown on the right and in ta-
ble 3. NS = Statistically not significant. 
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  Fig. 3.  AII effects on mRNAs encoding en-
zymes expressed in primary human me-
sangial cells maintained in normal and 
high glucose: effects of valsartan and/or 
simvastatin. Results are reported as rela-
tive expression normalized to  � -actin 
mRNA. Results shown as mean          8  SE from 
the data of three separate cell experiments. 
Statistical analysis is shown on the right 
and in table 3. NS = Statistically not sig-
nificant. 
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early inflammatory process that causes renal injury in 
diabetes. Transcription of MCP-1 in mesangial and oth-
er cell types is primarily regulated by NF- � B  [15] . HG by 
itself increased MCP-1 mRNA levels by 1.91  8  0.72-fold 
over NG (p  !  0.001;  fig. 2 ). AII increased MCP-1 mRNA 
levels, 2.07  8  0.08-fold in NG (p = 0.001) and 5.86  8  
1.30-fold in HG (p = 0.001;  fig. 2 ). The AII-induced levels 
were greater in HG (p  !  0.001). Valsartan totally blocked 
the AII-induced MCP-1 mRNA response in both NG 

(p  !  0.001) and HG (p  !  0.001) to 0.79  8  0.02 and 1.67 
 8  0.48 levels, respectively. Pretreatment with simvas-
tatin decreased the expression of MCP-1 mRNA (p  !  
0.001;  table 3 ) and prevented the AII-induced response. 
Addition of simvastatin to valsartan lowered AII-in-
duced responses in both NG (p  !  0.001) and HG (p  !  
0.001).

  Fibroblast growth factors (FGFs), are a family of fac-
tors involved in many processes including wound healing 
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  Fig. 4.  AII effects on mRNAs encoding 
transcription factors expressed in primary 
human mesangial cells maintained in nor-
mal and high glucose: effects of valsartan 
and/or simvastatin. Results are reported as 
relative expression normalized to  � -actin 
mRNA. Results shown as mean          8  SE from 
the data of three separate cell experiments. 
Statistical analysis is shown on the right 
and in table 3. NS = Statistically not sig-
nificant. 
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and embryonic development. In the glomerulus they ap-
pear to regulate mesangial cell proliferation  [56, 57] . 
Real-time PCR did not confirm the AII-induced FGF5 
mRNA levels (p = 0.357 in NG, p = 0.317 in HG).

  The lack of real-time PCR confirmation of microarray 
data is not uncommon  [58] , underscoring the need to val-
idate microarray data. Nonetheless, the real-time PCR re-
vealed that simvastatin reduced FGF5 levels by more than 
80%, an effect that was equally potent in NG and HG con-
ditions (p  !  0.001;  table 3 ).

  Enzymes 
 Cyclooxygenase-2 (COX-2) encoded by the  PTGS2  

(prostaglandin-endoperoxide synthase 2) gene catalyzes 
the conversion of arachidonic acids to prostaglandins. In 
agreement with published reports in monocytes in vitro 
 [59] , and in the diabetic kidney in vivo  [60, 61] , HG in-
creased COX-2 mRNA levels (1.46  8  0.17-fold over NG, 
p  !  0.001;  fig. 3 ). Prostaglandins are synthesized in large 
amounts in the glomerulus in response to a host of li-
gands, including AII. Like AII, COX-2-derived metabo-
lites have hemodynamic and mitogenic effects. AII po-
tently induced COX-2 mRNA levels, 4.90  8  1.15-fold in 
NG (p  !  0.001) and 14.99  8  2.20-fold in HG (p  !  0.001; 
 fig. 3 ). The AII-induced COX-2 mRNA levels were high-
er in HG compared to NG (p  !  0.001). Valsartan inhib-
ited the AII-induced COX-2 mRNA response in both NG 
(p  !  0.001) and HG (p  !  0.001) to 1.61  8  0.33 and 3.60 
 8  1.03 levels, respectively. In contrast to the cytokine/
chemokine effects, addition of simvastatin to valsartan 
increased AII-mediated COX-2 mRNA levels in both NG 
(p  !  0.001) and HG (p  !  0.001). In fact, simvastatin alone 
increased COX-2 mRNA levels, both in NG (1.36  8  
0.09-fold, p  !  0.05) and in HG (4.43  8  0.88-fold, p  !  
0.001).

