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Abstract
While many data sets carry geographic and temporal references, our ability to analyze these datasets
lags behind our ability to collect them because of the challenges posed by both data complexity and
tool scalability issues. This study develops a visual analytics approach that leverages human expertise
with visual, computational, and cartographic methods to support the application of visual analytics
to relatively large spatio-temporal, multivariate data sets. We develop and apply a variety of methods
for data clustering, pattern searching, information visualization, and synthesis. By combining both
human and machine strengths, this approach has a better chance to discover novel, relevant, and
potentially useful information that is difficult to detect by any of the methods used in isolation. We
demonstrate the effectiveness of the approach by applying the Visual Inquiry Toolkit we developed
to analyze a data set containing geographically referenced, time-varying and multivariate data for
U.S. technology industries.

Introduction
Exploring and analyzing large space– time–attribute data sets is challenging due to data
complexity (i.e., potential interactions among space, time, and attributes) and tool scalability
issues (i.e., the challenge of coping with both data volume and high dimension). In this paper,
space–time–attribute refers to geographically referenced, time-varying data involving multiple
thematic attributes; the focus of methods and tools described is on identifying and interpreting
spatio-temporal, multivariate patterns in these data. Existing approaches to pattern
identification and interpretation, from entirely computational to visually led methods, are
limited in analyzing complex patterns that include space, time, and attribute components
together. Moreover, traditional information visualization methods do not support analysis of
large data sets. Pattern recognition, machine learning, and other computational methods have
been developed explicitly to deal with large and high-dimensional data sets, but typically do
not provide ways to incorporate both space and time, nor do they leverage the power of human
vision and cognition to help analysts notice and quickly interpret patterns in complex data. The
goal of this research is to bridge this gap by developing analytic methods that couple visual,
computational methods and human expertise in productive ways. The approach presented here
was developed within the broad research framework provided by visual analytics, defined as
“the science of analytical reasoning facilitated by interactive visual interfaces” (Thomas and
Cook 2005, p. 4).

This research introduces a Visual Inquiry Toolkit (VIT) which provides information analysts
with a flexible interface to integrated visual, computational, and cartographic methods that
support an overview+detail strategy for identifying and interpreting patterns in space–time–
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attribute datasets of relatively large size. Overview+detail describes a strategy for supporting
multiple levels of detail in an interactive visual display (Plaisant et al. 1995). This strategy is
best known through Shneiderman’s (1996) information-seeking mantra: overview first, zoom
and filter, with details on demand. We propose adding a step to Shneiderman’s mantra—
information synthesis, which refers to capturing novel, relevant patterns and reorganize them
to yield more useful information. Beyond support for the extended visual overview+detail
strategy, the VIT also emphasizes flexible interaction strategies designed to enable human
knowledge and judgment to be coupled productively with computational pattern-finding
methods to support an iterative analysis process.

The remainder of the paper is organized as follows. In the next section, we review related
literature. Following that, we discuss our strategy and methodologies, with a focus on
representation issues; then, we demonstrate an interactive visual analytics approach for
identifying and interpreting spatio-temporal multivariate patterns. Finally, the advantages and
limitations of the approach and possible further work are discussed.

Related Work
A starting point for our approach is past work on visualizing multivariate data. The commonly
used data representations for multivariate visualization include tables and scatter plots; more
sophisticated methods include scatterplot matrices (Andrews 1972), parallel coordinate plots
(Inselberg 1985), matrix permutation (Mäkinen and Siirtola 2000; Bertin 1981), and
multivariate glyphs (Pickett et al. 1995). A comprehensive review of the methods can be found
in a paper by Keim et al. (2005). All of these methods, however, have difficulty representing
large data sets. As the number of data items/variables goes up, the potential for over-plotting
on displays goes up as well. Two major solutions have been proposed to address this problem.
One is to reduce the data size being displayed by grouping individual data records into subsets
(e.g., aggregation or clustering); in this case, collective characteristics of the grouped data are
visualized and investigated (Guo et al. 2005; Johansson et al. 2004; Ward 2004). The other
solution is data selection, which allows zooming, filtering, and focusing on a subset of data
(Keim et al. 2005). This research takes a combination of both approaches.

Visualization of space–time–attribute data are challenging because traditional single 2D or 3D
views do not provide enough dimensional space to display all space, time, and multiple attribute
components simultaneously. A widely adopted method for space–time data is to represent these
data in a three-dimensional view where time data are visualized in the third dimension over a
two-dimensional map (Kwan 2000; Lodha and Verma 2000; Kapler and Wright 2004). This
method, however, has severe limitations for visualizing multivariate data of even modest size
(e.g., hundreds of data records for more than two or three variables). Some other systems use
animation to display time, presenting sequential representations of spatial information at a
moment of time (Slocum et al. 2000; Oberholzer and Hurni 2000; Stojanovic et al. 1991).
However, this technique imposes burdens on human short-term memory to retain temporal
changes, thus it is not suitable for complex, large data sets. Two approaches that show some
potential to address these issues are: (1) small multiple adjacent views (MacEachren et al.
2003) and (2) linked views (MacEachren et al. 1999; Andrienko and Andrienko 2001; Robinson
et al. 2005). We extend both approaches, combining them with computational clustering
methods.

