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Regardless of genome polarity, intermediaries of complementary sense must be synthesized and used as
templates for the production of new genomic strands. Depending on whether these new genomic strands
become themselves templates for producing extra antigenomic ones, thus giving rise to geometric growth, or
only the firstly synthesized antigenomic strands can be used to this end, thus following Luria’s stamping
machine model, the abundances and distributions of mutant genomes will be different. Here we propose
mathematical and bit string models that allow distinguishing between stamping machine and geometric
replication. We have observed that, regardless the topology of the fitness landscape, the critical mutation rate
at which the master sequence disappears increases as the mechanism of replication switches from purely
geometric to stamping machine. We also found that, for a wide range of mutation rates, large-effect mutations
do not accumulate regardless the scheme of replication. However, mild mutations accumulate more in the
geometric model. Furthermore, at high mutation rates, geometric growth leads to a population collapse for
intermediate values of mutational effects at which the stamping machine still produces master genomes. We
observed that the critical mutation rate was weakly dependent on the strength of antagonistic epistasis but
strongly dependent on synergistic epistasis. In conclusion, we have shown that RNA viruses may increase their
robustness against the accumulation of deleterious mutations by replicating as stamping machines and that
the magnitude of this benefit depends on the topology of the fitness landscape assumed.

The mode of RNA virus replication has important conse-
quences for understanding the rates at which deleterious mu-
tations accumulate and the statistical properties of the cloud of
mutants around the master sequence (4, 17). For the sake of
illustration, let’s assume that the infecting virus has an mRNA
sense genome (positive strand), such as, for example, picorna-
viruslike viruses. The different steps of the infectious cycle are
schematically illustrated in Fig. 1a. The first step of infection is
the uncoating of the RNA molecule, followed by its translation
into structural and nonstructural proteins, the latter including
the replicase. The replicase then copies the genomic strand to
make antigenomic (negative-sense) strands. These are used as
templates to produce the genomic progeny that will accumu-
late in the cell, serve as templates for translation, and, follow-
ing encapsidation by coat proteins, form new virions. If the
antigenomic strands produced at the first round are the only
templates for producing the entire progeny of genomic strands,
the distribution of mutations per genome within an infected
cell is expected to be Poisson because mutants do not replicate
(25). Consequently, the fraction of mutation-free genomes
produced is given by the Poisson null class e��L, where � is the
per site mutation rate and L the genome length. This scheme
of replication corresponds to the linear stamping machine rep-
lication (SMR) model first proposed by Luria (25). However, if
all genomic strand progeny can also immediately serve as tem-

plates for additional rounds of antigenomic strand synthesis,
the replication model is effectively geometric (GR) and the
distribution of mutant genomes per cell increases in variance
because mutant progeny are themselves producing more mu-
tant viruses. In this case, the distribution of mutant genomes
conforms to the Luria-Delbrück distribution (9). The fraction
of mutation-free genomes produced would depend on the
number of replication rounds experienced, �, according to
e���L. Therefore, it is straightforward to see that GR will
produce f more mutant genomes than SMR according to the
equation f � (1 � e���L)/(1 � e��L). If only a fraction of the
genomic strand progeny replicates, then the replication model
will be a mixture of GR and SMR that deviates from the
Poisson expectation as much as the GR contribution. The
effect of replication mode in virus mutational load can be
better understood with the following example. The genomic
mutation rate of tobacco mosaic virus was estimated to be in
the range 0.043 � �L � 0.063 per replication round, and there
were about 40 viral particles produced per infected tobacco
cell, which is equivalent to 5.322 generations of GR (26).
Therefore, the excess production of mutant genomes for GR
over SMR will lie in the range of 16.38 � f � 23.76.