  Transcription Factors 
 Fos-related antigen 1, FOSL1 or FRA1, is a member of 

the FOS family of transcription factors  [62, 63]  that are 
responsive to mitogens including AII  [50]  and insulin 
 [62] . Increased expression of the FOS family of proteins 
has been reported in response to high glucose  [64]  and in 
diabetic nephropathy  [65] . In agreement with these stud-
ies, ambient HG increased FOSL1 mRNA levels 5.38  8  
2.72-fold over NG (p  !  0.001;  fig. 4 ). In AII-treated cells, 
FOSL1 mRNA levels averaged 1.46  8  0.33 in NG and 
11.16  8  5.56 in HG ( fig. 4 ), levels that were not statisti-
cally different from the untreated control. Nonetheless, 
statistical analysis of AII effects in HG versus NG showed 
that in the AII-treated cells the levels of FOSL1 mRNA 

were higher in HG (p  !  0.001). This difference was not 
present in valsartan-pretreated cells. Thus, there is an in-
teraction between AII and HG to increase FOSL1 mRNA 
levels.

  TGF- �  activates expression of genes that encode fac-
tors promoting renal cell hypertrophy and stimulates 
 extracellular matrix accumulation, lesions typical of 
 diabetic nephropathy  [66–68] . TGF- � -inducible early 
growth response protein 1, TIEG (KLF10), is a Sp-1-like 
transcription factor. TIEG-1 has not previously been re-
ported to respond to AII treatment. Unlike some of the 
other genes, HG by itself did not increase TIEG mRNA 
levels (HG vs. NG; p = NS;  fig. 4 ). AII increased TIEG 
mRNA levels 1.41  8  0.33-fold in NG (p  !  0.001) and the 
AII-induced level was greater in HG, 3.35  8  0.30 (HG 
AII vs. NG AII p  !  0.001;  fig. 4 ). Valsartan inhibited the 
AII-induced TIEG mRNA response in both NG (p = 
0.001) and HG (p = 0.001), 1.12  8  0.15 and 1.95  8  0.09, 
respectively. With the combination of valsartan and sim-
vastatin the levels of AII-induced TIEG mRNA in NG 
and HG were lower than when each of the agents was used 
alone (p  !  0.001 in NG and HG).

  The immediate early response 3 [IER3 (IEX1)] protein 
belongs to the NF- � B family of transcription factors. Ex-
pression of this gene is enhanced with cell proliferation 
and it may regulate apoptosis  [69] . HG by itself did not 
increase IER3 mRNA levels (HG vs. NG; p = NS;  fig. 4 ). 
AII increased IER3 mRNA levels to 1.52  8  0.52 in NG 
(p  !  0.001) and in HG to 2.28  8  0.61 (p  !  0.001;  fig. 4 ). 
In the presence of valsartan the AII-induced IER3 mRNA 
responses in both NG (p = 0.01) and HG (p = 0.02) were 
decreased. Addition of simvastatin did not appear to have 
an effect.

