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Intervening on risk factors for coronary heart
disease: an application of the parametric
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Estimating the population risk of disease under hypothetical inter-
ventions—such as the population risk of coronary heart disease
(CHD) were everyone to quit smoking and start exercising or to
start exercising if diagnosed with diabetes—may not be possible
using standard analytic techniques. The parametric g-formula,
which appropriately adjusts for time-varying confounders affected
by prior exposures, is especially well suited to estimating effects
when the intervention involves multiple factors (joint interven-
tions) or when the intervention involves decisions that depend on
the value of evolving time-dependent factors (dynamic interven-
tions). We describe the parametric g-formula, and use it to estimate
the effect of various hypothetical lifestyle interventions on the risk
of CHD using data from the Nurses” Health Study. Over the period
1982-2002, the 20-year risk of CHD in this cohort was 3.50%. Under
a joint intervention of no smoking, increased exercise, improved
diet, moderate alcohol consumption and reduced body mass
index, the estimated risk was 1.89% (95% confidence interval:
1.46-2.41). We discuss whether the assumptions required for the
validity of the parametric g-formula hold in the Nurses” Health
Study data. This work represents the first large-scale application
of the parametric g-formula in an epidemiologic cohort study.

g-formula, coronary heart disease, hypothetical interventions

Epidemiologists often want to estimate the effects of
hypothetical interventions to inform policy and clini-
cal decisions. For coronary heart disease (CHD),
we seek to answer questions such as: what would
be the population risk of CHD if everyone quit smok-
ing? What if everyone started exercising 30 min a day?
What if everyone quit smoking and started exercising?
What if only those diagnosed with diabetes made
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these changes? Ideally, these questions would be
answered by conducting large randomized experi-
ments. In practice, the answers often need to be
inferred from observational longitudinal studies.
Even in the absence of unmeasured confounding,
however, standard analysis techniques cannot appro-
priately adjust for time-dependent confounders,
which are affected by prior components of the inter-
vention. For example, when interested in the effect
of an intervention that improves daily diet, diabetes
is a time-dependent confounder because' diabetes
is a risk factor for CHD,' and receiving a diagnosis
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of diabetes may lead to changes in diet.? In addition,
the risk of diabetes is affected by an individual’s prior
diet history.” The most common adjustment meth-
ods—either to add both the diabetes status and the
lifestyle factor as time-varying covariates in a regres-
sion model or to stop updating the lifestyle factor
after the diabetes diagnosis—can both lead to bias.*”

To overcome these problems we use Robins’s
g-formula.” The ‘g’ stands for ‘generalized’ because,
under assumptions described below, the g-formula
allows us to estimate the effect of any form of
hypothetical interventions without introducing
bias due to inappropriate adjustment for time-
dependent confounding. In realistic settings, with
high-dimensional data, we use a parametric version
of the g-formula, which fits regression models to esti-
mate the complete joint distribution of the outcome
and its risk factors. This estimated joint distribution
can then be used to simulate the risk of the outcome
(e.g. CHD) if everybody were to receive a certain
intervention (e.g. improving diet), and to compare it
with the observed risk under no intervention. The
g-formula can be used to estimate the effects of inter-
ventions that involve multiple risk factors (joint inter-
ventions) and the effects of interventions that involve
decisions which depend on the values of risk factors
that may change over time (dynamic interventions).
Because the risk of the outcome under each interven-
tion is simulated, comparisons can be made using
a wide variety of parameters, including risk ratio,
risk difference and number needed to treat.

In this article, we describe the parametric g-formula,
apply it to estimate the effect of various hypothetical
lifestyle interventions on CHD risk in the Nurses’
Health Study, and discuss whether the assumptions
required for the validity of the g-formula hold in the
Nurses” Health Study data.

Materials and methods

Hypothetical interventions on risk

factors for CHD

For each of the following interventions, we used the
parametric g-formula to estimate the 20-year CHD
risk in our population were the entire population
to follow the prescribed intervention beginning at
start of follow-up in 1982.

(1) Avoid smoking.

(2) Exercise at least 30min a day.

(3) Keep diet score (described below) in a range
corresponding to the top two quintiles of the
observed data.

Consume at least 5g of alcohol per day.
Maintain body mass index (BMI) <25.
Interventions 1-3 combined.

Interventions 1-3 and 5 combined.
Interventions 1-4 combined

Interventions 1-5 combined.

Nele RN o UV, I

More precisely, in Intervention 2, everyone exercis-
ing <30min/day is intervened on to increase their
exercise to 30min/day; all those exercising >30min/
day are not intervened on. Interventions 3-5 are
implemented in an analogous fashion. Interventions
5-8 are alternate ‘low-risk’ joint interventions. We
exclude alcohol from some combinations because
not all subjects are able to consume alcohol.
We exclude BMI from some combinations because
the intervention on BMI differs from the others in
specifying an attribute rather than a behaviour and
thus is a more ambiguous intervention (different
methods to modify BMI may have different effects
on CHD risk).

We chose the interventions listed above based on
previous epidemiologic analyses. As discussed else-
where,®”'7 all interventions listed above are imprecise
and vague to a certain extent, but there is a question
of degree and the BMI intervention is especially pro-
blematic. Further, our BMI intervention is unrealistic
by requiring changes that are rarely observed in the
data (e.g. forcing a drop from a BMI of 35-25 in a
2-year period), which leads to problems in estimation.
A more realistic intervention, although still vague,
might be to reduce BMI by a small percentage, for
example 5% among all subjects with BMI >25kg/
m?, in any given 2-year period.