Experimental data support different models of replication
for different viruses. For example, bacteriophage T2 is thought
to replicate mostly by GR because the number of mutants per
infected cell fails to fit a Poisson distribution (25). However,
phage �X174 data fit well the Poisson distribution, and hence
the phage is thought to replicate according to an SMR model
(7). Lying within these two extremes, phage �6 slightly devi-
ated from the Poisson expectation, an observation interpreted
as a result of a mixed model in which some progeny were also
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FIG. 1. (a) Schematic representation of the virus infectious cycle. During infection, the viral particle enters into the host cell and, after
uncoating, the genomic RNA (acting as mRNA) forms the translational complex, Tc, by binding with ribosomes. This directs the synthesis of the
viral polyprotein, p, which is converted to both structural and nonstructural proteins at rates of 1 � � and �, respectively. The nonstructural
proteins are involved in the synthesis of genomic and antigenomic RNAs. We distinguish between master and mutant genomic (�) and
antigenomic (�) strands. We simulate SMR with �� 		 ��, where the initial genomic RNA directs the synthesis of one or very few negative copies,
which are used as templates for the synthesis of new genomic strands. To model GR, we use �� � ��, where all the synthesized strands replicate
at the same rate (see Table 1 for a description of the variables and the parameters used in the model). ssRNA, single-stranded RNA; RdRp,
RNA-dependent RNA polymerase. (b) Sequence spaces for a population of genomic and antigenomic binary strands of length (L � 3) bits. The
consideration of genomic and antigenomic senses can be interpreted as two coupled hypercubes (�L


). Each node of the hypercube generates by
replication of the complementary strand, SM


 (blue line), or a mutant one, SM

 (yellow line), in the coupled sequence space. (c) Diagram of the

replication, mutation, and degradation rules implemented for the simulations. (d) Fitness landscapes analyzed in this study. The plot shows the
effect of increasing numbers of mutations on the fitness of the genotype: the Swetina-Schuster (black), additive (blue), synergistic (green), and
antagonistic (red) fitness landscapes. The parameters defining the landscapes shown in panel d are arbitrary.
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able to replicate (4). Plant positive strand RNA viruses are also
thought to reproduce mostly according to an SMR model (15,
18). Despite the apparent importance of the model of RNA
virus replication for the accumulation of mutant genomes,
most mathematical models proposed for the study of the dy-
namics of RNA virus populations rely on the assumption of
GR. For example, the most commonly used theoretical para-
digm for the study of virus evolution, Eigen’s quasispecies
picture (10, 13), assumes geometric growth and the Swetina-
Schuster fitness landscape (41). This approach assumes that all
mutations have the same deleterious fitness effect and that
fitness does not depend on the number of mutations carried by
a genome (i.e., the fitnesses of genomes having 1, 10, or 100
mutations would be identical) (Fig. 1d).

How to model viral replication is a timely research topic
in virology. The growth of a virus in its host cell is a complex
process. In seeking to understand this process and the effect
of the interactions between the macromolecules involved in
viral growth, the crossing of the disciplines of biochemistry,
molecular biology, population genetics, and nonlinear dy-
namical systems might provide a powerful way to study the
overall behavior of virus dynamics. In this sense, models
play a crucial role in a qualitative and quantitative study of
virus replication, as well as also being useful for predicting
the system’s time evolution and analyzing its sensitivity with
respect to parameter changes. Furthermore, insights into
interactions of viruses with host cells might help us to im-
prove our understanding of virus-mediated diseases and to
develop antiviral strategies (37). Several models of intracel-
lular viral growth kinetics can be found in the literature,
ranging from simple (unstructured) models capturing the
basic replication processes (12, 19, 39, 46) to the so-called
structured models that consider replication in different cel-
lular compartments such as membranes, endosomes, cyto-

plasm, or the nucleus. Some examples of structured models
have been developed for bacteriophage T7 (17, 45), human
immunodeficiency virus type 1 (29), subgenomic hepatitis C
virus (6), influenza A virus (37), and vesicular stomatitis
virus (VSV) (24). However, to the best of our knowledge
and despite its relevance, none has considered the effect that
nongeometric modes of replication in combination with dif-
ferent fitness landscapes may have on the accumulation of
mutant genomes.