Successful analysis of large, space–time–attribute datasets requires more than advances in
visual representation or computational methods. Human interaction also plays important roles
in identifying and interpreting complex patterns. Considerable effort has been directed toward
methods for interactively detecting multivariate patterns (Harri 2004; Seo and Shneiderman
2002) and temporal patterns (Buono et al. 2005; Carlis and Konstan 1998). While several
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studies have focused on spatio-temporal data (Gatalsky et al. 2004; Kwan 2000), few
approaches have been developed to interactively search for patterns using strategies that
consider all aspects of space, time, and attribute components.

Most of the research within the geovisualization and information visualization communities
on interaction has been focused primarily on developing methods and mechanisms to support
real-time interaction with individual and linked views, using brushing, linking, focusing, and
other direct manipulation methods (Shneiderman 1997; Andrienko and Andrienko 1999;
Dykes 2005). As has been outlined from the perspective of both science (Gahegan 2005) and
intelligence analysis (Pirolli and Card 2005), however, a goal of both exploratory
geovisualization and visual analytics, generally, is to support an analytical process that is often
complex, iterative, and carried out over an extended period of time. Thus, approaches to support
interaction need to move beyond interaction as an action to interaction as a process. A key
component in supporting an analytic process is provision of interaction methods that allow
analysts to create, save, retrieve, and share analytic artifacts (Pike et al. 2007). The concept of
a pattern basket, detailed below, is a step in this direction intended specifically to support
saving, comparing, revising, and sharing patterns identified in complex space–time–attribute
data sets.

Our own previous work (Guo et al. 2006) specifically addresses space, time, and multiple
attributes. In that complementary work, the computational and visual methods are integrated
and applied to single session analysis (e.g., an exploration session intended to uncover hidden
patterns and/or generate hypotheses about multivariate relationships). The visual-
computational tools described in the paper cited above, while interactive, put the emphasis on
computational methods and offered relatively limited human interaction support and no explicit
support for a sequential knowledge building process. The work introduced in this paper
emphasizes support for a spiral multi-session analysis process with a systematic overview
+detail strategy, allowing human judgment to steer the analysis process, refine the
computational outcomes, and synthesize relevant, potentially useful information. Specifically,
our methods and tools incorporate flexible human interaction focused on process, including:
a highly manipulable, parallel coordinate plot that supports overview plus detail analysis; a
dynamic dendrogram integrated with a reorderable matrix; and pattern baskets as a mechanism
for supporting a multi-step analytical process of pattern identification and interpretation.

This paper expands in several ways upon a preliminary report on the above extensions presented
in (Chen et al. 2006). For example, we detail the complementary roles played by various visual
and interactive methods. We also clarify the way in which a Self-Organizing Map (SOM) can
facilitate multivariate analysis and provide details on the color encoding applied to the
multivariate clusters generated. Another instance of expansion is the provision of details on
how to construct an holistic overview and detailed views for visualizing spatio-temporal,
multivariate patterns, and how the techniques of static link and dynamic link, combined with
the color scheme generated by the SOM, facilitates the construction of the overview. And, we
formally introduce and illustrate application of the Pattern Basket concept—a reasoning
artifact to facilitate externalizing cognition (for discussion of reasoning artifacts in visual
analytics, see chapter 2 in Thomas and Cook, 2005); and clarify the concept of information
synthesis and the way pattern baskets supports it.

Visual Inquiry Toolkit: An Integrated Approach
In this section, we provide a detailed, six-part introduction to the components of the Visual
Inquiry Toolkit. First, we outline the tasks for which the toolkit is designed and the strategies
for supporting those tasks. Second, we introduce the approach for applying visual-
computational methods to multivariate data analysis. Third, we focus on how support for
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overview+detail is implemented for the space-time component of the data. Fourth, we outline
the strategy for linking among toolkit components. Fifth, we detail how hierarchical clustering
and ordering tools are integrated with interactive visualization tools. Finally, we introduce the
concept of pattern baskets for supporting an analytical process.

Tasks and Strategy
Our approach to conceptualizing tasks and the strategy for supporting them builds on past
research, particularly that by Peuquet (2002), Andrienko and Andrienko (2005b), MacEachren
(1995) and Bertin (1983). As detailed in that research, questions posed by space-time-attribute
data analysis usually involve three components: where (space), when (time), and what
(attribute/thematic objects) (Peuquet 1994). Drawing upon Peuquet’s ideas, Andrienko et al.
(2003) discussed three basic analysis tasks in detail as they relate to exploratory visualization:
when + where → what; when + what → where; where + what → when. The tasks follow a
general question scheme A+B→X, where A and B denote known information and X stands for
unknown information. Based on Bertin’s concept of levels of reading (elementary,
intermediate, and overall), Andrienko et al. (2003) introduced two “search levels” to the
analysis tasks: (1) an elementary level in which a task deals with individual objects (such as a
time, a place or a characteristic); and (2) a general level in which a task considers a set of
objects as general situations.

A sample elementary level task related to the U.S. industry analysis presented below is: What
were the industry sales in the 2001 for the Kansas? A question of this style can easily be
answered by a database query. The more challenging questions are the general level ones such
as: What changes in industry composition have occurred in the U.S. during the past decade?
What geographical areas have similar or unusual composition, and what characterizes them?

The general questions are hard to answer through database queries alone because exploratory
goals are initially vague and we do not know which data components (what, when, where) to
query; thus, formal queries are difficult or impossible to construct. Furthermore, a system that
forces users to query data iteratively, and view and act on a partial result at each iteration, is
time-consuming, error-prone, and often does not produce the desired results (Kapler and
Wright 2004). Hence, analysts working with large and complex data sets need to first gain an
overview of the entire data set to quickly understand the scope and structure of the data set and
discriminate between interesting and uninteresting content (Greene et al. 2000), then focus on
a subset of data with more viable patterns in detail views.

