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Recently, in the compressed sensing framework we found that a two-dimensional interior region-of-interest (ROI) can be exactly
reconstructed via the total variation minimization if the ROI is piecewise constant (Yu and Wang, 2009). Here we present a general
theorem charactering a minimization property for a piecewise constant function defined on a domain in any dimension. Our major
mathematical tool to prove this result is functional analysis without involving the Dirac delta function, which was heuristically used
by Yu and Wang (2009).
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1. Introduction

While in general an interior region-of-interest (ROI) can-
not be uniquely reconstructed from projection data only
associated with lines through the ROI [1, 2], in the com-
pressed sensing framework, we recently found that a two-
dimensional interior ROI can be exactly reconstructed via
the total variation minimization if the function on the ROI is
piecewise constant [3, 4]. The major idea behind our analysis
is that the total variations of a piecewise constant function
and a smooth artifact function are separable. The main
mathematical tool is the expression of the two-dimensional
gradient in terms of the Dirac delta function. In our
analysis [3], the Delta function was instrumental but applied
heuristically without mathematical rigor. In this note, we will
prove rigorously a more general theorem, as an extension of
the total variation minimization property presented in [3],
to characterize the total variation minimization property for
a piecewise constant function defined on a domain in any
dimension. Such a theorem may serve as a theoretical basis
for further development of interior tomography algorithms.

2. Theoretical Result

For piecewise constant or piecewise smooth functions, it is
natural to use the space of functions of bounded variation

[5] to capture the discontinuities. For an integer d > 0, let
Ω ⊂ Rd be a d-dimensional open bounded set and denote
its boundary by ∂Ω. Then the space of functions of bounded
variation is

BV(Ω) =
{
υ ∈ L1(Ω) | ‖υ‖BV(Ω) <∞

}
. (1)

It is a Banach space with the norm

‖υ‖BV(Ω) = ‖υ‖L1(Ω) +
∫

Ω
|Dυ|, (2)

where ‖υ‖L1(Ω) is the integral of |υ(x)| over Ω, and
∫

Ω
|Dυ| = sup

{∫

Ω
υ divφdx : φ ∈ C1

0(Ω)d,
∣∣φ
∣∣ ≤ 1 in Ω

}

(3)

is the total variation of the function υ ∈ BV(Ω). Here
C1

0(Ω) is the space of continuously differentiable functions
that vanish on ∂Ω, and for φ = (φ1, . . . ,φd)T ∈ C1

0(Ω)d,

divφ =∑d
i=1 ∂φi/∂xi. The Sobolev space

W1,1(Ω) = {υ ∈ L1(Ω) : |∇υ| ∈ L1(Ω)
}

(4)

is a subspace of BV(Ω) and
∫

Ω
|Dυ| =

∫

Ω
|∇υ|dx, ∀υ ∈W1,1(Ω). (5)
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We that assume Ω has a piecewise C1 boundary, and it is
decomposed into a union of a finite number of subsets with
disjoint interiors

Ω =
M⋃

m=1

Ωm (6)

such that each subset Ωm has a piecewise C1 boundary.
The unit outward normal vector on ∂Ωm is denoted by υm.
Denote Γi j = Ωi

⋂
Ω j , which may be empty for some pairs of

i and j between 1 and M. We write meas(Γi j) for the (d− 1)-
dimensional measure of Γi j ; it is the area of Γi j for d = 3,
and the length of Γi j for d = 2. The symbol

∑
i< j will refer

to a summation for those i and j with a nonempty Γi j in the
range 1 ≤ i < j ≤ M. The main result of this note is the
following.

Theorem 1. Let f be a piecewise constant function correspond-
ing to the decomposition (6): f (x) = cm ∈ R for x ∈ Ωm,
1 ≤ m ≤M. Then we have

∫

Ω

∣∣D( f + g
)∣∣ =

∫

Ω

∣∣D f
∣∣ +

∫

Ω

∣∣∇g∣∣dx,

∀g ∈W1,1(Ω),

(7)

∫

Ω

∣∣D f
∣∣ =

∑

i< j

∣∣∣ci − cj
∣∣∣meas

(
Γi j
)
. (8)

Consequently, we have the minimization property

∫

Ω

∣∣D f
∣∣ ≤

∫

Ω

∣∣D( f + g
)∣∣, ∀g ∈W1,1(Ω). (9)

Proof. After an integration by parts and some rearrangement,
we have, for any φ ∈ C1

0(Ω)d,

∫

Ω

(
f + g

)
divφdx =

M∑

m=1

cm

∫

∂Ωm

φ(x) · υm(x)ds

−
∫

Ω
∇g(x) · φ(x)dx

=
∑

i< j

(
ci − cj

)∫

Γi j
φ(x) · υi(x)ds

−
∫

Ω
∇g(x) · φ(x)dx.

(10)

By the definition (3),

∫

Ω

∣∣D( f + g
)∣∣ = sup

⎧⎨
⎩
∑

i< j

(
ci − cj

)∫

Γi j
φ(x) · υi(x)ds

−
∫

Ω
∇g(x) · φ(x)dx :

φ ∈ C1
0(Ω)d,

∣∣φ
∣∣ ≤ 1 in Ω

⎫⎬
⎭.

(11)

Taking g(x) = 0 in (11), the formula (8) follows (cf.
the argument in the next paragraph for a more general
situation). Moreover, from (11) again,

∫

Ω

∣∣D( f + g
)∣∣ ≤

∫

Ω

∣∣D f
∣∣ +

∫

Ω

∣∣∇g∣∣dx. (12)

For the opposite inequality, we first consider the case
where g ∈ C1(Ω). For any ε > 0, define two open subsets

Ω∂
ε = {x ∈ Ω : dist(x, ∂Ω) < ε},

ΩΓ
ε =

{
x ∈ Ω \Ω∂

ε : min
i< j

dist
(
x,Γi j

)
< ε

}
.