In the first part of this work we analyze a mathematical
model describing the single-cell reproductive cycle of positive-
sense RNA viruses that make no subgenomic mRNAs and
encode a single polyprotein that is self-processed into struc-
tural and nonstructural proteins, sensu picornaviruslike viruses
(Fig. 1a). This model describes the main features of cytoplas-
matic intracellular amplification of a viral genome (see refer-
ence 1 and references therein) without getting deep into the
peculiarities of any particular system. By doing so, the model
remains as general as possible and would be applicable to a
wide variety of RNA viruses. By focusing on intracellular rep-
licative dynamics, we are not explicitly considering cell lysis
and transmission among cells. The main goal of this first part
is to analyze the effect of SMR and GR under the simplistic but
mathematically convenient Swetina-Schuster fitness landscape
(41). For each replication scheme, we compare the dynamics of
nonmutated and mutated strains of both polarities, the value of
the critical mutation rate for which the nonmutated strain
disappears from the population, and the sensitivity to muta-
tions. The model considers explicitly both genomic and anti-
genomic master and mutant strands, the viral polyprotein, the
translational complexes, and the mature virions. Whenever
possible, model parameter values were chosen to be in the
same ranges as experimental determinations taken from the
literature (Table 1). For those parameters for which no exper-

TABLE 1. Notations used in the differential equations model and the values assigned to each parametera

Notation Description Value

� Fraction of the viral polyprotein used as replicase (1 � � is the fraction used as structural proteins) 0.9b

ε Strand degradation rate 0.005c

ε� Degradation rate of the translational complex 10�5d

εp Degradation rate of the viral polyprotein 1.5 � 10�3e

�
 Probabilities of replication for the genomic (�) and antigenomic (�) master strands 0–1

 Probabilities of replication for the genomic and antigenomic mutant strands 0–0.1
kR Effective rate of interaction between the master genomic strands and the available ribosomes 0.04d

k1 Rate of dissociation of the master genomic strand from the translational complex 0.02d

k2 Encapsidation probability of genomic strands 0.75
m No. of monomers of structural protein necessary for building up a virion 200f

� Avg mutation rate 0–1
Rtot Constant concentration of ribosomes inside the cell 1
� Rate of elimination of mature virions (either by degradation or by leaking out of the cell) 3.5 � 10�3g

a Initial conditions: x0
�(0) � 0.01 and x0

�(0) � x1
�(0) � x1

�(0) � Tc(0) � p(0) � V(0) � 0 if not otherwise specified.
b The nonstructural genomic components represent �90% of the genome in picornaviruslike viruses (1).
c RNA stability depends on intrinsic properties of the molecule, such as sequence structure and the presence of CAP, VPg, or a poly(A) tail, as much as the action

of cellular RNases, and thus it must be independent of the replication model. We assume that mutations have negligible effects on RNA stability. Since we found no
useful values in the literature, we performed a sensitivity analysis for ε in the range 0.002 to 0.01 by exploring more than a million parameter combinations. We obtained
a good qualitative convergence of equilibrium concentrations inside this range.

d These values were chosen in such a way that the ratio of formation rate to degradation rate plus dissociation rate lies in the same range as in reference 6.
e Once the polyprotein has been produced, we assume that either it can be degraded at rate given by εp or is cleaved with absolute efficiency into the mature peptides,

which is equivalent to a cleavage rate of 1, as in the range reported in reference 6. The exact value employed in our simulations was obtained from the same sensitivity
analyses described for ε.

f For picornaviruslike viruses, the number of monomers of structural proteins required for encapsidation is in the range of hundreds to thousands. The value has been
fixed to make it similar to that for the potyviruses (36).

g The virion degradation rate has been fixed at 2 orders of magnitude smaller than the formation rate (k2) as reported for VSV (14).
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imental values were found, we ran a sensitivity analysis with
over a million parameter combinations and selected values
providing the most consistent outcome. In the second part of
our study, we confirm the validity of the results by using a
stochastic model involving digital genomes and incorporating
more-complex and more-realistic fitness landscapes to be rep-
resentative of RNA viruses.