To support the approach suggested above, this research employs the overview+detail strategy,
which follows the three steps in Shneiderman’s (1996) “information-seeking mantra” as
interpreted by Keim et al. (2004). Step one is Overview—examine the representation of a
summary of the entire data, which presents a context from all space, time, and attribute
perspectives. Step two is Zoom and filter—select interesting patterns or data subsets revealed
by the holistic view or by previous processes. The third step is Details on demand—focus on
the patterns identified in the previous step, inspecting details from various perspectives to form
or valid hypotheses. This mantra has been adopted widely as a framework for exploratory tool
development in Information Visualization (Keim et al. 2004). Here, we propose one more step
in the process, directed explicitly toward supporting an extended analytical process:
information synthesis—capture novel, relevant patterns and reorganize them to yield more
useful information. The four steps form a spiral process to incrementally search, identify, and
analyze patterns and, eventually, to synthesize useful information out of the patterns for
knowledge construction and decision-making.

Initially introduced by DiBiase (1990), the concept of information synthesis has been discussed
repeatedly as a core stage in the geovisualization process by MacEachren and colleagues
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(1994; 2004; 1997) and Gahegan and Brodaric (2002). The concept has also been considered in
the Information Visualization community by Spence and Tweedie (1998), who focus
particularly on the role of synthesis in the task of information retrieval, specifically on
integration of insights from multiple information retrieval actions that leads gradually to refined
problem formulation. Synthesis has also been recently highlighted by the visual analytics
community (Thomas and Cook 2006; Keim et al. 2006). In spite of attention to the concept,
limited progress has been made toward tools that support synthesis (for one recent effort
targeted at support of intelligence analysis focused on heterogeneous and unstructured
information, see Wright et al. (2006)). The research presented here addresses this partially by
a specific focus on a method of information synthesis focused on identifying and interpreting
patterns and relationships within numerical data sets that include space, time, and multiple
attribute components.

The proposed strategy and methods are implemented in the Visual Inquiry Toolkit. Specifically,
the toolkit employs a Self-Organizing Map (SOM) (Kohonen 1997) to cluster multivariate
data, then encodes the clusters with a 2D diverging-diverging cartographic color scheme (Guo
et al. 2005). The colored clusters are visualized in a space–time matrix—a re-orderable,
graphical tabular view in which cells represent categories (or multivariate clusters) rather than
individual values. Supported by hierarchical clustering methods, the matrix orders and reorders
the layout of the rows, thus presenting an overview of coarse-grained patterns and exposing
major explicit patterns by grouping similar entities. A parallel coordinate plot, linked to the
matrix, serves as a legend for interpreting the multivariate patterns in a detail view. A matrix
of small multiple geographic maps supports the examination of both the spatial distribution of
multivariate patterns and changes in that distribution over time (Chen et al. 2006; Guo et al.
2006). Finally, a Pattern Basket (a place in which an analyst can store interesting fragments
of information during an extended analysis process) supports pattern synthesis. We
demonstrate our research and the Visual Inquiry Toolkit through an application to a benchmark
data set, provided for the IEEE InfoVis 2005 contest (Grinstein et al. 2005), analyzing the
changing characteristics of U.S. technology industries and companies over time. These data
are described below, briefly, and used to exemplify aspects of the toolkit discussed in
subsequent sections.

The full dataset used here to demonstrate the Visual Inquiry Toolkit capabilities has
approximately 563,000 records, involving 87,659 companies over 15 years. The focus of the
analysis is geographic pattern change for national industry composition over time. Hence, the
data are aggregated by state and year as shown in Figure 1. The 18 industries to be analyzed
are: factory automation (AUT), biotechnology (BIO), chemicals (CHE), computer hardware
(COM), defense (DEF), energy (ENR), environmental (ENV), manufacturing equipment
(MAN), advanced materials (MAT), medical (MED), not-primarily-high-tech (NON),
pharmaceuticals (PHA), Photonics (PHO), computer software (SOF), Test & Measurement
(TAM), telecommunications and Internet (TEL), transportation (TRN) and subassemblies and
components (SUB).

Visualization of Multivariate Patterns
The parallel coordinate plot (PCP) method (Inselberg 1985) is a widely used technique for
visualizing multivariate data. We have extended the method in several ways to facilitate its use
as a multivariate “legend” for interpreting the multivariate patterns (i.e., generated by the Self-
Organizing Map) within a multi-view application that combines visual and computational
methods.

A well known problem with PCPs is overplot-ting—data patterns become illegible as the
number of data entities displayed increases. This problem has been addressed primarily from
two directions (Andrienko and Andrienko 2005a; Edsall 2003; Ward 2004; Guo et al. 2005;
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Novotny and Hauser 2006): (1) computationally grouping the data (e.g., aggregating or
clustering) to achieve an overview with fewer data groups displayed; and (2) data selection
(zooming, focusing, filtering) to investigate individual data records or a subset of data in a
detail view. Both methods are adopted in our research.