Hypothetical Interventions 2-9 are dynamic inter-
ventions because different subjects can receive differ-
ent levels of the exposure under study.® In contrast,
Intervention 1 is static because everyone receives the
same exposure level (i.e. no smoking). Interventions
2-9 differ from most dynamic interventions consid-
ered in the literature in that we observe the value of
the natural value of the exposure and then change it
only if it is too low or too high.'”'?

We also consider dynamic Interventions 10-18,
which are equal to Interventions 1-9, respectively,
but are made only following coronary artery bypass
graft (CABG) or a diagnosis of high cholesterol,
hypertension, diabetes, angina or stroke. We expect
that the population effects of Interventions 10-18
are smaller than the effects of Interventions 1-9 as
we are intervening on fewer people, but that the tar-
geted interventions may be more effective per inter-
vened-on person.

The Nurses’ Health Study data

We used data from the Nurses’ Health Study, which
began in 1976 when 121701 registered US nurses
aged 30-55 years responded to a mailed question-
naire. Every 2 years, the nurses received a follow-up
questionnaire to update information on potential
risk factors and to identify newly diagnosed diseases;
validations of many of the assessments have been
published elsewhere.”'* We followed Stampfer and
colleagues'® to define a CHD endpoint as confirmed
first myocardial infarction (fatal or non-fatal) and to
calculate a composite diet score with a higher score
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indicating a diet low in trans fat and glycaemic load,
high in cereal fibre, marine n-3 fatty acids and
folate and with a high ratio of polyunsaturated to
saturated fat.

We excluded all women with a CHD endpoint before
the date of return of their 1982 questionnaire and
those with missing values for risk factors on 1978,
1980 or 1982 questionnaires, and incomplete, or
implausible diet reported in 1980. Each woman was
followed from the time of return of the 1982 ques-
tionnaire until a CHD endpoint, death, time of
expected return of first skipped questionnaire or
June 2002, whichever came first. After exclusions,
our cohort included 78746 women. Of these, 2319
had a CHD event, 16818 were censored when they
missed a questionnaire and 5616 died from causes
other than CHD during the follow-up. To account
for censoring, we calculated the 20-year risk of CHD
in this population as 3.50%, using a cumulative-
incidence estimator.'®

The parametric g-formula

Under the assumptions given below, the g-formula’
can consistently estimate the CHD risk under a
hypothetical intervention assuming that all joint pre-
dictors of the outcome and of the exposures involved
in the intervention are measured at all time points.
The CHD risk is estimated by a weighted sum or inte-
gral, over all risk factor histories, of the probability of
CHD conditional on its risk factors. As a weighted
sum over risk-factor histories, the g-formula is the
appropriate generalization of standardization for
time-varying exposures.

In situations with few possible risk-factor
histories, the g-formula can be calculated directly
without resorting to statistical models (i.e. non-
parametrically); the more typical situation with
high-dimensional data requires (i) a combination of
parametric models to estimate the components of the
integral, and (ii) Monte Carlo simulation to approxi-
mately compute the integral under each intervention
of interest. The benefits of the parametric g-formula
compared with standard regression models are sum-
marized in the first column of Table 1; costs and
caveats are in the second column. Like standard
regression models, the parametric g-formula requires
the assumptions of no unmeasured or residual
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confounding, no measurement error and no model
misspecification. Unlike standard methods, the para-
metric g-formula can deliver consistent estimates of
risk even when time-dependent confounders are
affected by prior components of the intervention;
although, in this setting, the parametric g-formula is
subject to the ‘g-null paradox’ theorem, which implies
it can be essentially impossible to correctly specify the
needed parametric models under the causal null
hypothesis. As a consequence, the method will reject
the causal null, even when true, in sufficiently large
samples.’

The algorithm for our application of the parametric
g-formula is outlined below (see Appendix 1 for
details):

(1) For each 2-year period between 1982 and 2002,
model on the whole sample the following as a
function of prior risk factor history.

(a) Each risk factor.

(b) Risk of non-CHD death.

(c) CHD risk.

(2) Simulate a cohort followed between 1982 and
2002 under the intervention of interest. First,
select a random sample (#=10000) from the
study population. Then repeat the following
steps for each individual and for each 2-year
period ¢ from 1982 to 2000 (see Figure 1 for
schematic).

(a) Predict time t covariates by applying the
coefficients estimated in Step la to data
from times f—1 and —2.

(b) Change time ¢ covariate data as indicated
by the intervention of interest.

(c) Predict the probability of non-CHD death
between f and ¢+ 1 by applying the coeffi-
cients estimated in Step lb to data from
times ¢ and f—1.

(d) Predict the probability of CHD between
t and f+1 by applying the coefficients
estimated in Step lc to data from times ¢
and 1.

(3) Estimate the population CHD risk under the
intervention as the average of the subject-
specific risks.

(4) Repeat Steps 2 and 3 for each intervention of
interest.

Table 1 Advantages and disadvantages of the g-formula compared with conventional methods

Advantages

Disadvantages

Appropriately adjusts for time-varying confounding
affected by prior exposures although subject to the g-null
paradox.

Naturally handles interventions on multiple risk factors
(joint interventions) and interventions dependent on
evolving risk factor values (dynamic interventions).