MATERIALS AND METHODS

Mathematical model. Our quasispecies mathematical model of intracellular
viral replication is based on the scheme shown in Fig. 1a (see Table 1 for details
on the notation used hereafter). The model is used to analyze the dynamics of
replication of positive-sense RNA viruses that make no subgenomic mRNAs. We
explicitly define the polarity of the strands constituting the quasispecies, studying
its dynamics using the Swetina-Schuster fitness landscape (41) (Fig. 1d). In this
landscape, the wild-type sequence has fitness 1, while all mutant genotypes
(regardless the number and nature of mutations) have equal fitnesses that are 	1
(41) and, thus, represent a single sharp peak emerging from a flat surface. In such
a scenario we may divide the population in either master or mutant genomic and
antigenomic viral strands. The pool of mutant strands of each polarity is thus
grouped in an average sequence different from the master one. Therefore, the
variables of this dynamical system include the genomic (superscript �) and
antigenomic (superscript �) viral strands, designated x, with the master ones
indicated by subscript 0 and the mutants by subscript 1. Moreover we also
consider as variables the viral polyprotein, p, the translation complex formed by
genomic RNAs and ribosomes, Tc, and the mature viral particles, V.

Our model assumes that all the interacting macromolecules are homoge-
neously mixed and that mutant genomic RNAs (x1

�) fail to be translated into the
polyprotein and thus they do not compete for the available ribosomes. This
assumption is reasonable because, as confirmed below, for moderately large
mutational effects (� 		 ��, where  and � are as defined in Table 1), the
concentration of mutant genomic RNAs should be low compared to that of the
wild-type RNAs, thus making the amount of ribosome-RNA complexes for
mutant strains quickly drop to zero. For instance, one can envision these muta-
tions as introducing stop codons or inducing conformational changes in the
ribosomal entry sites, hindering the interaction of the RNA with the ribosomes.
More importantly, with this assumption, we eliminate the mathematical compli-
cations of complementation, keeping the model more simple and focused. Next
we proceed to give a detailed explanation of the processes described by the
model. Four steps, which correspond to the main phases of viral replication
inside the host cell, are considered in the following subsections (Fig. 1a).

(i) Translation complex kinetics. Upon entry and uncoating, the genomic
strand binds with the cellular ribosomes, forming the translational complexes.
Following Dahari et al. (6), the amount of free available ribosomes, Rav, is used
as an upper bound to the formation of the translation complexes, Tc, and is given
by Rav � Rtot � Tc. Note that here we assume that the total number of ribosomes,
Rtot, is constant and the number of available ribosomes decreases due to the
formation of the translational complexes. The dynamics of the translational
complex is then defined by dTc/dt � kRx0

�Rav � k1Tc � εTTc, where t is time and
the parameter kR is the effective rate of interaction between the genomic RNA
and the available ribosomes. The second term denotes the dissociation of the
translation complex, after which the ribosomes and the genomic RNA again
become available. We consider that the translation complex is degraded at a rate
(εT) that is 		k1.

(ii) Viral polyprotein dynamics. The dynamics of the viral polyprotein, p,
depends on the presence of the translation complexes, the formation of mature
virions, its intrinsic degradation, and the replication of viral strands. An appro-
priate description is given by the equation dp/dt � k1Tc � �i�0

1 �(xi
�) � εpp �

�(X). Here �(X), given by �p[�(X�)���0
� � ���0

� � �(X�)�x1
� �

�x1
�], determines the amount of nonstructural protein involved in replication

[see below for the definition of the terms involved in function �(X)]. The
function �(xi

�), which corresponds to the formation of virions by encapsidation
of the genomic strands, is defined as k2[(1 � �)p]m. Here k2 is the encapsidation
rate and m is the number of monomers of structural protein required for building
up a mature virion. This formula assumes that virion assembly follows an m-
order mass action kinetics. The polyprotein is proteolytically self-processed,
resulting in the formation of both structural (capsid) and nonstructural (repli-
case) proteins, which represent, respectively, 1 � � and � of the entire polypro-
tein (19). The polyprotein degrades at rate εp.