Grouping of data can be achieved by a wide array of computational clustering methods (Hastie
et al. 2001). Among them, the Self-Organizing Map (SOM) has proved to be an effective
method for multivariate clustering (Vesanto and Alhoniemi 2000; Kohonen 1997); in addition,
the SOM preserves inter-cluster relations with a 2D layout. Basically, a SOM clusters a set of
n-dimensional data vectors, dividing the entire dataset into a group of non-overlapping subsets,
each of which is a cluster that contains similar multivariate vectors. The SOM projects the
clusters to an array of circular nodes on a 2D space (as shown in the diagram at the left-top
corner of Figure 2), where a string in a node depicts a multivariate profile (e.g., industry
composition). More importantly, the SOM places similar clusters in neighboring nodes, while
distinct clusters are placed at the four corners. Johansson et al. (2004) demonstrated an
integration of a SOM with a PCP for the exploration of large multivariate data. Guo et al.
(2005) also adopt the similar approach, enhancing interpretation of clusters by applying a 2D
cartographic color scheme (left bottom graph in Figure 2) to the SOM to highlight similarities
and differences of clusters. Specifically, a color is used to encode a multivariate pattern
uniquely, and similar clusters are assigned similar colors and different clusters are assigned
distinct colors (Figure 2). This approach is adopted in our research and is demonstrated next.

In the example shown in Figure 3, percentage data for 18 industries (as explained in Figure 1)
are clustered by our SOM component. To illustrate, the figure shows five of the industries
displayed in the PCP. Each industry is treated as a variable and represented by a vertical axis
in the PCP. All axes in the PCP are scaled to the same maximum and minimum value (from a
proportion of zero to a proportion of one, representing that industry’s contribution to the total);
thus, the value of a string at each axis is directly comparable, and the slope of line segments
between strings is meaningful. A string in the PCP depicts the industry composition for an
observation (i.e., a state/year combination). The strings are assigned different colors by the
SOM to represent different industry compositions. For example in the right plot of Figure 3, a
red string represents an industry composition dominated by Telecom (TEL) industry with small
amounts of Transportation (TRN), some Software (SOF) and Medical (MED) industries, while
the purple string represents an industry mix dominated by Transportation (TRN) industry.

Our PCP implementation supports switching between overview mode (to display data groups)
and detail view mode (to display individual data items). This method is useful for visualizing
relatively large datasets (Robinson et al. 2005; Andrienko and Andrienko 2005a; Guo et al.
2006). In the overview mode (Figure 3, left plot), a string represents a cluster (by displaying
the median value of the cluster’s data items for each attribute) and depicts a multivariate pattern
for the cluster. In the detail view mode (Figure 3, right plot), a single string represents an
individual data item (in this case, the industry composition for a specific state in a specific
year); the red strings together represent a cluster of related data items. The outline of the red
strings depicts the pattern of the cluster. The overview implementation in the PCP alleviates
the overplotting problem while also reducing the “noise” generated by individual variations,
exposing multivariate patterns in a more legible manner.

Visualization of Space–Time–Attribute Patterns
In order to support the proposed overview+detail strategy, space–time–attribute data need to
be visualized in a holistic overview and detail views. The toolkit follows the common multiple-
view strategy of breaking the complex information into manageable pieces and displaying each
piece in multiple-linked views. Specifically, spatio-temporal, multivariate data are broken into
a spatio-temporal and a multivariate component; the former is visualized in a space–time matrix
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and a map matrix, and the latter is visualized in the PCP and the SOM. All the views are linked;
in this section, we focus on the link between the space–time matrix and the PCP.

Matrix-based representations of data are a common way to depict tabular data graphically (as
shown in Figure 1). Bertin (1981) was perhaps the first to highlight the analytical power
achieved when users are given the ability to order the rows and columns of a matrix to search
for patterns. Several others have built upon this idea by proposing dynamic linking between a
re-orderable matrix and a map (Gluck 2001). Here, we extend and apply the re-orderable matrix
method to space–time–attribute analysis.

Specifically, we develop a space–time matrix (Figure 4, left) in which (for data used here) rows
represent places (states) and columns represent times (years). A cell reflects a coarse-grained
multivariate pattern of the 18 attributes via its color. The detail of a multivariate pattern is
depicted by the PCP that is linked to the space–time matrix. The link is achieved on two levels:
a dynamic link and a static link. In this research, the former is to link the information for a
single (or a subset of) data item(s) via human interaction, while the latter is to link the
information for all the data items without human interaction.

We first briefly describe the dynamic link and then focus on the static link. A dynamic link
(Becker and Cleveland 1987; Buja et al. 1991) typically means simultaneously highlighting of
one-to-one, one-to-many, or many-to-many visual elements across views so that various
aspects of the data can be investigated concurrently. In this research, a data item is referenced
by place and time represented as a matrix cell, and its attributes are displayed in the PCP. The
dynamic link is achieved by the mouse-over operation—when a mouse is moved over a matrix
cell, the corresponding string in the PCP is highlighted, or vice versa (Figure 4); or by brushing
—selecting multiple data records in a view, causing them to be highlighted in all the views.

Static link, as described by Andrienko and Andrienko (2005b), refers to applying the same
visual expressive means to the pieces of related information so that they are known as “linked”
to visualize the same “thing” or related things in the multiple views even without human
interaction. In this research, static link is achieved by applying consistent color scheme
generated by the SOM to represent the multivariate clusters, across all the views. Static link is
not a new concept. Cartographers (Olson 1981; Brewer 1994), since the 1970s, have used
logical color-coding strategies to depict individual categories, and the relationships among
categories, for map depiction. An example is a legend for a bivariate map as illustrated by
Andrienko and Andrienko (1999; Figure 8, p. 370). Here, we use the term to emphasize linkages
across views in a static (thus symbolic) manner. Static links are essential for constructing a
holistic overview of spatio-temporal and multivariate patterns because they allow visually
distinguishing multiple data clusters from all spatial, temporal, and multivariate perspectives
simultaneously, thus exposing major patterns in the overview without human interaction.
Establishing the links without human interaction is important at the initial stage of data
exploration, when little is known about the data or with which data items one wishes to interact.