Estimates multiple parameters (including risk ratios and
risk differences) and yields population estimates.

Requires models for covariates as well as outcome.

May be more sensitive to violations of assumptions of
no unmeasured confounding, no measurement error
and no model misspecification.

Not implemented in packaged statistical software.
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Figure 1 Step 2 of the computation algorithm for the parametric g-formula

(5) Repeat Steps 1-4 on 200 bootstrap samples to
obtain 95% confidence intervals (CIs) for the
estimated CHD risks and measures of compari-
son between two interventions.

An SAS macro that we have developed to implement
the parametric g-formula is available on our website
(http://www.hsph.harvard.edu/causal).

Modelling the joint distribution

To implement Step 1 of the above algorithm, we used
separate regressions to model CHD, death and each of
the following time-varying risk factors: cigarette
smoking, diet, alcohol consumption, physical activity,
BMI, hypertension, high cholesterol, diabetes, angina,
stroke, CABG, cancer, osteoporosis, menopausal
status, post-menopausal hormone use, multivitamin
use, regular aspirin use and statin use. We used
pooled logistic regression to model the probability of
CHD and the probability of death in each 2-year
period. Each time-varying risk factor was classed as
binary, history-binary, full continuous or zero contin-
uous, and then modelled in each period as follows.
Binary-dependent variables, like aspirin use, and
history-binary-dependent variables, like diagnosis of

diabetes, were modelled using logistic regression.
The models for history-binary variables (indicators
that move only from zero to one, like history of dia-
betes) were limited to those with no history at the
beginning of the 2-year period. Full continuous-
dependent variables, like BMI, were estimated using
linear or log-linear regression. Zero continuous-
dependent variables, like cigarettes per day, had
large numbers of zero values and were modelled in
two stages—first as a logistic regression of zero vs
non-zero values and then as a log-linear regression
of the non-zero values. All models were pooled over
all 2-year periods but, if a given risk factor was not
assessed in a particular period, the data from that
period were not included in the model of that risk
factor (for example, the 1988 data were not used in
the pooled model for diet score).

All models included, as predictors, the two previous
values of all time-varying risk factors, age, 2-year
period and the non-time-varying covariates of paren-
tal history of myocardial infarction before age 60
years, oral contraceptive use before 1980, BMI at
the age of 18 years, smoking history before 1980,
baseline smoking, baseline physical activity, base-
line diet score, baseline alcohol consumption and
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baseline BMI. When a time-varying covariate was not
assessed in all periods, only the most recent measure-
ment was used, and an interaction between the most
recent measurement and the time since that measure-
ment was added to the model. Binary predictors were
entered into the models as indicators; continuous pre-
dictors were categorized in the primary analyses, and
entered as polynomials (linear, quadratic and cubic)
and restricted cubic splines in sensitivity analyses.
Table 2 summarizes the information on the covariates
included in the primary analysis.

Table 2 Summary of covariates
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To model the joint distribution of the time-varying
covariates reported in the same questionnaire, we
chose an arbitrary ordering [such as (i) physical activ-
ity, (ii) cigarette smoking and (iii) alcohol consump-
tion, etc.]. We first modelled the first covariate in the
order (physical activity), then modelled each subse-
quent covariate as a function of the concurrent, pre-
viously modelled covariates (cigarette smoking as a
function of concurrent physical activity, alcohol con-
sumption as a function of both concurrent physical
activity and concurrent smoking, etc). Under the

Variable?

Years assessed

Type of model when
used as dependent
variable

Functional form
when used as
predictor

Non-modifiable
Age -
Period/Calendar year -
Parental history of myocardial infarction -
Smoking prior to 1980 -
Oral contraceptive use prior to 1980 -
BMI at age 18 years -

Baseline smoking 1982
Baseline physical activity 1982
Baseline diet score 1980
Baseline alcohol 1980
Baseline BMI 1982

Directly modifiable

Not predicted
Not predicted

5-year categories

Period indicators

Not predicted Indicator
Not predicted Indicator
Not predicted Indicator

Not predicted Six categories®
Not predicted
Not predicted
Not predicted
Not predicted

Not predicted

Five Categoriesb
Six categories®
Quintile indicators
Four categories®

Six categories®

Multivitamins Starting in 80 Logistic Indicator
Aspirin 80, 82, 84, 88-on Logistic Indicator
Statins 88, 94-on Logistic Indicator
Post-menopausal hormones All Logistic Indicator
Smoking All Logistic, log-linear Five categories®
Physical activity 80, 82, 86, 88, 92-on Linear Six categories®
Diet score 80, 84, 86, 90, 94, 98 Linear Quintile indicators
Alcohol 80, 84, 86, 90, 94, 98 Logistic, log-linear Four Categoriesb
Indirectly modifiable
BMI All Linear (on log scale) Six categories®
High blood pressure All Logistic to failure Indicator
High cholesterol All Logistic to failure Indicator
Diabetes (confirmed) All Logistic to failure Indicator
Angina All Logistic to failure Indicator
Stroke (confirmed) All Logistic to failure Indicator
CABG Starting in 86 Logistic to failure Indicator
Cancer All Logistic to failure Indicator
Menopause All Logistic to failure Indicator
Osteoporosis Starting in 82 Logistic to failure Indicator

4All covariate values are self reported by participants unless otherwise specified.