(iii) RNA synthesis and degradation. Four different classes of RNA sequences
(xj � {x0

�, x0
�, x1

�, x1
�} � X) are considered, and their growth is limited by a

logisticlike function, �, that imposes finite cellular resources (i.e., carrying capacity
[� � 1]) according to the equation �(X) � 1 � (1/�)�i�0

1 (xi
� � xi

�). The replicase
uses a given strand as a template to synthesize its perfectly complementary sequence
at rate �
(1 � �), where � the average mutation rate and �
 is the replication rate
of the master strands. Hence, master sequences will generate mutant sequences at
rate �
�. Mutant strands replicate at rates (
) that are 		�
 because we have
assumed that mutations are deleterious. Note that backward mutations are assumed
to be so infrequent that their effect may be neglected. The concentration of free
positive-sense strands will grow according to the equation dx0

�/dt � r��(X) � εx0
�

� k1Tc � �(x0
�) � kRRavx0

�, where εx0
� represents the decay of RNA molecules

as a consequence of inherent degradation or the action of cellular RNases, which is
assumed to be the same for all strands. The three last terms on the right side
correspond to the dissociation from the translation machinery, the sequestration rate
due to the formation of new viral particles, and the capture by free ribosomes to
produce new translational complexes, respectively. The growth rate, r�, incorporates
the presence of x0

� templates, the fraction of the polyprotein used as replicase (�p),
and the fidelity of replication, 1 � �, according to the equation r� � ��(1 �
�)x0

��p. For the x0
� strands, the dynamics is now given by dx0

�/dt � r��(X) �
εx0

�, where now r� � �(X�)��(1 � �)x0
��p [see below for the definition of the

function �(X�)]. Similarly, we can build the equations for the mutant populations as
dx1

�/dt � r���(X) � �(x1
�) � εx1

� and dx1
�/dt � r���(X) � εx1

�, with their
replication rates now given by r�� � �p(���x0

� � �x1
�) and r�� �

�(X�)�p(���x0
� � �x1

�), consistent with the reactions outlined in Fig. 1.
Note that the differences in the replication rates of both genomic and antige-

nomic strands allow us to analyze both SMR and GR kinetics. To model GR, we
set �� � ��, i.e., all the synthesized strands are allowed to replicate. For SMR,
however, we use �� 		 ��, that is, the infectious genomic RNA entering into the
host cell synthesizes one or very few negative copies, which are then used as the
only templates for the synthesis of new genomic strands in a Luria’s stamping
machine strategy. Indeed, to further stress the assumption that at the beginning
of the infectious cycle only the antigenomic strands need to be produced but that,
as infectious progresses, this production has to be shut off to favor production of
genomic strands, we assume a negative feedback of antigenomic strand concen-
tration on its own rate of production. In mathematical terms, this constraint can
be incorporated by setting �(X�) equal to 1/(1 � �i�0

1 xi
�) in the production of

antigenomic strands from genomic ones. For GR, �(X�) is 1.
(iv) Formation of viral particles. The new virions are produced both from

master and mutant genomic strands combined with the structural proteins. From
the previous steps, we can see that the formation of mature virions, V, will follow
the equation dV/dt � �i�0

1 �(xi
�) � �V, where �(xi

�) represents the encapsidation
of positive strands and �V is introduced to control the amount of virions (e.g.,
degradation of viral particles and elimination of mature particles that may leak
out the cell).

For the sake of simplicity we hereafter use (by default) �� � 1 and 
 �
�
/10 (i.e., assuming that mutations are largely deleterious and that the repli-
cation rate of mutants is reduced by a factor of 10). The 10% average fitness
effect was chosen to be of the same order of magnitude as that for experimental
data on the effect of single point mutations gathered for VSV (33) and tobacco
etch virus (3). The other parameters will be either explored in this work or
remain fixed at the biologically meaningful values provided in Table 1.

Stochastic dynamics of digital genomes. During the first stages of the infection
and due to the stochastic nature of transmission events, cells are usually invaded
by one or a few viral particles. Therefore, a stochastic description of the repli-
cation process would better capture the fluctuations due to small population sizes
(see reference 39 and references therein). We use an unstructured discrete
model of in silico genome evolution considering a bit string description of the
population structure (35, 38), which allows us to explicitly simulate the complex
and heterogeneous structure of populations of replicators. Although real RNA is
composed of a four-letter alphabet, we use Leuthäusser’s approach by consid-
ering that each bit would represent either purines or pyrimidines (22, 23). Digital
strands will thus be represented as chains of bits. Each chain will have 32 bits, and
a maximum population size (N) of 1,000 chains will be allowed.