The implementation of static link is as described below. A cluster of data carrying a multivariate
pattern is assigned a unique color generated by the SOM. The multivariate pattern of the cluster
is displayed in the PCP, and the spatio-temporal reference of each data item is represented as
a matrix cell in the same color as the cluster. The result is a static link between the matrix cells
and a string in an overview-mode PCP established via the unique color as shown in Figure 5.
A typical analysis case in Figure 6 illustrates how a temporally varying pattern within a single
state is visualized via a static link. We will demonstrate the benefits of static links and the
holistic overview in later sections, when they work together with human interactions.
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Complementary Linked Views
To expose spatial patterns more effectively, a map matrix is coupled to the space–time matrix
and PCP via the static and dynamic link. The map matrix is composed of small multiple
geographic map views ordered by years (Figure 7, top-right). These maps each depict the
multivariate cluster results derived by the SOM, using the same color scheme as in the space–
time matrix and PCP. While each individual map is useful for displaying multivariate patterns
across space, the multiple yearly ordered maps are particularly useful for uncovering how
geographic patterns change over time.

The space–time matrix, map matrix, and PCP complement each other to construct a holistic
overview of complex patterns from spatial, temporal, and thematic perspectives. The space–
time matrix and map matrix display the salient, multivariate, spatio-temporal patterns as
distinct color regions (e.g., (A), (B), (C), and (D) in Figure 7), while the PCP depicts the
multivariate component of the patterns for either a group of space–time entities (in overview
mode) or an individual state–time entity (in detail view mode). For example, the green region
(A) in the space–time matrix indicates that some constant multivariate pattern occurred in
Michigan and Nebraska for all the years. The pattern is interpreted in the PCP as an industry
composition dominated by non-primary-high-tech (NON). In addition, we notice that many
the matrix rows are ordered to group states with similar industry composition over time
together. The matrix allows columns (years) to be ordered as well. However, because a
relatively short run of yearly data is available for this application, we fix the order of columns
in calendar order and focus on the patterns uncovered by re-ordering the places (rows).

While the space–time matrix can be used with any ordering method, the Visual Inquiry
Toolkit employs agglomerative hierarchical clustering methods to derive 1D ordering of the
matrix rows. The general approach has been found to be effective for pattern identification
(Seo and Shneiderman 2002; Bar-Joseph et al. 2001). We first discuss the hierarchical
clustering methods. An agglomerative clustering method typically includes three basic steps:
(1) initially treat each data item as its own leaf cluster, (2) find and merge the most “similar”
pair of clusters (e.g., (A) and (B) in Figure 8); and (3) repeat step one and two until all the
clusters are agglomerated in one root cluster, forming a cells are shrunken to a quarter of their
original size). The remaining rows (in full size) are those rows where attention should be
focused on at the moment. A detailed application of the dendrogram is illustrated in the section
entitled Exploratory Pattern Analysis.

The entire hierarchical cluster solution is used to derive 1D ordering of the matrix rows. A
simple and fast ordering mechanism could be merging two clusters, always putting the cluster
containing more leaf clusters on one side (e.g., top), and the other cluster opposite it. When
applied to the single-link algorithm, this ordering approach results in ordering from clusters
that are more similar (i.e., with short branches) to those that are less similar (i.e., with long
branches). For example, as shown on top of the dendrogram in Figure 7, when cluster E
(contains two states: California, Massachusetts) and cluster F (contains eight states from South
Carolina to Tennessee) are merged, cluster F is put on the top. Ordering algorithms is beyond
the scope of the discussion in this paper, hence readers are directed to Bar-Joseph et al.
(2003),Bar-Joseph et al. (2001) and Guo and Gahegan (2006) for advanced information. In
order to overcome limitations (or biases) of computational ordering methods, our space–time
matrix also supports manual matrix ordering; this is particularly useful for identifying hidden
and complex patterns and for synthesizing information, as demonstrated below.

Pattern Basket
To support identification of complex, implicit spatio-temporal patterns in a multiple session
data analysis process, a new concept—a Pattern Basket—is introduced. A Pattern Basket
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provides a way of externalizing cognition through external representation (Scaife and Rogers
1996; Zhang 1997; Reisberg 1987), helping human cognition to identify complex and implicit
patterns that may be missed by computational methods and/or may not become apparent until
multiple steps in a spiral analytical process have been carried out. In this paper, the term
externalizing refers to “the act of creating and modifying an external representation” (Nakakoji
and Yamamoto 2003). Graphical representation plays important roles in helping human
cognition because appropriate external representations are critical in conveying information
correctly and more efficiently (Scaife and Rogers 1996; Zhang 1997). In the Visual Inquiry
Toolkit, a Pattern Basket is a variation of the space–time matrix where some discovered
patterns are stored, and where an analyst can manually readjust the representations of patterns
as part of the interpretation process—specifically, change the sequence of rows in the matrix
to highlight specific space–time–attribute features of interest. By manually adjusting
representations generated by computational methods, analysts can incorporate their expertise
and domain knowledge. This increases the opportunity to expose and interpret complex,
implicit, and relevant patterns that computational methods are unable to extract (as shown in
Figure 13). In addition, while focusing on the patterns exported to the Pattern Basket, the
analyst can still view the space–time matrix, map matrix, and PCP, thus having access to the
contextual information in the overview. By comparing the focus and the context, insights are
often derived.

