
Artificial neural networks as supervised techniques for FT-IR
microspectroscopic imaging

Peter Lasch1,*, Max Diem2, Wolfgang Hänsch3, and Dieter Naumann1
1P25 “Biomedical Spectroscopy”, 13353 Berlin, Nordufer 20, Germany
2Department of Chemistry and Biochemistry, City University of New York, Hunter College, 695 Park
Avenue, New York, NY 10021, USA
3FG Chirurgie und Chirurgische Onkologie der Robert-Rössle-Klinik am Max-Delbrück-Centrum,
Robert-Rössle Straβe 10, D-13125, Berlin, Germany

Abstract
In this report the applicability of an improved method of image segmentation of infrared
microspectroscopic data from histological specimens is demonstrated. Fourier transform infrared
(FT-IR) microspectroscopy was used to record hyperspectral data sets from human colorectal
adenocarcinomas and to build up a database of spatially resolved tissue spectra. This database of
colon microspectra comprised 4120 high-quality FT-IR point spectra from 28 patient samples and
12 different histological structures. The spectral information contained in the database was employed
to teach and validate multilayer perceptron artificial neural network (MLP-ANN) models. These
classification models were then employed for database analysis and utilised to produce false colour
images from complete tissue maps of FT-IR microspectra. An important aspect of this study was
also to demonstrate how the diagnostic sensitivity and specificity can be specifically optimised. An
example is given which shows that changes of the number of teaching patterns per class can be used
to modify these two interrelated test parameters. The definition of ANN topology turned out to be
crucial to achieve a high degree of correspondence between the gold standard of histopathology and
IR spectroscopy. Particularly, a hierarchical scheme of ANN classification proved to be superior for
the reliable classification of tissue spectra. It was found that unsupervised methods of clustering,
specifically agglomerative hierarchical clustering (AHC), were helpful in the initial phases of model
generation. Optimal classification results could be achieved if the class definitions for the ANNs
were carried out by considering the classification information provided by cluster analysis.
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1. INTRODUCTION
Fourier transform infrared (FT-IR) microspectroscopy has been employed since more than a
decade to study human tissues and—in particular—of pathological states within tissues [1–5].
The technique may provide spatially resolved structural and compositional information of the
histological specimens under investigation and shows in combination with digital imaging
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techniques a great promise for in-vivo and ex-vivo medical diagnosis. False colour images
produced by IR image segmentation methodologies are directly comparable to outcomes of
standard histological staining protocols and can be interpreted also by non-spectroscopists. A
number of different IR imaging strategies have been proposed in the past. Among them the
univariate concept of chemical imaging still enjoys great popularity. Chemical imaging is based
on the reduction of an array of infrared spectra to a functional group map [6]. The images are
easy to generate and, from a spectroscopic point of view, also easy to interpret. The main
drawback of the technique is that only a very small fraction of the available spectral information
is used [7,8]. Nevertheless, it is well documented for a number of examples that functional
group mapping produces sufficiently high image contrast that permits visualisation the spatial
distribution of defined tissue structures [1,2,9].

We found, however, that this technique is insufficient to provide a reasonable and flexible
differentiation criterion if chemical mapping is applied to larger data sets that include spectra
from many patients [3,5,10]. Several techniques of multivariate imaging attempt to address this
shortcoming by analysing large fractions or even the complete spectral information. Among
multivariate imaging methods, non-supervised techniques became popular because they allow
to produce IR images with the full spectral contrast that often corresponds to the classical
histopathological scheme. Specifically, various types of cluster analysis and among them
agglomerative hierarchical clustering (AHC) in a combination of a correlation distance
measure (D-values) and Ward’s clustering method turned out to be particularly suitable for IR
image segmentation. In a comparative study of cluster imaging techniques it was shown, that
the highest degree of correspondence between histopathology and IR spectroscopy was
achieved when the AHC algorithm was applied [11]. It was found furthermore, that the concepts
of k-means and fuzzy-C-means clustering are less effective, but are significantly less CPU
intensive image segmentation methods. Drawbacks of the AHC segmentation technique are
the very high computing requirements, which become more and more important when large
spectral data sets have to be analysed [11].

An important characteristic of non-supervised clustering methods is the tendency to partition
the data according to the overall variance. In view of the fact that usually only a small fraction
of a samples overall spectral variance is intra-class specific, this strategy is quite efficient
(provided spectra from only one tissue sample, i.e. from one patient, are analysed). In these
cases the highest spectral variance is found mostly between spectra from different types of
tissues (inter-class variance). However, if more than only one sample is examined, the intra-
class variance includes now also the much larger variance present between spectra from
identical tissue structures but different patients. In these cases, the intra-class variance may
be at the order of the inter-class variance. Non-supervised classification methodologies are
generally unable to separate between inter- and intra-class variance and consequently, the
degree of correspondence with sample histology is decreased. Thus, non-supervised
classification is valuable as an explorative technique but may be inappropriate for routine
analysis of IR spectral maps of tissues.