"BMI, and BMI at the age of 18 years, categories are <18.0, 18.0-21.9, 22.0-24.9, 25.0-29.9, 30.0-34.9 and >35.0. Physical activity
categories, in min/week, are <30, 30-89, 90-149, 150-209, 210-269, 270-329 and >330. Smoking categories, in cigarettes per day,
are 0, 1-4, 5-14, 15-29 and >30. Alcohol categories, in g/day, are 0, 1-4, 5-9 and >10.
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strong assumptions that no risk factor causes any
other concurrent risk factor, that there is no unmea-
sured confounding for the effect on CHD and survival
of the combined intervention’ on Risk Factors 1-5,
and that any common causes of risk factors at one
time point are independent of any common causes of
the risk factors at all other time points, the g-formula
has a causal interpretation regardless of the interven-
tion under consideration or the choice of covariate
order.'”” We explored the influence of covariate order
in a sensitivity analyses. Cross-validation was used to
improve the prediction models by checking the pre-
dicted risk under no intervention against the observed
risk as a test of model fit. We conducted multiple
secondary analyses to assess the sensitivity of our
estimates to our assumptions regarding eligibility cri-
teria, censoring and modelling.

Simulations

To implement Step 2 of the above algorithm, we used
Monte Carlo simulation on random samples of
10000. Using the total sample size (78 746) instead
had practically no effect on the variance estimates,
indicating that the Monte Carlo contribution to the
variance was small. The risk factors predicted by
a logistic model were assigned a value of one if the
predicted probability was greater than a random
number from a uniform distribution; risk factors pre-
dicted by a linear model were assigned a value equal
to the predicted value plus the standard error multi-
plied by a random number from a Normal (0, 1) dis-
tribution. Thus, two subjects with the same risk factor
history were not necessarily predicted to have exactly
the same risk factors at the next time point.
Additionally, we truncated the simulated values of
continuous risk factors so that they would not fall
outside of the observed range. It was still possible
for us, under this process, to simulate risk factor his-
tories in which every risk-factor value was observed in
the data, but the combination of risk-factor values
was not.

Results

CHD risk under interventions

We used the parametric g-formula to simulate the
20-year risk of CHD under no intervention, in
the presence of death from other causes and in the
absence of censoring due to skipped questionnaires.
The simulated risk was 3.68% (95% CI: 3.56-4.09).
We then compared the estimated 20-year risk under
no intervention with the estimated risks under the
hypothetical interventions (Tables 3 and 4). We pres-
ent 20-year risk, risk ratios and risk differences,
all with 95% confidence intervals, along with the
number needed to treat and the average percent of
the entire population requiring an intervention in

Table 3 Simulated population risk estimates using the g-formula. Hypothetical interventions on entire cohort

Cumulative

percent
intervened

Average percent

Number
needed to

intervened

Population
risk difference

Population
risk ratio

upon?

upon?

Intervene

20-year risk
3.68 (3.56 to 4.09
3.01 (2.86 to 3.38
2.90 (2.47 to 3.60

Intervention

30
99
99
89
73

150
129
2

—0.67 (—0.88 to —0.56)
—0.77 (=141 to —0.32)

0.82 (0.78 to 0.85)
0.79 (0.64 to 0.92)
0.89 (0.82 to 0.95)
0.87 (0.75 to 0.98)
0.98 (0.93 to 1.04)

53
55
56
51

47

—0.41 (—0.70 to —0.19)
—0.48 (—0.97 to —0.08)
—0.06 (—0.28 to 0.14)
—1.45 (—2.02 to —1.13)

206

1632

(0) No intervention

(1) Quit smoking

(2) Exercise at least 30 min/day

3.27 (3.08 to 3.68

(3) Keep diet score in the top 2 quintiles

3.19 (2.84 to 3.72
3.62 (3.45 to 4.11

(4) Consume at least 5g alcohol per day

(5) Maintain BMI <25

100

74
87

69
66

0.60 (0.48 to 0.70)
0.59 (0.47 to 0.70)
0.51 (0.40 to 0.63)
0.51 (0.39 to 0.64)

2.22 (1.85 to 2.74)
2.17 (1.78 to 2.69)
1.88 (1.51 to 2.38)
1.89 (1.46 to 2.41)

(6) ‘Low-risk’ lifestyle (1-3 combined)

100

—1.51 (=2.06 to —1.13)
—1.80 (—2.29 to —1.40)
—1.79 (=234 to —1.41)

(7) ‘Low-risk’ lifestyle (1-3 and 5 combined)

86 100

92

56
56

(8) ‘Low-risk’ lifestyle (1-3 and 4 combined)

100

(9) ‘Low-risk’ lifestyle (1-5 combined)

“The average percent intervened on is the average, across all 2-year time periods, of the percent of the population required to change behaviour in a given 2-year time period.

The cumulative percent intervened on is the percent of the population required to change behaviour in at least one 2-year time period.
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each follow-up period. For all results the bootstrap
estimate of bias, calculated as the percent difference
between the point estimate of risk and the mean of
the bootstrap estimates, was <5%. The average per-
cent intervened on in each 2-year time period is a
measure of how much behaviour change is required
by the intervention and facilitates comparisons
across interventions. For example, exercising at least
30min/day and quitting smoking appear to have simi-
lar effects on population risk of CHD: ~20% reduction
in risk. The first, however, required that an average of
53% of the population change behaviour in a given
time period compared with only 5% for the second.
This reflects the prevalence of adherence to the inter-
vention in the population, the strength of the risk
factor and the correlation between time periods.
Starting smoking, or even restarting smoking after
quitting, was relatively rare, so that 27% of the popu-
lation changed behaviour for the smoking interven-
tion at the first time point and then far fewer at
subsequent times. For the other behaviours, there
was less correlation between time periods so that
the numbers required to change behaviour at least
once during follow-up were much higher than the
number required to change at the average 2-year
time period.