  The EGR-1, early growth response-1, gene is a tran-
scription factor of the immediate early response class  [51] . 
Expression of EGR-1 is induced by a host of growth fac-
tors including insulin  [70] , AII  [71]  and high glucose  [72] . 
Increased expression of EGR-1 has been linked to cardio-
vascular and renal disease  [73, 74] . High ambient glucose 
increased EGR-1 mRNA levels 3.38  8  0.44-fold com-
pared to cells maintained in NG (p  !  0.001). AII increased 
EGR-1 mRNA levels, 2.31  8  0.06-fold in NG (p  !  0.001) 
and 9.06  8  1.28-fold in HG (p  !  0.001;  fig. 4 ). The AII-
induced levels were higher in HG (HG vs. NG, p  !  0.001). 
Valsartan inhibited the AII-induced EGR-1 mRNA re-
sponse in both NG (p  !  0.001) and HG (p  !  0.001), 1.72 
 8  0.10 and 5.11  8  0.64, respectively. Addition of sim-
vastatin to valsartan had no effect on AII-induced re-
sponses.
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  Discussion 

 Our study not only adds to the mounting evidence that 
AII activates expression of diverse classes of proinflam-
matory mediators  [75, 76] , but also provides new data that 
in human mesangial cells AII induction of proinflamma-
tory gene mRNA expression is augmented in high ambi-
ent glucose. The AII effects are inhibited by valsartan and 
can be modulated by simvastatin.

  We found that high ambient glucose (HG) altered con-
stitutive (COX-2, LIF, MCP-1, FGF5, FOSL1, and EGR-1) 
and AII-inducible (COX-2, LIF, MCP-1, FGF5, FOSL1, 
EGR-1, IER3 and TIEG) levels of mRNAs encoding pro-
inflammatory mediators.

  In addition to intracellular glucose-specific pathways, 
HG levels may alter cell functions by increasing ambient 
osmolarity, an effect that is not unique to glucose. In 
some studies, osmotically active substances, such as man-
nitol, induced the same genes as HG, effects that may or 
may not represent shared hyperosmolarity-triggered 
pathways  [77–82] . Regardless whether or not glucose and 
mannitol pathways are common, the hyperosmolarity is 
likely to play a role in gene induction in a variety of cell 
types because the postprandial osmolarity in diabetic pa-
tients is abnormally elevated  [81–84] .

  Previous studies and our in vitro observations about 
levels of those mRNAs that encode factors involved in 
inflammatory responses suggest a possible model of how 
hyperglycemia could be aggravating the AII role in the 
development of diabetic nephropathy. The NF- � B/Rel 
family of transcription factors are among the most im-
portant intracellular mediators of inflammatory respons-
es  [16, 85, 86] . Hyperglycemia increases ROS production 
which in turn activates NF- � B  [10, 59, 87] . Like high am-
bient glucose, AII also increases ROS production and ac-
tivates NF- � B  [10, 59, 87] . Both HG and AII have been 
shown to increase ROS production via NADPH oxidase 
 [9, 77, 88–90] . There is evidence that HG- and AII-medi-
ated activation of NADPH oxidase is mediated through 
the activation of protein kinase C (PKC) where the PKC-
 �  isoform may play a particularly important role  [90] . 
Several of the AII- and HG-induced genes that we identi-
fied ( fig. 2–4 ) including MCP-1  [8, 15, 25, 38] , LIF/IL-6 
 [38] , COX-2  [91] , EGR-1  [92]  and FOSL1 (Fra-1)  [93]  are 
activated by NF- � B. Thus, the greater AII-induced re-
sponses seen under high ambient glucose conditions may 
reflect augmented NF- � B responses. There are several 
potential NF- � B-dependent mechanisms that could be 
explain the synergistic (e.g. LIF) and additive (e.g. MCP-
1) effects of AII and HG effects. (i) Both AII and HG ac-

tivate NF- � B and together the level of NF- � B activity is 
greater. Indeed, in addition to ROS, HG and AII syner-
gistically activate signaling molecules acting upstream of 
NF- � B, such as PKC �   [94]  and p38 MAP kinase  [95] . 
Since PKC �  activates NADPH oxidase  [90]  this enzyme 
could be mediating HG-AII synergistic activation of ROS 
production. (ii) AII and HG activate other transcription 
factors that cooperate with NF- � B (e.g. EGR-1, KFL4 and 
FOSL-1). (iii) AII and HG increase synthesis of chemo-
kines/cytokines that augment activation of NF- � B and 
other transcription factors via autocrine mechanism.