It has been noticed that supervised multivariate classification strategies, for example by
multilayer perceptron (MLP) artificial neural network (ANN) models with supervised learning
are the techniques of choice for the development of effective and robust classifiers for IR-based
classification of tissue structures [5]. These supervised techniques can be efficiently optimised
by pre-selecting the appropriate spectral features from the spectral data [12,13]. Furthermore,
the classification results of the above-mentioned combination of methods will strongly depend
on the type of spectral pre-processing. We found that spectral quality criteria, a baseline
correction routine (derivatives) and normalisation are essential prerequisites for the
development of robust classification models that can be used in practise [3,5].
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The outlined classification strategy of a preceding feature selection followed by artificial neural
network classification is based on a very high number of free variables, that is over-fitting of
the prediction models is a real risk [13,14]. Thus, it is absolutely necessary to evaluate the model
by independent sets of patterns not used during the design of the model [13,14]. Consequently,
the spectral data should be split in subsets for teaching, a subset for internal validation and a
completely independent—ideally blinded—subset for external validation (testing). The
process of model development—and this includes also the selection of the spectral features—
should therefore be carried out exclusively by using teaching and internal validation data
subsets. Therefore, the outlined strategy is the only way to reveal over-fitting of the ANN
models and to obtain objective values for statistical test parameters such as accuracy, sensitivity
or specificity for the new diagnostic method [12,15].

In the present study we will present new results obtained from the analysis of about 1.5 million
FT-IR microspectra from human colorectal adenocarcinoma specimens. We will describe the
strategy of extracting single spectra from this huge amount of data and we demonstrate how a
database of colorectal reference spectra can be established. The main focus of this report is to
present a strategy for the development of classification models for the IR microspectroscopic
characterisation of tissues.

2. EXPERIMENTAL
2.1. Sample description and sample preparation

Colorectal adenocarcinoma tissue samples from 28 patients were obtained from the tissue data
bank at the Robert-Rössle-Clinic at the Max-Delbrück-Centrum for Molecular Medicine in
Berlin. They originated from coecum, colon ascendens, transversum or descendens, sigma and
rectum and the histopathological grade of malignancy was established as well differentiated
(G1), moderately differentiated (G2) or poorly differentiated (G3). Samples were stored until
cryosectioning at a temperature of −80°C. Cryosectioning was performed at temperatures of
−18 to −22°C. In order to avoid spectral contaminations associated with the use of embedding
medium, the frozen tissue samples were mounted on the cryotome sample holder by means of
freezing water. For FT-IR microspectroscopy 8 µm thin tissue slices were thaw-mounted onto
CaF2 windows of 1 mm thickness (Korth Kristalle, Germany). The specimens were stained
after FT-IR measurements by Haematoxylin/Eosin (H&E) and microphotographs of the
imaged areas were obtained to correlate the IR images with histopathology.

2.2. Data collection
Infrared spectra were collected in transmission mode using a Spectrum Spotlight One FT-IR
spectrometer from PerkinElmer coupled to a Spectrum Spotlight 300 infrared microscope. The
microscope is equipped with a linear 16 × 1 element (400 × 15 µm2) MCT (HgCdTe) array
detector. The microscope optics permits 1:1 or 4:1 imaging, resulting in sample areas of 25 ×
25 or 6.25 × 6.25 µm2 projected on each detector element. In this study spectra were recorded
in the 4:1 imaging mode. In the 4:1 mode the lateral spatial resolution was found to be
approximately 12 µm at 6 µm wavelength (corresponds to 1667 cm−1, amide I region) [16]. A
specially designed microscope box was purged by dry air to reduce spectral contributions from
atmospheric water vapour and CO2. Nominal spectral resolution was 4 cm−1. Usually, 16 scans
were averaged per sample spectrum and apodised applying a Norton-Beer apodisation function
for Fourier transformation. Interferograms were zero-filled by a factor of 2. In order to increase
the signal-to-noise-ratio background spectra were recorded with 512 scans.

2.3. Data processing
Spectral data were analysed by means of CytoSpec (CytoSpec, Inc. Croton-On-Hudson, NY,
USA) and NeuroDeveloper (Synthon GmbH, Heidelberg, Germany). While CytoSpec is a
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software package specifically designed for the generation of infrared images from large IR
mapping data, the NeuroDeveloper software combines modules for spectral feature selection,
ANN model development (including modular ANN models) and ANN-based classification. A
detailed description of both software packages can be found elsewhere [17,18].