Interventions 10-18 are done only following an
intermediate event or diagnosis, so only affect part
of the population, yet we are estimating their effect
on the 20-year risk in the entire population. Thus,
Interventions 10-18 have a smaller overall effect on
the population-wide risk than the corresponding
Interventions 1-9, but may have a larger effect per
person. For exercising 30 min/day, Intervention 2 (on
the entire population) reduced risk by 21% compared
with a reduction of 16% for Intervention 11 (only on
those at highest risk), but the first involved 53% of
the people changing their behaviour and the second
involved only 29% doing so. In other words, Interven-
tion 10 provided 76% of the benefit of Intervention 1,
but required <55% of the effort (calculated as
16/21 =61% and 29/53 =55). Thus, we can consider
not only the overall effect of interventions, but also
the feasibility of such interventions. If coupled with
data on the per-person per-year cost of making each
change, they could also allow approximate cost-effec-
tiveness analysis.

In addition to the lifestyle interventions in the
tables, we also evaluated pharmacologic interven-
tions in which everyone would take multivitamins,
aspirin or statins. Rather than the expected protective
effect, we instead found null or close to null effects
for these interventions. These findings are likely
explained by our inability to adjust for confounding
by indication, given the coarse measurement of the
indicating conditions in the variables used in
this analysis (such as self-reported binary high
cholesterol rather than measured low- and high-
density lipoprotein levels).

Sensitivity analyses

Restricting the study population and entire analysis to
only ‘healthy” women, defined as those without dia-
betes, angina, stroke, CABG or cancer at baseline,
reduced the overall estimated incidence of CHD, but
had little effect on the estimates of relative risk.
Alternate model specifications using linear, quadratic
or cubic polynomials overestimated the observed risk
(estimating the risk under no intervention as 3.89,
448 and 3.84, respectively) and had mixed effects
on the estimates of relative risk. Using restricted
cubic splines with three, four and five knots for
each of the continuous covariates strengthened the
estimated effect for the smoking intervention, but
otherwise did not consistently change the estimates.
Using one or three lagged measurements (instead of
two) and adding two-way interactions with high
blood pressure, high cholesterol and diabetes had
little effect on any estimates. Measures of ethnicity
and education were not included in the primary ana-
lysis because they were measured after baseline and
thus are missing for some women. Adding ethnicity,
education and employment status at baseline also had
little effect. In addition to the arbitrary order used in
our base specification, we replicated the analysis
under 10 other random orderings of covariates. We
found that the estimation of the risk under no inter-
vention ranged from 3.64 to 3.75%; the estimated risk
ratios and risk differences were not substantially
altered.

For the interventions specifying a threshold
(e.g. exercising at least 30 min/day) our primary ana-
lysis assigned those not meeting the criteria just to
the threshold (e.g. to exactly 30 min/day). In a sec-
ondary analysis, we explored the sensitivity to this by
assigning them well past the threshold (e.g. to
60min/day). We also conducted similar secondary
analyses for diet (to top quintile), for alcohol
(to 15 g/day), for BMI (to 22) and for the joint inter-
ventions. There was little difference in the estimates
(results not shown).

Discussion

The g-formula provides a framework to estimate the
effects of hypothetical interventions, including joint
and dynamic ones, from complex longitudinal data.
Although the g-formula was originally published by
Robins in 1986, its applications have been hindered
by the lack of available software and of rich longitu-
dinal epidemiologic data. We present an application of
the g-formula to the Nurses’ Health Study in which
we estimated the CHD risk reduction under various
hypothetical lifestyle interventions, including the
most effective interventions—joint interventions on
multiple risk factors and dynamic interventions that
vary over time to maximize the health benefits.
Estimates of the effect of lifestyle and BMI on the
risk of CHD in the Nurses” Health Study have been
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previously obtained using conventional statistical
methods.'”> Those estimates, however, require addi-
tional assumptions to be interpreted as the effect of
hypothetical interventions, and thus cannot be
directly compared with the estimates presented in
this article. Yet, those estimates from standard meth-
ods and our g-formula estimates are qualitatively
similar. The most noticeable difference is that the
g-formula effect estimate for the BMI intervention is
null, compared with the apparently harmful effect
of high BMI estimated by the standard methods."®
The lack of clearly beneficial effect estimate for
BMI in our anlaysis might be explained by the fact
that, compared with the other interventions, the BMI
intervention may be particularly subject to residual
confounding by undiagnosed preclinical illness
(often referred to as ‘reverse causation’),'® it is less
well defined, especially when partly controlling for
diet and physical activity,” and the impact of mea-
surement error may differ between the g-formula
and standard methods. A methodological approach
specifically designed to appropriately adjust for
reverse causation may be needed to correctly estimate
the effect of BMI on mortality."®

The parametric g-formula relies on the same
assumptions (no unmeasured confounding, no mea-
surement error and no model misspecification) as
alternative methods such as standard methods, mar-
ginal structural models or structural nested models.
It may, however, be more sensitive to violations of
these assumptions because a violation in one of the
multiple models may reverberate throughout the
others. Even though we adjusted for as many poten-
tial confounders as possible, we cannot rule out bias
due to unmeasured or mismeasured confounders.
Likewise, despite cross-validation and sensitivity ana-
lyses, we cannot rule out bias due to model misspe-
cification. If the assumptions are met, however, the
g-formula, unlike standard methods, correctly adjusts
for time-varying confounders affected by prior
exposure.