  The ARB valsartan inhibited all AII-inducible genes 
studied here, suggesting that this agent has broad anti-
inflammatory properties that appear as effective in high 
as in normal ambient glucose. The anti-inflammatory ef-
fects of ARBs likely reflect an indirect effect through the 
blockade of AT 1 R-mediated production of ROS interme-
diaries  [88]  and block of NF- � B induction which could 
result, in part, from the increased ROS levels  [8, 87] . Be-
cause high ambient glucose renders the mesangial cells 
more sensitive to the AII proinflammatory action ( fig. 2–
4 ), the renoprotective RAS inhibition is particularly im-
portant in sparing the kidney from diabetes.

  There is strong evidence that statins have organ-pro-
tective properties independent of their cholesterol-lower-
ing effects  [30, 36, 37, 96] . In experimental models of glo-
merulonephritis, lipid-induced nephritis and AII-in-
duced injury, simvastatin suppressed mesangial cell 
proliferation, matrix expansion and inflammatory mark-
ers  [37, 97–99] , a process associated with decreased ex-
pression of cyclin-dependent kinase 2 (Cdk2), a key regu-
lator of cell proliferation  [100] .

  In our cultured human mesangial cell system, addi-
tion of simvastatin to valsartan further lowered some 
(e.g. MCP-1, LIF and TIEG) but not all (e.g. COX-2) AII-
induced mRNAs. In addition, simvastatin by itself inhib-
ited both HG-induced (FGF5, and MCP-1) and AII-in-
ducible (FOSL1) gene expression. Taken together, these 
results suggest that some of the statin’s renoprotective 
mechanisms are synergistic with RAS inhibitors, where-
as others are mediated by pathways different from those 
of ARBs. One specific mechanism whereby statins ame-
liorate renal inflammation could be mediated by inhibi-
tion of small GTPases, such as RhoA  [99, 101, 102] . How-
ever, we also found that simvastatin increased COX-2 
mRNA expression, an effect that was greater in the HG 
environment ( fig. 3 ). Statins have also been reported to 
increase COX-2 expression in macrophages, an effect me-
diated by ERK1/2 pathways  [103] . Because hyperglycemia 
activates ERK1/2  [10] , activation of this pathway thus 
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may explain the greater effect of simvastatin in HG. Tak-
en together, these observations suggest that statins mod-
ulate inflammatory responses but, depending on the con-
text, statins may have either anti- or proinflammatory-
like effects.

  It seems plausible that acting through both the same 
and different pathways the combined effects of ARBs and 
statins could be more renoprotective than using only one 
of the agents. Indeed, observations in some models of re-
nal injury, such as Heymann nephritis, the combination 
of lisinopril with simvastatin was significantly more 
nephroprotective than monotherapies, including the in-
flammatory markers  [104, 105] . Nonetheless, it should be 
noted that available evidence in experimental diabetic 
nephropathy about the potential superiority of combina-
tion of statins with RAS inhibitors is less clear. Although 
in streptozotocin-diabetic rats, this drug combination 
conferred superiority over monotherapies on renal func-
tion (prevention of albuminuria and rise in plasma BUN 

and creatinine), no advantage of combination therapy 
was seen with respect to attenuating renal structural in-
jury and renal expression of TGF- �  and VEGF in exper-
imental diabetes  [106] .

  In summary, our observations add to the growing ev-
idence that ARBs and statins modulate renal cell inflam-
matory responses  [4–6, 76] . However, in vivo studies 
measuring activities and protein levels encoded by the 
mRNAs identified in this and other studies are needed to 
fully explore the interaction between ARBs and statins in 
the diabetic kidney.
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