Spectral data were processed using a Fujitsu-Siemens 64 bit Celsius V810 workstation which
is equipped with two 2.2 GHz AMD Opteron CPUs and 8 GB of RAM (Fujitsu-Siemens
Computers GmbH, Germany). Microsoft Windows XP 64 bit version was chosen as the
operating system since it provides significantly enlarged address space for application
software.

Pre-processing of the raw spectral data was carried out in CytoSpec’s batch pre-processing
mode which permits automation of all steps of data pre-processing. Automated pre-processing
included a conversion from transmittance to absorbance spectra, tests for spectral quality and
normalisation. The spectra quality test consisted of three separate checks: for water vapour
content, for the signal-to-noise ratio (S/N) and for sample thickness. All spectra that have
passed these tests were subsequently converted into first derivative spectra (Savitzky-Golay
algorithm, seven smoothing points) and vector normalised. Vector normalization was
performed in the spectral region of 950–1480 cm−1.

2.4. Extraction of the database spectra from the maps
In order to evaluate the spatial distribution of tissue structures within a given IR data set we
have routinely applied the approach of agglomerative hierarchical cluster imaging to all
individual spectral maps. Details of this particular image segmentation method can be found
in the literature [11,19]. In the present study we used so-called D-values as spectral distance
measures (normalised Pearson’s correlation coefficients), and Ward’s algorithm for
hierarchical clustering [20,21].

A detailed examination of each of the samples and the assignment of clusters to pre-defined
classes of histopathological structures could be subsequently carried out on the basis of
photomicrographs of the post-stained tissue specimens and the re-assembled cluster maps. We
extracted a representative number of spectra, usually between 10 and 15 per map and cluster.
The extracted point spectra were then used to build up a database of IR reference microspectra
from all histologically defined structures of the human colon. Since the database contained
information from many patients, inter-class as well as the intra-class variance were adequately
represented. An overview of the database is given in Table I. This colon database was employed
in the following to teach and validate MLP-ANN classifiers.

2.5. ANN analysis
The general strategy of ANN analysis in this study included the procedure of teaching and
optimising the MLP network models followed by testing the classifiers with independent
(external) validation data sets. Teaching and internal validation were carried out on the basis
of IR microspectra with known class assignment, that is with spectra from the colon database.
External validation (testing) of the classifier was made be generating ANN images from
complete infrared spectral maps. Thus, the classifiers were created with database spectra while
model assessment was made by comparing the ANN images and the equivalent
photomicrographs of stained tissue specimens.

For network teaching the raw spectral data of the colon database were first pre-processed as
already outlined. After this, the effective spectral resolution was reduced by a factor of 6
(averaging) and then 60–85 spectral features were chosen by a covariance analysis procedure
implemented in the NeuroDeveloper software package [12]. We used connected three layer
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feed-forward MLP-ANNs consisting each of a layer of input, hidden and output neurons.
Teaching of the ANNs was carried out by utilising the resilient back-propagation (rprop)
algorithm [22]. The number of neurons of the input layer corresponds to the length of the input
pattern and varied between 60 and 85. Moreover, the number of neurons in the hidden layer
was usually set to 4 and the number of output neurons in MLP-ANNs equalled the number of
classes.

In the present study a hierarchical system of ANNs was employed. The primary advantage of
this method is the capability to separately train and validate small and flexible networks that
can be combined afterwards to build up large modular ANN systems [12,14,23]. Furthermore,
the use of modular networks permitted to employ specifically optimised combinations of
spectral features for each separate ANN module. The ANN model development module of
Synthon’s NeuroDeveloper offered the respective software implementation. A description of
modular ANN models can be found elsewhere [12,14,23].

ANN imaging on IR mapping data sets was carried out via a software interface between
CytoSpec and the NeuroDeveloper software package. Based on NeuroDeveloper-ANN
models, this interface can be used to perform image segmentation from the external validation
data, that is complete infrared spectral maps. The interface is designed such that spectral pre-
processing, feature selection and also ANN classification of the external validation data are
automatically performed in the same way as for the teaching data.