In addition to a role in enabling cognition, external representations provide a memory aid for
complex, multi-step tasks (Zhang 1997). The Pattern Basket also serves this role. When
analyzing a large data set carrying complex spatio-temporal patterns, pattern identification
often requires repeated processes carried out by an analyst over hours or even multiple days.
It is unlikely that human memory can hold all the discovered patterns (explicit or implicit),
along with other potentially useful information, during an extended exploratory analysis
process. A visual analytical tool must allow analysts to off-load the discovered patterns and to
retrieve, later, what was found when it is thought to be relevant. The pattern basket component
enables an analyst to expand the capacity of human memory to an external memory—the
basket. Specifically, interesting and potentially useful regions/rows discovered in the main
space–time matrix are exported (copied) to one or multiple baskets for temporal storage for
further investigation.

Exploratory Pattern Analysis
In this section, we illustrate an application of the proposed overview+detail strategy for
analyzing a complex industry dataset. This case study application highlights three processes:
(1) interactive pattern detection and filtering; (2) interactive pattern examination; and (3)
identification of implicit patterns and information synthesis. They are described in the
following three subsections

Interactive Pattern Detection and Filtering
The goal of the interactive pattern detection and filtering is to select interesting and relevant
patterns. Initially, the space–time matrix displays an overview of patterns in which matrix rows
are ordered by a computational method alone (Figure 7). Patterns seen in this overview are not
fully satisfying because all kinds of patterns—relevant/irrelevant, explicit/implicit—are put
together in the matrix view. The mixture of patterns can distract human attention and hinder
an analyst in identifying the most important patterns, as well as any hidden ones. Hence, we
need to go through step 2 (Zoom and filter) to find the most interesting and relevant patterns.
To support this process, we designed and implemented an interactive dendro-gram which is
attached to the space–time matrix. The two components work together with the PCP to support
human judgments about the novelty, relevance, and importance of patterns.
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Analysts can gradually adjust the threshold value for the cluster similarity (by dragging the
vertical bar on the dendrogram), and clusters with high similarity are highlighted. However,
clusters with high similarity values do not necessarily mean relevant or potentially useful
patterns. Analysts are often interested in patterns with some constant characteristics over time
or with an abrupt change (as demonstrated in Figure 9); hence, an analyst must investigate the
patterns in detail in the PCP and apply domain knowledge to determine which patterns are
novel, relevant, and important. Rows that carry irrelevant, known, or unimportant patterns can
be manually disabled (thus filtered out). The rows with interesting patterns can then be exported
for later use. By “export” we mean copy the selected rows from the space–time matrix to the
Pattern Basket (Figure 10, right) so that the patterns thought to be relevant can be saved for
further analysis.

Interactive Pattern Examination
Having found some interesting patterns via step 2 (filtering), we can go to step 3, i.e., examine
the patterns in detail. We demonstrate the process via an analysis case. We select the blue
region (Figure 10, in the middle of the matrix). It contains four states—Maine (ME), Indiana
(IN), Arizona (AZ), and Alabama (AL). The strings in the PCP depict an industry composition
pattern that is dominated largely by SUB industry (Figure 11, left). This exploration follows
a where+when→ what model in which where and when are identified in the space–time matrix
(through common colors that suggest a pattern) and what is found in the PCP (where the
industry composition is indicated by color, as can the specific extent to which each state–time
entity fits the pattern). To investigate the pattern, we do an incremental brushing along the SUB
axis. It is a what → where+when process, and two more states—New Hampshire (NH) and
Washington (WA)—are found to focus on the SUB industry. The six rows are exported into a
Pattern Basket and manually re-ordered for better interpretation (Figure 11, right).

In the map matrix (Figure 12, top left plot), we notice that most of the states were in blues in
the early years from 1992 to 1997; more recently, Arizona changed to bright blue from 1998
to 2000, then dramatically changed to green from 2001 to 2003. To determine what this means,
we make three drill-down selections on the space–time matrix (see Figure 12(A), (B), and (C)).
Our complementary, linked views effectively visualize how multivariate patterns (industry
mix) changed across geographic space and over time. As shown in Figure 12(A, B, C), an
industry composition dominated by SUB was seen in the six states except NH from 1992 to
1997; SUB expanded from ME to NH, while significantly decreasing in the other states after
2001; and AZ switched focus from SUB to NON eventually.

The views allow interactive exploration from all space, time, and attribute perspectives;
compound selection operations can be made to achieve any combination of where, when, and
what for a query schema of either A+B→ C or A→ B+C. The queries can be made on a group
of entities to address general level questions or on an individual entity to address elementary
level questions. In summary, being coupled together, the space–time matrix, map matrix, and
PCP, with their underlying computational clustering and ordering methods, complement each
other to support the overview+detail strategy for an exploratory data analysis process.

Identification of Implicit Patterns and Information Synthesis
In this section, we discuss how the Pattern Basket facilitates the identification of hidden,
implicit patterns that are initially not obvious. Computational methods are limited in identifying
complex patterns (including spatial patterns), especially those that are hard to define formally.
They typically must impose predetermined assumptions prior to having detailed knowledge of
the data. In addition, it is hard for computational methods to figure out whether the patterns
they detect are relevant or not. Figure 9(A) shows data items considered by computational
methods to be highly similar to each other but they may not be of interest because no dominant
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industries are found. Hence, the analyst must be involved to detect implicit, complex patterns
and judge their relevance.