We define a population of digital genomes. We indicate as Si
� and Si

� positive
and negative strands, respectively. A given string will be defined as Si


 � (Si1



Si2

 . . . SiL


), with Sik

 � {0, 1}. The genomic and antigenomic master se-

quences in our model (labeled Sm) are defined as Sm
� � (11 . . . 1) and Sm

� �
(00 . . . 0), respectively. We initially “inoculate” our system with N(0) replicating
strings. These strings can now replicate (generating complementary strands) and
mutate. For instance, each bit in Si

� can mutate according to the equation
Sik

�

–
�

b 1 � Sik
� � Sik

� with a given mutation probability, �b, per bit and
replication cycle. They also degrade with probability ε (Fig. 1c). We first inves-

12582 SARDANYÉS ET AL. J. VIROL.



tigate the Swetina-Schuster fitness landscape (41) used in the previous mathe-
matical model (Fig. 1d). In this case, the master sequences have the highest
fitness, i.e., their replication probabilities are set to 1, whereas all other strings
replicate with an arbitrary probability of 0.1. Then, we move to more complex
and realistic fitness landscapes that are described by an equation of the general
form �
 � 1 � dim

�/L, where dim is the Hamming distance between string Si



and the master sequence Sm

 and � measures the sign and strength of epistasis.

If � is 1, then we have an additive fitness landscape in which all mutations have
the same effect and thus fitness declines linearly with the number of mutations
(Fig. 1d). Values of � that are �1 or between 0 and 1 correspond to synergistic
and antagonistic epistasis, respectively (Fig. 1d). The latter case is in good
agreement with the results of recent experiments showing that, on average,
antagonistic epistasis predominates in RNA viruses (2, 30, 34, 42).

The simulation algorithm repeats, at every generation �, the replication and
degradation rules 1,000 times. This is a standard Metropolis importance sam-
pling Monte Carlo updating scheme, which ensures that, on average, the rules
are applied to all the population of strings per generation and defines the time
scale (21). To differentiate between both types of replication, we implemented
the following strategy. When a genomic strand replicates, producing an antige-
nomic one, the latter will always keep replicating (unless degraded). On the other
hand, when an antigenomic strand replicates, the synthesized genomic strand will
become a replicator with probability �. Note that, whenever � is 1, all the progeny
strands copied from the negative templates will replicate in the following gen-
erations and replication will be purely geometric. However, if � is 		1, the
negative strands will be mainly used as templates while the positive ones will not
replicate. With this second strategy the kinetics will be closer to the SMR.
Indeed, to potentiate the effect of SMR, the nonreplicating genomic strands are
not degraded and the degradation probability for the replicating sequences is
kept very low. We also consider differential replication rates for each strategy of
replication by using ��� and ��, where � is the constant of asymmetry in
replication used to differentiate between both replication modes. For SMR we
set � at 0.1 and the genomic strands will synthesize few antigenomic ones. For
GR we use a � of 1 and all the synthesized strands will always replicate propor-
tionally to their fitness.

All numerical analyses of the deterministic mathematical model were done
using a C program implemented to solve the differential equations by the stan-
dard fourth-order Runge-Kutta method (40) using a constant time step size (�t)
of 0.1. The stochastic bit string model was also implemented in a C program
(available upon request).

RESULTS

Mathematical model. (i) Quantitative differences in the ac-
cumulation of master and mutant genomes of both polarities.
The first important analysis for any replication model involving
antigenomic intermediates of replication should be to explore
the kinetics of accumulation of both genomic and antigenomic
strands and to understand how mutations accumulate in both
strands. The effects of mutation rate in each replicating strat-
egy are illustrated in Fig. 2. We show the temporal dynamics of
all the viral strands for each replication strategy using three
different mutation rates. The genomic strands achieve higher
equilibrium concentrations than the antigenomic ones for the
SMR. For GR, however, the genomic and antigenomic strands
always asymptotically achieve identical equilibria. With a � of
0.1 (Fig. 2a) the master strands achieve population equilibria
higher than the mutant strands regardless of the replication
kinetics. If the mutation rate is increased (� � 0.3) (Fig. 2b),
then the concentration of the mutant strands grows while the
master strand concentration decreases, although for SMR the
concentration of mutant genomic strands achieves a higher
value than that of antigenomic master strands. For either rep-
lication mechanism, both master strands achieve higher popu-
lation densities than the mutant strands if mutation rates are
low. However, if the mutation rate is increased (� � 0.65),
mutant strands dominate the population (Fig. 2c). However,
two important differences between replication modes exist.
While SMR still produces nonmutated genomes of both po-
larities and the population reaches a nontrivial equilibrium,
GR fails to sustain replication and the population becomes
extinct in the long term.