3. RESULTS AND DISCUSSION
Infrared microspectroscopic imaging is a data intensive technique which implies storage and
processing of enormous amounts of data. While microscopy in the visual range (380–700 nm
wavelength) usually provides 24, or 32 bit of spectral information per image pixel, infrared
microspectroscopy produces per pixel a complete spectrum of up to several thousands IR
intensity values. Therefore, a single point IR spectrum has a size between 5 and 15 kB and an
average IR map of 300 × 300 pixel spectra may be as large as 900 MB. This enormous amount
of quantitative and qualitative sample information is principally available to define purely local
decision criteria for segmentation. Our goal was therefore to develop a computational approach
to image segmentation of spatially resolved IR data that is practically useful in histology and
histopathology. In order to achieve such a method, it is important that the segmentation method
should have the following properties:

1. IR image segmentation should reflect the classical classification scheme in histology
and histopathology. In the final stage of method development precise definitions of
parameters reflecting the degree of correspondence between the image segmentation
method and histopathology (sensitivity, specificity, etc.) should be available.

2. In order to be of practical use, IR imaging should be a rapid segmentation method
that is applicable in routine use also for very large data sets. Ideally, the IR imaging
method should run in time nearly linear in the number of image pixels. This is
important as the CPU time of unsupervised agglomerative hierarchical cluster
imaging which is frequently used in IR imaging scales with the squared number of
pixels.

3.1. The strategy
In this study a relatively large number of infrared microspectra has been acquired. In total we
recorded more than 1.5 million spectra (35 infrared spectral maps) from 28 patient samples. A
complete map usually comprised between 6000 and 100 000 spectra taken from rectangular
tissue regions of a size between 500 and 2000 µm edge length. As outlined earlier, cluster
images were routinely produced from each of the IR maps. The settings for the number of
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clusters was chosen such, that a high correlation between histopathology of the tissue section
and the IR image was attained. Spectra of the tissue structures of interest were then extracted
as outlined above and transferred into our database of IR reference spectra. In general, between
10 and 15 spectra per histological class and patient sample were selected.

An overview of the database composition is given in Table I. This table shows that some of
the pre-defined spectral classes such as fat tissue or submucosa are clearly outnumbered by the
class of adenocarcinoma. This is not solely due to the availability of the spectra—not all spectral
classes can be found in all tissue specimens. One of the main goals for establishing the ‘colon
database’ was to systematically investigate the spectral differences between adenocarcinomas
at different grading levels. However, the number of patient samples examined so far seems to
be still too low to study these grading-related spectral changes. Thus, the high number of spectra
of the class ‘adenocarcinoma’ is due to the fact that this class is actually composed of three
distinct tumour grading classes G1–G3 each representing lower numbers of spectra. Other
spectral classes such ‘fat’, ‘submucosa’ or ‘mucin’ displayed highly distinctive spectral
features. Due to their unique mid-infrared spectral patterns, only a few number of spectra were
required for an adequate representation of these classes in the database.

3.2. Cluster analysis
Figure 1 displays the results of AHC of a selection of individual tissue spectra from the
database. In this approach at least two spectra per class and patient were used. The dendrogram
illustrates that spectra from fat tissue (cluster 5) and also from muscle tissues and the submucosa
(clusters 3 and 4) can be easily differentiated from spectra of clusters 1 and 2. Spectra from fat
tissues are known to exhibit very intense signals in the CH-stretching region (2800–3050
cm−1). As these compounds show also a prominent carbonyl ester band (νsy > C=OEster, 1737
cm−1), and symmetric deformation bands of methylene (δsy–CH2, ‘scissoring’: 1468cm−1) and
methyl groups (δsy–CH3, ‘umbrella’: 1379 cm−1), they can be easily identified already by basic
methods of data analysis. The latter statement holds true also for IR spectra of clusters 3 and
4, that is for spectra from distinct smooth muscle structures, fibrovascular connective tissue
and the submucosa. These tissue types are known to contain a certain amount of collagen that
exhibits a series of highly characteristic IR bands in the spectral range of 1100–1300
cm−1[24]. Obviously, most of the differentiation between clusters 3 + 4 and the remaining
spectral classes (1, 2, 5) is due to these collagen bands. On the other hand, spectral signs from
contractile elements of smooth muscle fibrils which should be present only in the spectra of
cluster 3 are apparently less discriminative.

The spectral distance levels between the remaining histopathological structures, that is spectra
of clusters 1 and 2, permitted further differentiation between histological classes of the colon.
As it is illustrated by the dendrogram of Figure 1 spectra from the crypts and mucin-containing
structures (such as extracellular ‘mucin lakes’) can be separated from cluster 2. A closer
inspection of the spectra of cluster 1 yielded a number of common spectral properties since
these spectra exhibited in the carbohydrate region the typical signatures of mucin (data not
shown). As it is indicated in Figure 1, a number of spectra from the tunica muscularis and also
from fibrovascular connective tissue appear in cluster 2. This finding illustrates that clustering
alone, that is without combination of any type of spectral feature selection, cannot be used to
attain consistent classification results in IR microspectroscopy of tissues. Thus, HCA is a
valuable explorative tool in tissue spectroscopy but certainly not the appropriate technique for
routine analysis of IR spectral maps.