A mnecessary, although insufficient, condition for the
absence of gross model misspecification is being able
to predict accurately CHD risk under no intervention.
The observed 20-year risk of CHD in this population
was estimated as 3.50%. Using the g-formula to simu-
late data completely analogous to the observed data
(by not adjusting for either censoring due to skipped
questionnaires or death from other causes), we esti-
mated a risk of 3.64%, which is consistent with a
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reasonable prediction model. The estimated risk of
3.68% under no intervention reported in Tables 3
and 4 differs from 3.64% because in our primary anal-
ysis we simulated a cohort without censoring due to
skipped questionnaires.

Our sensitivity analysis shows that, although our
estimates of relative risk are reasonably robust, our
estimates of the absolute risks are quite sensitive to
small changes in the models. Different covariate
orderings result in estimated risks under no interven-
tion that differ by >10%. That our primary analysis
yielded a CHD risk under no intervention so close to
the observed risk may be due to the cross validation
process we used to fine-tune our primary models.
When using the g-formula, it may be important to
fine-tune the model in order to closely predict the
risk under no intervention; in our analysis, this
fine-tuning did not appear to bias estimated interven-
tion-specific risk differences.

To avoid the ‘g-null paradox’, we only considered
interventions for which we did not a priori believe
that the null is true. To check against this limitation,
as well as the others, we could replicate our findings
using methods such as inverse probability weighting
of marginal structural models and g-estimation of
nested structural models. Both of these methods
model different aspects of the joint distribution,
impose fewer parametric restrictions and are free of
the g-null paradox. This is beyond the scope of the
current work, but will be an important next step.

Although it has limitations, we believe the para-
metric g-formula is a powerful and useful tool for
epidemiologic analysis. By applying this method to
the Nurses’” Health Study, we have aimed to show
that it is feasible as an analytic approach for long-
itudinal cohort data, and by making software avail-
able, we intended to facilitate future use.
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KEY MESSAGES

e The parametric g-formula can be used to compare hypothetical interventions from observational cohort
studies, under the assumption of no unmeasured confounding.

e The hypothetical interventions can be dynamic or static, and can involve multiple exposures.

e Software for the parametric g-formula is available.
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Appendix 1

In this appendix, we describe how we estimate the
proportion of the Nurses’ Health Study population
that would have developed CHD between 1982 and
2002 for the interventions of interest under the
assumption of no unmeasured confounders.

Definitions and notation

Let k denote questionnaire period with k taking on
integer values from 0 to 10 representing the 1980,
1982, 1984, ..., 2000 questionnaire periods. Let Z; be
the vector of covariates reported by each individual in
questionnaire period k. We include the following vari-
ables in the vector Z: age, questionnaire period, cigar-
ette smoking, physical activity, diet score, alcohol
consumption, BMI, hypertension, multivitamin use,
regular aspirin use, use of statins, use of post-
menopausal hormones, high cholesterol, diabetes,
angina, stroke, CABG, cancer, menopausal status
and osteoporosis. We do not index by individual
because we assume that the random variable for
each subject is drawn independently from a distribu-
tion common to all subjects. We use overbars to indi-
cate the history for any time-dependent variable.
For example, Zx = (Zo, Z1, ..., Zx) represents a subject’s
covariate history from questionnaire 0 to k. Let C; and
Ni represent the event that the subject is censored in
the period (k—1, k], due to loss-to-follow-up or death
to other causes, respectively. We consider both as part
of the covariate vector Z. Let V be a vector of baseline
variables measured at questionnaire zero that do not
vary with time. This includes parental history of myo-
cardial infarction before age 60 years, BMI at age
18 years, smoking history prior to 1980, oral contra-
ceptive use prior to 1980, baseline smoking, baseline
physical activity, baseline diet score, baseline alcohol
consumption and baseline BMI. Let D, represent our
outcome (CHD) with D=1 if CHD is diagnosed in
the period (k—1, k] and D; =0 otherwise.

Let f(z) and F(z) represent the density and distribu-
tion function of the observed covariate data Z. Let Z;*
be the vector of covariates that would have been
observed if interventions occurred through question-
naire k—1 but no intervention is made at time k.
Define an intervention 4 to be a collection of func-
tions d=(dy, ....d1o) where dy: (Zx_1,Z;*) — Z; maps
the covariate history and the covariates that would
have been observed at time k¥ to a new set of
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covariates for time k. Associated with each interven-
tion d is the distribution F,(z) with density fi(z),
which represents the distribution of the data had,
contrary to fact, all subjects in the population fol-
lowed intervention 4. In our analysis, this is a deter-
ministic function, but the notation is intended to
allow interventions that are not deterministic. Then,
under the same framework, we could consider inter-
ventions such as ‘A randomly selected 10% of smokers
quit smoking’ or ‘Exercise levels are drawn from a
pre-specified distribution.’