Figure 2d illustrates the initial growth kinetics for each rep-
lication mode for the genomic strands (in linear-log scale). For

FIG. 2. Solutions of the mathematical model. Shown are time series for master (black) and mutant (red) strands at the following mutation rates
(�): (a) 0.1, (b) 0.3, and (c) 0.65. Genomic and antigenomic strands are indicated with solid and dashed lines, respectively. In all the plots we show
the time evolution for SMR (top; with �� � 0.1) and GR (bottom; with �� � 1). (d) Initial amplification phase for the genomic strands (in
linear-log scale) for GR (thick line) and SMR (thin line) using a � of 0.3. For the initial condition x0

�(0) was 0.1 and all other parameters are as
in Table 1.
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GR the initial growth phase is exponential. For the SMR
strategy we obtain subexponential growth kinetics. The model
also shows a difference in the temporal dynamics of the ratio of
positive to negative strands between both replication modes.
For SMR, with the parameter values used in this study, such a
ratio reaches an equilibrium at which the concentration of
positive strands is approximately 3.5 times larger than that of
negative strands (data not shown). However, as one may ex-
pect from the GR, this ratio flattens off at a ratio of 1, indi-
cating equal production of both strands (data not shown).

In conclusion, SMR is the more efficient replication mech-
anism: for low mutation rates, it produces more genomic
strands than GR without the necessity of generating equivalent
amounts of antigenomic strands, while at high mutation rates,
GR drives the population to extinction while SMR still gener-
ates small amounts of mutation-free genomes. In the next

section, we explore under which mutation rates the master
nonmutated strand disappears from the population.

(ii) SMR is compatible with a higher critical mutation rate.
One of the more important predictions of the quasispecies
theory is the existence of a critical mutation rate, �c, beyond
which the wild-type sequences does not exist anymore in the
population. As already mentioned in the introduction, Eigen’s
model implicitly assumes GR. The question we address in this
section is how the mode of replication may impact �c. As
expected, for SMR the equilibrium concentrations for both
master genomic (x0

�) and antigenomic (x0
�) strands as well as

for both mutant strands (x1
� and x1

�) are asymmetric (Fig. 3a).
This actually means that we have a higher production of pos-
itive strands from the negative ones. On the other hand, for
GR the equilibrium concentrations for the master and the
mutant strands are the same for both genomic and antigeno-
mic strands. The critical mutation rate, involving the extinction
of the master sequences, is shown to be 10.07% larger for SMR
(�c � 0.765) (Fig. 3a) than for GR (�c � 0.695) (Fig. 3b),
suggesting that the extinction of master genomes under SMR
takes place at mutation rates larger than those if genomes
replicate according to GR.

From these results we can conclude that a virus replicating
according to SMR would benefit from having a higher �c. In
other words, it will be able to maintain a well-defined popula-
tion structure at mutation rates for which a virus replicating
according to GR would have undergone a collapse of the
nonmutated strands.

(iii) SMR is more robust to the accumulation of slightly
deleterious mutations. So far, we have shown that a virus
replicating according to SMR produces less mutant genomes
and can sustain the population at mutation rates which are
prohibitive for a virus replicating according to GR. Next, we
sought to explore the effect of the severity of mutational effects
on the accumulation of master and mutant strands of both
polarities. The severity of mutations was computed as the ratio
between the average replication rates of mutant (�) and
master (��) genomic strands. This ratio will be 1 for neutral
mutations (� � ��) and 0 for lethal ones. �� was fixed at 0.1
for SMR and at 1 for GR, while � � [0, ��]. Figure 4 shows
the equilibrium population densities for each genomic class
and their dependence on mutational severity. At relatively low
mutation rates (� � 0.15) the positive master sequence re-

FIG. 3. Equilibrium concentrations for master (x0

) and mutant

(x1

) strands versus mutation rate for SMR (a) and GR (b) modes. All

other parameters are as in Table 1. To facilitate the comparison, the
arrow indicates the critical mutation rate obtained for the SMR model.