Figure 2 illustrates how the classification results of AHC were utilised to design the system of
hierarchically organised (modular) ANNs. A so-called ‘top-level ANN’ which is shown in the
left part of Figure 2 assigns FT-IR spectra to one of the main tissue classes I–VI (see inset).
Depending upon the activations of the top-level ANN output neurons, more specific ‘sublevel
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ANNs’ classify then the IR microspectra in a more detailed way. This is demonstrated by the
four sublevel ANNs at the right part of Figure 2 (cf. Ia/b–IVa/b). We have used the classification
information of AHC particularly for the class definitions of the top-level net. To give an
example, cluster 5 (fat tissue) of the dendrogram of Figure 1 corresponds to class VI of the
top-level ANN. Also, class I of the top-level ANN was defined on the basis of the class
assignment of spectra from crypts and mucin by AHC. On the other hand, practical demands
may require the definition of additional top-level classes which usually do not form separate
clusters in AHC. In the present work this is the case for spectra of the class ‘adenocarcinoma’.
Thus, class definitions for the top-level net were predominantly made in view of spectral
similarities of the tissues as revealed by AHC, but considering also practical aspects of the
methodology.

Figure 3 shows the results of image segmentation produced by AHC and the top-level ANN.
In this example 194 × 198 IR microspectra from a well differentiated G1 adenocarcinoma from
the human rectum were collected and analysed (sample B4205/94). The tissue area was 1206
× 1231 µm2 in size. While panel A of Figure 3 shows the photomicrograph of the unstained
cryosection before the IR measurements, panel B displays the same tissue area after staining
with H&E (the widening of tissue clefts from A to B is due to water treatment during staining).
In panels A–D the central shape is formed by necrotic tumour cells (1). These necrotic cells
are surrounded by vital tumour epithelium (2). Neoplastic epithelium can be found also in the
right parts of the images. Panels A–D show furthermore non-cancerous fibrovascular
connective tissue (3) which is arranged around the central adenocarcinoma structure,
extracellular ‘mucin lakes’ (4) and tissue clefts (5).

These main tissue structures can be successfully differentiated by routine AHC imaging (cf.
panel C, ‘routine AHC imaging’ means that only spectra from the analysed map are used). In
this five-class-classification approach the formation of clusters for fibrovascular connective
tissue and smooth muscle strands (green), for vital tumour epithelium (dark blue) and their
secretion products (mostly mucin, light blue) is observed. Clusters of IR microspectra from
necrotic tumour cells and tissue clefts are colour-encoded brown or orange, respectively. The
results of clustering from this sample correspond quite well with the cluster analysis of the
complete database (Figure 1). Again, spectra from smooth muscle structures and fibrovascular
connective tissue are closely related, whereas spectra originating from vital or necrotic parts
of the adenocarcinoma form separate clusters, respectively. It should be pointed out that this
result was obtained by using the complete usable spectral information (no feature selection).
Again, the purely data-driven explorative tool of AHC gave a suggestion of how the
architecture of an ANN classification system should be designed.

The results of image re-assembling by the top-level net are displayed in Figure 3D. It should
be emphasised, that the top-level net was created (taught) without using spectra from sample
B4205/94. In image 3D, the class ‘mucin’ (probably secretion products in tissue clefts) is
coloured pink, whereas gold and red encode necrotic or vital tumour epithelium (classes II and
V). Furthermore, a small number of pixel spectra was identified as smooth muscle structures
(class III, dark green). Connective tissue structures from the sub-mucosa or fibrovascular
connective tissue (class IV) are coloured orange. Although the class of connective tissue seems
to be somewhat over-represented, the example of Figure 3D gives a good impression on the
degree of correspondence between IR microspectroscopy and histopathology and demonstrates
the potential of ANN imaging for the analysis of tissue sections. The discussion of how this
‘over-representation’ of a defined spectral class can be modified is given later.

We turn now to the discussion of Figure 4 which shows the classification results obtained by
ANNs with a hierarchically organised network architecture. In this example, the network
‘combinet’ consisting of the top-level and four separate sublevel nets (see Figure 2) was used
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to perform segmentation of the IR imaging data from Figure 3. It is important to note that
exactly the same top-level net was used in the examples of Figure 3D and Figure 4B. The colour
class assignment as well as the number and percentage of spectra per class can be taken from
Table II.