The parametric g-formula

The g-formula®'” to compute the cumulative risk of
CHD between 1982 and 2002 is given below as the
sum of the incidences in each 2-year period.

ZZZZ

=1 Zjo Z]0 v

:l»
~
~
J
5
U
I
NeY
|
||
(=]
N

1

J
Pr[D N —OIZ] 1V,

where k=1, ...,10 denotes 2-year time period starting
in 1982; z; is the vector of intervention values of the
risk factors Z; at time k; z{ is the vector of values that
would be observed without time k intervention; v is
the vector of time-independent baseline covariates;
Diy1 =1 is the event that CHD is diagnosed between
exams k and k4 1; Dy =0 is the event that a subject
remains free of CHD through exam k; Cy =0 is the
event that a subject remains uncensored through
exam k; and Ny =0 is the event that a subject has
not died from other causes through exam k.

The sum is over all possible z,,z}, histories. Because
each is a high-dimensional vector of covariates, a
direct calculation based on (A.l) is computationally
infeasible. Rather, we approximate the result of the
g-formula under a given intervention by Monte Carlo
simulation. To see how to conduct the simulation,
first note that the g-formula (A.1) gives the probabil-
ity of developing CHD between 1982 and 2002 based
on an intervention-specific joint distribution of CHD
and risk factors. Under the assumption of no unmea-
sured confounders, this is the joint distribution had
all subjects followed the intervention. Therefore we
generate, for each intervention, a simulated popula-
tion in which the joint distribution of CHD and risk
factors is approximately equal to the joint distribution
implied by the g-formula. Then the CHD risk in the
simulated population (i.e. the expected fraction of
subjects in the simulated population who develop
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CHD between 1982 and 2002) estimates the desired
probability. _ B

Both  Pr[Dys; = 1|Z,v,Dx = 0,Cx = O,Ny = 0]  and
f(@|zk—1,v.Dx = 0,Ck = O,Ny = 0), are estimated from
the observed data using maximum likelihood. To esti-
mate f(z{|zk-1,v, Dy = 0,Cy = 0,Ny = 0), we chose an
arbitrary ordering of risk factors at exam k: such as
physical activity, cigarette smoking, alcohol consump-
tion, history of diabetes, etc. We then estimate: (i) the
conditional probability of physical activity at k given
the past variables through k—1, (ii) the conditional
probability of smoking given physical activity at k
and past variables through k—1, (iii) the conditional
probability of alcohol at k given physical activity,
smoking at k and past variables through k-1, and
so on. We estimate f(z}|Zx—1,v,Dx = 0,Cx = 0,N; = 0)
as the product of these estimated conditional densi-
ties. We assume that no risk factor measured at k
causes any other risk factor measured at k, that
there is no unmeasured confounding for the set of
risk factors Z and the outcome D, and that any
unmeasured common causes of Z, and any unmea-
sured common causes of Zg are marginally indepen-
dent for r#s. Under these assumptions, we have a
causal interpretation for all regimes 4 regardless of
the ordering of the variables in Z.

Because the density of f(z) is invariant to the order-
ing of the risk factors in Z, we can alternately write
the g-formula as follows. This formulation separates Z
into (A, L) where A represents the set of risk factors
undergoing intervention and L represents all other
time-varying risk factors.

ZZZZZ
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fa; |lj,dj1,v,Dj=C;=N;=0)
Slli-1,d;-1,v,D5=C; = Nj =0)
Pr[D;=N; =0l};_1,d_1,v,D;—1 =C;_; =N;_, =0]
(A.2)

where k=1, ..., 10 denotes 2-year time period starting
in 1982; a; is the vector of intervention values of the
risk factors Ay at time k; a; is the vector of values
that would be observed without time k intervention;
[, is the vector of the risk factors that are not
intervened on L, at time k; v is the vector of time-
independent baseline covariates; D, =1 is the event
that CHD is diagnosed between exams k and k+ 1;
C, =0 is the event that a subject remains uncensored
through exam k; and Ny =0 is the event that a subject
has not died from other causes through exam k.
This formulation is consistent with previously pub-
lished versions of the g-formula'” and may be easier
to conceptualize for some readers. Note that this
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formulation implies an ordering of the risk factors in
Z, with risk factors to be intervened upon appearing
after all other risk factors. For convenience in our
estimation, we do not impose this implied ordering
of risk factors and thus are able to consider multiple
interventions on different risk factors using the same
base models. As explained earlier, under the assump-
tion that no risk factor at time k causes another at
that same time, the interpretation of the g-formula is
invariant to the ordering of risk factors.

Steps of the parametric g-formula

Step la: Estimating f(z}|zx—1,v.Dx =0,

Cy =0,N, =0)

We fit pooled regression models to predict each risk
factor given past risk factor history, among those with
no prior diagnosis of CHD. Risk factors at k are the
dependent variables in models that include other risk
factors at exam k (according to the arbitrary ordering
explained above) plus all risk factors measured
in questionnaires k—1 and k—2 as covariates. As
described in the main paper, we use a model structure
(e.g. linear, logistic, etc.) appropriate for the distri-
bution of the risk factor dependent variable. The
parameters of these models define the estimated con-
ditional distributions of each risk factor. The model is
restricted to those with no diagnosis of CHD at or
before exam k and who have been neither lost-
to-follow-up nor died from other causes.