As described previously, a Pattern Basket provides a way of externalizing cognition through
external representation (Scaife and Rogers 1996; Zhang 1997; Reisberg 1987), allowing
readjustment of the representation to support identification of complex, implicit patterns via
human vision. For example, we query what states had focused on the TEL industry and in what
years by brushing red strings in the PCP, which represents states and times with an industry
composition dominated by TEL industry, as illustrated in the right plot of Figure 3. The red
cells in the space–time matrix (those indicating the TEL-dominated cluster) are selected, then
they are exported into the Pattern Basket for further analysis (Figure 13(A)). The sequence of
the rows remains the same as that exported from the main space–time matrix, reflecting overall
similarity between the rows (as computed by the hierarchical clustering method).

Because we are interested only in TEL industry, the rows in the Pattern Basket are manually
adjusted (Figure 13(B)) to exposed hidden spatio-temporal patterns: in the early years,
Washington D.C. (DC) and Arkansas (AR) had focused on TEL industry and then switched to
NON industry in the late 1990s. While decreasingly important in DC and AR, TEL was
dominant in Kansas, Colorado, Mississippi, and eventually in Washington. Of course, Telecom
industry also exists in many other states (e.g., in California and Virginia), but it has never been
a dominant industry in those states, when compared to all technology industries. Interestingly,
most of the states involved in the transition of TEL form a geographically contiguous region
(i.e., Colorado, Kansas, Arkansas, Mississippi) (Figure 13, right). In early years, these states
had a diversified industry mix; eventually, we see two thematic groups with one focused on
TEL industry and the other on NON industry.

Eventually, the combined application of computational methods and human interaction can
produce a refined overview of patterns for the entire data. Compared to the view obtained from
computational methods alone, the refined overview thematically organizes all patterns (Figure
14, right), exposing insights that were hidden before by presenting them in a more legible
manner (e.g., a new insight exposed is that many states switched focus to non-primary-high-
tech (NON) industry after 2000, indicating, in a way, the economic recession of 2001–2003).
In this way, the synthesis process facilitates effective extraction of unknown, relevant, and
potentially useful information from a relatively large data set, often by revealing implicit
patterns leading to insights and presenting the complex insights derived in a more illustrative
manner.

Conclusion and Future Research
The exploratory analysis approach for space–time–attribute data presented here provides two
major advantages. First, by integrating visual, computational, and cartographic methods, the
approach effectively supports the application of overview+detail exploratory analysis to
relatively large volumes of space–time–attribute data, achieving a holistic overview of the
entire data set as well as detailed views on particular themes and/or subsets of data. Second,
by productively coupling visual representation, flexible interaction, and computational
methods, our toolkit aids analysts in a process of incremental pattern searching, filtering, and
synthesizing; it, thus, has a better chance to find novel, relevant, and potentially useful
information.

One of the future efforts of this research will be to address the challenge of scaling the methods
for application to massive data sets. Currently, our methods work well for high-dimensional
data, with modest numbers of places and times (data aggregated to states and to years).
Additional insights are likely to be obtained if methods can be extended to deal effectively
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with multiple levels of drill down—in the case of this study to monthly data by zip code. In
general, the goal is to support visual analytical activities that move smoothly across scales of
analysis as suggested by uncovered patterns and relationships.