Panel A of Figure 4 shows for comparative purposes again the histoarchitecture of the post-
stained tissue of specimen B4205/94. A comparative examination of Figure 3D and Figure 4B
reveals that the classification results for the classes ‘adenocarcinoma’ (red) and ‘fat
tissue’ (beige) remain unchanged. This is not surprising as no sublevel nets were defined to
further evaluate the output activation values of these particular classes (cf. Figure 2). As it is
shown in Figure 3D and Figure 4B most of the predictions by the sublevel nets correlate quite
well with histopathology. To give an example, spectra from the tissue clefts in the central shape
of Figure 4B were classified by sublevel net #I as ‘mucin’ (dark green). This is correct, we
have stated earlier that these clefts contain mostly secretion products such as mucin, and cell
debris. Furthermore, areas of necrotic tumour cells have been identified by sublevel net #II in
accordance with histopathology as belonging to the class ‘necrosis’ (aqua). On the other hand,
sublevel net #II classified a large fraction of the spectra into the class ‘lamina propria
mucosae’ (light yellow). The classification of this particular class is probably incorrect. As it
can be taken from Figure 4B, the class ‘lamina propria mucosae’ is mostly found as a
‘transitional state’ between the classes ‘adenocarcinoma’ (red) and fibrovascular connective
tissue, a class that is once again highly correlated with histology (gold). Thus, the results in
Figure 4B demonstrate in an exemplary manner not only the potentials, but also the problems
of the ANN imaging methodology. It turned out that an adequate representation of all pre-
defined spectral classes in the network’s teaching phase is crucial for model optimisation. With
reference to the example of Figure 4B, only sublevel net #II (and not the complete combinet-
classifier) should be re-trained with additional data from the classes ‘necrosis’, ‘lamina propria
mucosae’ and ‘lymphocytes’.

In the following we will give now a number of examples that illustrate how MLP-ANN models
can be optimised in terms of diagnostic sensitivity or specificity. Figure 5 shows IR maps re-
assembled on the basis of IR data of a well differentiated (G1) rectal adenocarcinoma (B279/01)
and optimised ANN classification models. For the example of Figure 5, 128 × 123 IR
microspectra from a tissue section area of a size of 794 × 762 µm2 were obtained. For a
comparison with histology the tissue specimen was routinely stained by H&E after the IR
measurements. The corresponding microphotograph (panel D) displays neoplastic crypts
composed of absorptive epithelia (1) and basal cells (4). The neoplastic crypts are separated
by fibrovascular connective tissue (2) and filled with detritus (loose material after cell death)
and products of secretion (3). Secretion product could be spectroscopically identified as mucin
(not shown).

ANN classification models were taught and validated with database microspectra. Again,
teaching and internal validation were carried out by the exclusive use of spectra from other
patients. For the examples of IR imaging of the left column of Figure 5 monolithic four-class-
classification ANN models were generated (see inset of panel E for colour class assignment).
A closer examination of panels A–C reveals decreasing probabilities for classification of a
given pixel spectrum as ‘adenocarcinoma’ and vice versa increasing probabilities to fall into
another class such as ‘fibrovascular connective tissue’. While in example panel 5A about 76%
of all spectra were classified as ‘adenocarcinoma’ this number drops down in panel 5B to 60%
and reaches 45% in panel 5C. On the other hand, the fraction of spectra classified as
fibrovascular connective tissue is increasing at the same time from 10% (panel 5A) to 25%
(panel 5B) and finally 36% (panel 5C). In terms of statistical classification criteria, the
sensitivity of the diagnosis ‘adenocarcinoma’ made in panel 5A is fairly high, because almost
all of the adenocarcinoma spectra were classified as adenocarcinoma and the number of false

Lasch et al. Page 8

J Chemom. Author manuscript; available in PMC 2009 December 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



negatives is close to zero. On the other hand, we observe a high number of false positives since
many spectra from other spectral classes were classified as adenocarcinoma. Thus, the image
of panel 5A illustrates an example with high sensitivity but poor diagnostic specificity. The
situation depicted in panel 5B differs from panel 5A in a reduced number of false positive
spectral diagnoses. Interestingly, the number of false negatives still seems to be low. Obviously,
Figure 5B illustrates an example of increased specificity at a still high sensitivity. The tendency
of increasing specificity is continued in panel 5C. Now a relatively high correlation between
the gold standard of histopathology and the spectral diagnoses is observed. Further increase of
the specificity of the MLP-ANN models result in an increase of false negative rates, that is in
a significantly decreased sensitivity (not shown). The observed interdependence of sensitivity
and specificity is known in medicine and psychology as the receiver operating characteristic
(ROC) and is often used for the comparison of diagnostic tests. A schematic ROC curve is
shown in panel 5E. Please note that the examples of panels 5A–C are indicated as points along
the solid line.