Step 1b: Censoring variables, C, and N,

In our primary analysis, we fit a pooled logistic
regression to predict Ny, ;, the probability that a sub-
ject dies of a non-CHD cause in the subsequent 2-year
period, as a function of risk factor history. The model
is restricted to those with no diagnosis of CHD at or
before exam k and who have been neither lost-to-fol-
low-up nor died from other causes. In the primary
analysis, we do not simulate censoring due to skipped
questionnaires, which is to say that we intervene to
force Cp =0 for all subjects at all time points. Thus we
do not need a model for the risk of Cy. If, as in sec-
ondary analysis, we do not wish to intervene on Cy,
we then also fit a model for C,,, with the same char-
acteristics as the model for Nj_;.

Step lc: [E;, =0, Cx = 0,N, =0]

We fit a pooled (over persons and time) logistic
regression model to predict the risk of CHD as a func-
tion of risk factor history. The outcome is CHD diag-
nosis between questionnaires k and k+1, and the
covariates in the model are risk factors measures in
exams k and k—1. The model is restricted to those
with no diagnosis of CHD at or before exam k and
who have been neither lost-to-follow-up nor died
from other causes. The parameters of this model
define the estimated conditional probability of CHD

risk given the entire past, and thus implicitly
assume that time-dependent risk factors measured
more than two time periods previously do not predict
CHD risk given time-dependent risk factors in the
past two periods.

Step 2: Monte Carlo simulation

The following is repeated at each time point k& from
1982 to 2000 on a random sample (7 =10000) from
the study population. Follow-up starts at k=1 (1982)
in our analyses because two prior questionnaires
(k=0 and k=1) are used to predict CHD risk
between k and k + 1. Thus, the CHD risk we estimate
refers to the 20-year period between 1982 and 2002.
The risk factor values from questionnaire zero of these
simulated individuals are those actually observed
(interventions beginning at k=1 could not affect
these distributions so we are able to use the empirical
distribution of the data).

Step 2a: Simulation of covariates, zj

Using the conditional distribution estimates in Step
la above, the risk factor values at subsequent ques-
tionnaires are generated non-deterministically. For
linear models, a predicted value of the conditional
mean of the covariate is calculated from regression
parameters and the risk factor history, and a ran-
domly drawn error term is added to the prediction.
For logistic models, a predicted probability is calcu-
lated from the regression parameters and the risk
factor history, and the prediction is compared with a
randomly drawn uniform value. The covariate is
assigned value one if the predicted probability is less
than the random term and zero otherwise.

Step 2b: Intervention on covariates, zj

To simulate a counterfactual population subject to a
given intervention 4 under the assumption of no
unmeasured confounders, we take z; for k>0 from
the intervention density.

fi(zk1Zg Zk—1,v.Dx = 0,C = O,Ny = 0)

Note that, if we simulate no intervention

[i.e. with fd(Zk|Z7;,fk_1,V,Dk =0,Cy=0N;=0)=1 if
z; =z for all k],
the expected CHD risk in the simulated population
should equal that of the actual study population with-
out censoring, because the joint distribution implied
by the g-formula for the simulated population is pre-
cisely that of the study population.

Step 2c: Censoring

In the primary analysis Cy is set to zero for all subjects
at all time points (i.e. there is no censoring due to
skipped questionnaires). Ny is simulated by estimating
the predicted probability of non-CHD death at each
time point, based on the simulated and intervened
on risk-factor values and the conditional distribution
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estimates in Step 1b above. In a secondary analysis,
Ny is simulated in this way, and C; is simulated by
estimating the predicted probability of censoring due
to skipped questionnaire at each time point, and
using that plus a randomly drawn uniform value. If
the predicted probability is less than the random
term, the subject is assigned to be censored.

Step 2d: Simulations of CHD risk,

PI‘[Dk_H = 1|fk,V,Dk = O,Ck = O,Nk = 0]

For each simulated individual the predicted probabil-
ity of CHD at each time point is estimated, based on
her simulated and intervened on risk factor values,
using the conditional distribution estimated in
Step 1c above.

Step 3: Calculating the cumulative risk

For each intervention 4, the 20-year CHD risk is cal-
culated using a method, similar to Kaplan—-Meier,
which adjusts for competing risks:

10
ZPr[DkJrl = 1|z7k,v,15k = O,ék = 0,]\-]]( =0]x
k=1

Pr[D; = 0,N; = 0]
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By averaging this estimated risk over the simulated
population we are summing over all risk factor his-
tories, weighting by the frequency of risk factor his-
tory. The average risk in the simulated populations
gives the g-formula estimate.

Step 4: Intervention repetitions

Steps 2 and 3 are repeated to give cumulative inci-
dence estimates for each intervention. The estimated
cumulative risks under different interventions 4 and
d are compared to give a risk ratio and risk
difference.

Step 5: Bootstrap repetitions

We use non-parametric bootstrap methods (sampling
the observed study population with replacement
200 times) to estimate approximate confidence inter-
vals of the counterfactual CHD risks and risk ratios.
The size of each bootstrap sample is that of the origi-
nal sample. To obtain CIs for the risks, risk ratios and
risk differences, we re-apply Steps 1-4 to each of the
bootstrap samples. The bounds for the confidence
intervals are set at the 2.5th and 97.5th percentiles
of the distribution of the bootstrap estimates.