(13)

Here, dist(x,D) = min{|x − y| : y ∈ D} is the distance
between x and a closed set D. Obviously, for some constant
c > 0,

meas
(
Ω∂
ε

)
+ meas

(
ΩΓ
ε

)
< cε. (14)

We start with a function ψε(x) ∈ C(Ω)
d

satisfying
∣∣ψε(x)

∣∣ ≤ 1 for x ∈ Ω,

∣∣ψε(x)
∣∣ = 0 for x ∈ Ω∂

ε/4,

ψε(x) =
sgn
(
ci − cj

)
υi(x)

|υi(x)| for x ∈ Γi j
⋂(

Ω \Ω∂
ε/2

)
,

ψε(x) · ∇g(x) = −∣∣∇g(x)
∣∣ for x ∈ Ω \

(
Ω∂
ε/2

⋃
ΩΓ
ε/2

)

(15)

and then apply the well-known mollification technique in the
theory of Sobolev space [6] to define

φε,δ(x) =
∫

Bδ
ηδ
(
x − y

)
ψε
(
y
)
dy, (16)

where Bδ is the ball of radius δ centered at the origin, ηδ(x) =
η(x/δ)/δd, and

η(x) =
⎧⎨
⎩
c0e1/(|x|2−1) if |x| < 1,

0 if |x| ≥ 1,

c−1
0 =

∫

|x|<1
e1/(|x|2−1)dx.

(17)

Then |φε,δ(x)| ≤ 1 for x ∈ Ω, and for δ sufficiently small,
φε,δ(x) ∈ C∞0 (Ω)d. Moreover, as δ → 0, φε,δ(x) converges
uniformly to ψε(x) for x ∈ Ω\(Ω∂

ε/2

⋃
ΩΓ
ε/2). Thus from (11),

∫

Ω

∣∣D( f + g
)∣∣ ≥

∑

i< j

(
ci − cj

)∫

Γi j
φε,δ(x) · υi(x)ds

−
∫

Ω
∇g(x) · φε,δ(x)dx

(18)

and as δ → 0, we obtain, with some constant c1 > 0
∫

Ω

∣∣D( f + g
)∣∣ ≥

∑

i< j

(
ci − cj

)∫

Γi j
ψε(x) · υi(x)ds

−
∫

Ω
∇g(x) · ψε(x)dx − c1ε.

(19)
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Using the defining properties of ψε, we further have
∫

Ω

∣∣D( f + g
)∣∣ ≥

∫

Ω

∣∣D f
∣∣ +

∫

Ω

∣∣∇g∣∣dx − c2ε (20)

for some other constant c2 > 0. Since ε > 0 is arbitrary, we
obtain from the above relation that∫

Ω

∣∣D( f + g
)∣∣ ≥

∫

Ω

∣∣D f
∣∣ +

∫

Ω

∣∣∇g∣∣dx. (21)

Combining (12) and (21), we conclude (7) for g ∈ C1(Ω).
For g ∈W1,1(Ω), we use the density of C1(Ω) inW1,1(Ω)

[6] and choose {gn} ⊂ C1(Ω) such that

gn −→ g in W1,1(Ω), as n −→ ∞. (22)

Since (3) defines a seminorm on BV(Ω), we have
∣∣∣∣
∫

Ω

∣∣D( f + g
)∣∣−

∫

Ω

∣∣D( f + gn
)∣∣
∣∣∣∣ ≤

∫

Ω

∣∣∇(g − gn
)∣∣dx.

(23)

Thus, taking this limit n → ∞ in (7) for gn ⊂ C1(Ω), we
obtain (7) for g ∈W1,1(Ω).

As an example of (8), let Ω = Br0 ⊂ R2 be a disk of radius
r0 centered at the origin. Consider a piecewise constant,
radial function f (r) defined on Br0 such that it has a jump
jm ∈ R at rm, 1 ≤ m ≤ M, where 0 < r1 < · · · < rM < r0.
Then by (8), we have

∫

Br0

∣∣D f
∣∣ = 2π

M∑

m=1

∣∣ jm
∣∣rm (24)

(cf. [3, Theorem 2.2]).

3. Discussions and Conclusion

Some comments on the name of our approach “CS-based
interior tomography” are in order. In the strict sense,
compressed sensing refers to situations where the sampling
scheme is built (often with random techniques) to achieve
specific properties for satisfactory recovery of an underlying
signal, rather than imposed by a specific detector arrange-
ment as in limited data tomography. However, in a broad
sense, compressed sensing can be interpreted as achieving
better reconstruction from less data relative to the common
practice. Hence, while the current name is not far off, an
alternative phrase for our approach can be “total variation
minimization-based interior tomography.”

In conclusion, we have extended the total variation
minimization property of a piecewise function from two-
dimensions to any dimensionality in the Sobolev space,
which can be used for exact reconstruction of any piecewise
function on an ROI by minimizing its total variation under
the constraint of the truncated projection data through the
ROI. Previously, we implemented an alternating iterative
reconstruction algorithm to minimize the total variation,
which is time-consuming and needs improvement. Under
the guidance of the theoretical finding presented here, we are
working to develop a multidimensional ROI reconstruction
algorithm for better performance. Clearly, major efforts are
still needed in this direction.
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