What are the variables that allow to specifically design and optimise ANN models? It turned
out that false negative/positive rates, that is the sensitivity or specificity of ANN classification
can be modified by varying only one single parameter: the number of teaching pattern per class.
For example, the ANN classifier which was used to produce image panel 5A was taught with
1658 spectra of the class ‘adenocarcinoma’, 812 spectra for the class ‘fibrovascular connective
tissue’, 335 spectra of the class ‘mucin’ and 286 spectra for the class of ‘smooth muscles
structures’. In the example of Figure 5B,C the number of spectra of classes 2–4 was kept
constant and only the number of spectra of class 1 (adenocarcinoma) was varied (panel 5B:
826 and panel 5C: 389 spectra). As described above, and shown in panels 5A–C this change
directly resulted in the very different classification results of the test data.

In order to understand this phenomenon it is important to realise that the criterion that is usually
minimised in the teaching phase of a backpropagation network is a sum-squared error (SSE).
This SSE is obtained as the squared difference between the desired (pdes,i) and the actual output
patterns (pcalc,i) added up over all teaching patterns:

(1)

Alternatively, the global SSE can be described as the sum of SSE’s obtained for each individual
(pre-defined) class:

(2)

Obviously, the global SSE depends mainly not only on the error rates (pdes,i–pcalc,i)2, but also
on the number of samples present in the individual classes. If there is no easy-to-find global
error minimum available—which is the case in most of the more complex classification tasks
—then the global SSE can be principally minimised in two ways: firstly, in the desired way
by minimising the error rates for all samples from all classes. A second way is the more efficient
the more the pre-defined classes differ in the number of samples. In these cases discriminant
functions are computed which produce reduced error rates for classes with high numerical
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representation and in turn, increased error rates for classes with poor representation. These
findings can be synonymously described as increased numbers of false classifications for over-
represented classes (high sensitivity), but at the expenses of high rates of misclassifications for
the other classes (low specificity). As a result, the SSEx of classes with low sample numbers
will be responsible for the most part of the global SSE. We wish to emphasise that an increase
of the overall prediction accuracy, that is of sensitivity and specificity can be achieved by
several measures. First, we believe it is important to perform class definitions such that the
internal data structure is represented. Thus, in order to achieve classification models which
show at the same time decreased false negative and false positive rates one have to create
models that ideally account for all relevant spectral classes. We have illustrated this situation
in the example of Figure 5F where the heterogeneous class ‘adenocarcinoma’ was subdivided
into a class of basal parts of the cancerous epithelia (dark yellow) and the diagnostically more
important class of apical sides of the adenocarcinoma structures (red). As it can be taken from
Figure 5F the modified ANN classification approach now provides a higher degree of
correspondence between histopathology and the segmentation technique (see also the dotted
line in Figure 5E).

Another important aspect with significant impact on the accuracy of prediction of the ANN
models is the representation of the intra- and inter-class variance in the teaching data. An ideal
teaching data set should contain a sufficient amount of patterns assuring that both types of
variances are represented. Aside from the fact that we often do not know how many patterns
per class would be required, an increase of sample numbers is for practical reasons sometimes
not possible. As outlined earlier, also in this study the number of samples is still too low to be
comprehensive. We are planning therefore to extend the study by adding more samples and to
increase the number of database spectra.

Aside from class definitions and sample numbers also the type of spectral pre-processing
interferes with the accuracy of classification. It has been shown several times that standardised
tests for spectral quality, the calculation of derivative spectra and a normalisation procedure
(vector) improve the accuracy of classification.

Finally, it should be pointed out that also the type and the design of the classification model
strongly influences the accuracy of prediction. In the present study a combination of small
modular artificial neural networks is suggested to give best performance. These classifiers are
fast and the time which is required for classification scales linearly with the number of input
pattern. To give an example, the segmentation of a complete IR map containing 100 000 spectra
takes acceptable 20 s. Furthermore, modular ANNs can be taught and validated independently
and are extendable at a later stage for additional or more specialised classification tasks.
Another advantage of modular ANN models is the fact, that individual ANNs (i.e. the sublevel
nets) can be specifically optimised to identify only a few (down to two) classes. This is
particularly important since our model development strategy usually includes a procedure of
detecting sets of discriminative spectral features. Thus, each of the individual ANNs can be
optimised on the basis of pre-selected specific combinations of spectral features which will
further increase the overall classification accuracy. Finally, each of the individual ANNs is
principally adaptable in terms of sensitivity and specificity, that is the classifier can be
specifically optimised to meet the particular needs of the application. This high level of
flexibility and the above-mentioned advantages make modular ANNs to ideal tools for routine
use in IR microspectroscopic imaging of tissues.