Another direction of future study will be to focus on developing, implementing, and testing a
more systematic approach to interaction that supports a discontinuous (and potentially
collaborative) process of sense-making carried out over an extended period of time (as typical
for most real-world information analysis, whether in science, business, defense, public health,
or other domains). As outlined in the recent visual analytical research agenda, meeting the goal
of enhancing analytical reasoning requires that we move beyond the now traditional ideas of
direct manipulation interfaces and linked brushing (which focus on interacting with the data)
to “support a true human–information discourse in which the mechanics of interaction vanish
into a seamless flow of problem solving” (Thomas and Cook 2005). Thus, a specific goal for
the future is to develop a conceptual and technical framework to support analytical reasoning
and problem solving with large, complex, space–time-attribute data sets. The specific
objectives related to this research include developing mechanisms to help users find previously
generated patterns that are relevant to a current task; and to allow users to compare, contrast,
and link sets of pattern baskets that carry complementary information, and eventually
synthesize some novel insights. This is a challenge which will require integration of multiple
perspectives.
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Figure 1.
Aggregated data model in a tabular view. It has 588 records (49 places * 12 yr) and 20 columns.
The state and year columns constitute a “reference column,” and 18 attribute columns represent
18 industries, respectively. Hence, each record has a state–year as reference and 18 attribute
values, each of which is an industry’s percentage of total sales. For each record, the 18 attribute
values depict the industry composition for a given state in a given year; the sum of the 18 values
is equal to 1; hence, 100 percent for this set of industries.
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Figure 2.
A 2-D cartographic color scheme is applied to a Self-Organizing Map (after Kohonen
(2001)), the result is displayed in the SOM component (middle). A circular node in the SOM
component represents a cluster, the multivariate characteristics of which are depicted in a PCP
(i.e., the red node is depicted by the PCP at right-upper corner). Similar clusters (thus the nodes)
are assigned similar colors and different clusters are assigned distinct colors. A node’s size is
proportional to the amount of data items contained in the cluster.
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Figure 3.
The PCP displays five industries, each represented by an axis. We select the salient red string
marked as A in the overview, and switch the PCP to the detail view mode to display the data
items belonging to the cluster. The outline of the strings depicts a pattern of the cluster; it has
a high percentage of Telecom (TEL) industry, a percentage of Transportation (TRN) industry,
and some percentages of Software (SOF) and Medical (MED) industries.
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Figure 4.
A dynamic link between the space–time matrix and the PCP. The matrix cell highlighted with
a texture is linked to the red string highlighted with bold in the PCP; the link is shown as a
virtual curve in orange. Through the dynamic link, we know that in 2003, Kansas had an
industry mix depicted by the highlighted red string: high percentage in Telecom; some amount
of Software; and a smaller amount of Transportation, Chemical, and Medical industries.
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Figure 5.
Static link. A space–time matrix is statically linked to an overview-mode PCP via colors, as
illustrated by the virtual curves. The interpretation is: Kansas–2003 and Mississippi–2002 had
a similar industry mix (shown by the red string in the PCP). Similarly, Washington–2002 and
Mississippi–1992 had a similar industry mix (purple string).
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Figure 6.
The matrix row representing Kansas has two distinct colors—purple and red—during the
period 1992– 2003. Each snapshot of the PCP (in detail-view mode) depicts a pattern: purple
strings depict an industry mix for Kansas in 1992–98 dominated by Transportation, while red
strings depict a Kansas industry mix in 1999–03 dominated by the Telecom industry. Kansas
had some Environmental industry during both periods. The state switched focus from
Transportation (purple) to Telecom (red) in 1999; while maintaining a focus on Environmental
through the period 1992 to 2003.
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Figure 7.
An overall view of spatio-temporal multivariate patterns. The PCP is in overview mode
showing clusters rather than individual state–year composition. (A) Green clusters: Nevada
and Michigan have NON as the dominant industry in all the years. (B) Purple clusters: Rhode
Island, Kansas, and Washington have TRN as the dominant industry in most years. (C) Red
clusters: Washington, DC, Arkansas, Mississippi, and Kansas have TEL as the dominant
industry in some periods. (D) In the last row of the map matrix (2001–2003), many states
change to green, indicating a shift in relative importance of non-primary high tech industry.
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Figure 8.
A data set {A, B, C, D, and E} is agglomeratively clustered and visualized in a dendrogram
(middle). In this research, a dendrogram (oriented vertically) is attached to the matrix (right),
with similarity value ranging from 0 (meaning not similar) to 1 (meaning identical). States with
similarity values less than the user-controlled threshold value (currently 0.796 as specified by
the vertical bar) are filtered out (e.g., Tennessee, Georgia, Virginia, Wisconsin).
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Figure 9.
The states in group A (Minnesota, Pennsylvania, Missouri, North Carolina) are identified by
computational methods as being more similar to each other than states in group B (Rhode
Island, Kansas). The group A states are “similar” in sharing the absence of an obvious pattern
in industry composition; this kind of “similarity” is less interesting than many that are
computationally less strong. In contrast, Rhode Island and Kansas carry a prominent pattern
that is interesting.
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Figure 10.
Interesting patterns are found in the space–time matrix (on the left) as sub-areas with relatively
constant colors; they are investigated in the PCP. Novel, relevant, and important patterns are
identified and exported to a Pattern Basket (on the right). Well known, irrelevant, and
unimportant rows are filtered out.
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Figure 11.
Left: PCP (in detail view mode) shows the industry mix for four states: Maine, Indiana, Arizona,
and Alabama. All axes are scaled from 0 as the minimum value to 1 as the maximum value, to
express the proportion of all technology industry at a given place and time represented by the
specific industry. The industry mix is dominated by SUB industry with a considerable amount
of NON industry. Right: Six states were found to focus/had focused on an industry mix
dominated by SUB industry (shown in blue).
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Figure 12.
A map matrix screen shot (left) displays how industry mix (a multivariate pattern) changes
across the six states over twelve years. Three PCP displays outcomes of three selection
operations, respectively, each of which was visible separately at different points in the
interactive analysis sequence (A, B, and C). The three selection are: (A) Select six states from
1992 to 1997: five states except New Hampshire are in blue (an industry mix dominated by
SUB, indicating the five states focused on SUB; (B) Select Arizona from 1998 to 2000: Arizona
switched focus to COM, NON, MAT, but still kept some SUB. (C) Select Arizona and Alabama
from 2001 to 2003; they switched focus to NON. Because only Maine and New Hampshire
remain in blue (an industry mix dominated by SUB), we can conclude that SUB expanded from
Maine to New Hampshire, while decreasing significantly in the other states after 2001.
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Figure 13.
States previously focused on TEL industry are exported into the Pattern Basket (snapshot A
on the left). A state–year that focused on TEL is represented by a red matrix cell (or a geographic
unit in a map). Those states (Oregon, Washington) having few red cells are unimportant and
are therefore removed. Then the matrix rows in the Pattern Basket are manually reordered as
shown in the snapshot B. Previously hidden spatio-temporal patterns are exposed: Washington,
D.C. and Arkansas changed color from red to green in the late 1990s, indicating a switch in
focus from TEL to NON industry during the time. Mississippi, Colorado, and Kansas switched
to TEL in later years.
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Figure 14.
Overview of patterns achieved through different approaches. Left: alphabetical ordering,
patterns are barely exposed. Middle: computational clustering method is applied and some
salient patterns (i.e., red, purple, and blue regions) are exposed. Right: by combining strengths
of computational methods and human vision and judgment, the patterns are in a thematic
ordering.
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