4. CONCLUSIONS
The combination of infrared microspectroscopy and artificial neural network analysis has great
potentials for rapid and reliable identification of tissue structures not only for scientific research
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purposes but also in a real clinical setup. In this paper we exemplarily showed how optimised
network models can be utilised to re-assemble false colour images from infrared spectral maps
of tissue sections and to visualise the spatial distribution of tissue structures of interest. Pre-
conditions for a successful application of the IR-based methodology are adequate data pre-
treatment strategies (i), feature selection (ii) and the use of dedicated classification models (iii).
Particularly, the concept of hierarchical (modular) network classification in combination with
feature selection methods dramatically enhances the capabilities of the method. Compared to
‘monolithic’ networks modular ANNs provide enhanced flexibility and permit the design of
classifiers with improved accuracy of prediction also for high numbers of classes. It was shown
furthermore, that unsupervised methods of cluster analysis may be helpful for class definitions
in the design phase of the models. We believe that the technique outlined here may be
successfully applied to a great variety of applications in biomedical spectroscopy, specifically
in histopathology.

Abbreviations

ANN artificial neural network

FT-IR Fourier transform infrared

IR infrared

AHC agglomerative hierarchical clustering

H&E Haematoxylin-Eosin

MCT mercury cadmium telluride

MLP multilayer perceptron

ROC receiver operating characteristic

S/N signal-to-noise ratio
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Figure 1.
Dendrogram produced by agglomerative hierarchical clustering (HCA) of representative FT-
IR spectra from the colon database. At least two spectra per spectral class and patient were
selected for the analysis. The dendrogram illustrates that spectra from fat tissue and the
submucosa can be easily differentiated from the majority of the database spectra. HCA
classification of the remaining spectra yielded in a number of cases ambiguous results
illustrating that unsupervised cluster analysis alone cannot be used to attain consistent
classification results (see text for details).
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Figure 2.
The hierarchical (modular) classification scheme for ANN analysis of IR microspectra from
the human colon.
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Figure 3.
FT-IR microspectroscopic imaging of a cryostat section from a well differentiated (G1)
adenocarcinoma of the rectum. (A) Photomicrograph of the unstained cryostat section. Sample
area: 1206 × 1231 µm2. (B) Tissue area shown in A after IR microspectroscopy and staining
with H&E. 1, necrotic detritus; 2, vital tumour cells; 3, fibrovascular connective tissue and
smooth muscle strands; 4, secretion products (mucin); 5, tissue clefts. (C) IR imaging based
on 192 × 194 microspectra of the tissue area shown in panel A and hierarchical cluster analysis
(five class classification approach). (D) Imaging based on FT-IR microspectroscopy and ANN
analysis (‘top-level net’). See text for details.
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Figure 4.
FT-IR microspectroscopic imaging of a cryostat section from a well differentiated (G1)
adenocarcinoma of the rectum. (A) Photomicrograph of the H&E stained cryostat section.
Sample area: 1206 × 1231 µm2. (B) Imaging based on FT-IR microspectroscopy and ANN
analysis (‘combinet’). See text for details.
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Figure 5.
Optimisation of ANNs: illustration of the dependency of sensitivity/specificity on the number
of spectra from mucosa structures used for network teaching. (A) ANN image reassembled
from FT-IR microspectra of the colon database (four-class classification trial). Very high
sensitivity, but low specificity for spectra from the class ‘adenocarcinoma’. (B) Same as A.
Moderately improved specificity and high sensitivity for the class ‘adenocarcinoma’ (C) same
as A and B. Relatively high specificity and sensitivity for the class ‘adenocarcinoma’ (D)
photomicrograph of the adenocarcinoma cryosection after post-staining by H&E. Neoplastic
crypts are composed of absorptive epithelia (1) and basal cells (4). The crypts are separated by
proliferated fibrovascular connective tissue (2) and filled with detritus and products of secretion
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(3). (E) Theoretical interrelationship of sensitivity and specificity (receiver operating
characteristics, ROC) (F) five-class-classification approach. Sensitivity and specificity can be
increased by introducing new spectral classes (see inset).
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Table I

The colon database

Class name # of spectra

Ia Crypts 153

Ib Mucin 385

IIa Necrosis 169

IIb Lamina propria mucosae 128

IIc Lymphocytes 41

IIIa Tunica muscularis 138

IIIb Lamina muscularis mucosae 170

IIIc Vessel (blood, lymph) 193

IVa Submucosa 34

IVb Fibrovascular connective tissue 878

V Adenocarcinoma 1805

VI Fat tissue 26

Overview on sample numbers and sample description.
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