FIG. 4. Severity of mutations and accumulation of the different strands. Shown is the relative effect of mutations on the equilibrium
concentrations of the strands measured as the ratio �/�� for different values of the mutation rate (�): (a) 0.15, (b) 0.25, and (c) 0.6. In all the
plots, for SMR �� is 0.1 and for GR �� is 1. For the initial condition x0

�(0) is 0.1 and all other parameters are as in Table 1.
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mains dominant regardless the replication mode. As expected,
strong-effect mutations accumulate less than those causing
mild effects, irrespective of the mode of replication. However,
GR is more sensitive to the accumulation of mild mutations
than SMR (Fig. 4a), as indicated by the steeper slope for the
positive master strands. A similar situation occurs at interme-
diate mutation rates (� � 0.25) (Fig. 4b): both replication
modes accumulate more mild- than strong-effect mutations but
the GR accumulates proportionally more mild mutations. At
higher mutation rates (� � 0.6) (Fig. 4c) results change for
SMR in an important way, that is, positive master genomes are
not dominant anymore for the entire range of mutation sever-
ities and, instead, the mutant ones become the most abundant
class, although it is still possible to recover the master genome
along all the range of mutational severities at �10% popula-
tion frequency. Mild mutations are still the most commonly
fixed ones. However, GR collapses at intermediate mutational
severities (� � 0.45), and all genotypes get extinguished due
to the accumulation of small-effect mutations.

Another difference between SMR and GR schemes is that at
low mutation rates the second-most-abundant genotype for
SMR is the antigenomic master strand, irrespective of the
severity of mutations, whereas antigenomic mutants are the
second-most-abundant class for GR. At intermediate mutation
rates, the genomic mutants become the second-most-abundant
class when replication occurs via SMR, and their frequency
rises as mutation rate increases. These results are in agreement
with those presented in the previous section and support the
notion that the SMR model of virus replication is not only
compatible with higher mutation rates but also more robust to
the severity of mutations.

In general, strong-effect mutations will have very low impact
on the fitness of populations, with the extreme case being
lethal mutations, which do not contribute to the next genera-
tion. By contrast, mutations of mild effect will accumulate in
the populations since selection is poorly efficient at removing

them. We have shown here that viral populations replicating
according to SMR accumulate less mild-effect mutations than
those whose replication was according to GR and that, there-
fore, selection will be more efficient in keeping the population
free of deleterious alleles (19).

Digital genomes. To incorporate the stochastic characteris-
tics inherent to viral infection and replication as well as to be
able to analyze different fitness landscapes, in the following
three sections we move from deterministic models based on
differential equations to stochastic models of simulation with
digital genomes.

(i) The equilibrium genotypic distributions differ between
SMR and GR and show different dynamics for the loss of the
master sequence. We begin our study of the stochastic model
by analyzing the effect of mutations across four different fitness
landscapes for both replication modes. The variable we are
measuring in this section is the equilibrium concentration for
the master genomic sequences and its mutant spectrum using
the per-bit mutation probability, �b, and an initial population
size [N(0)] of 50 genomes. For the epistatic landscapes (Fig.
1d), the epistasis coefficients (�) were set to 1.4 and 0.6 for the
synergistic and antagonistic cases, respectively. The critical
mutation probability per bit, �b

c, is defined as the lowest mu-
tation value for which the master genomic strand (Si

�) con-
centration is 	10�4 (the assumed concentration at which ex-
tinction takes place). The results of these simulations are
shown in Fig. 5. In the case of the Swetina-Schuster single-
sharp-peak landscape (Fig. 1d), the extinction of the master
sequence occurs when �b

c is �0.156 for the SMR model and
�0.070 for the GR model. Moreover, the composition of the
mutant spectrum is shown to differ according to the replication
strategy. It is well known that for the combination of a Swetina-
Schuster landscape and GR the mutant spectrum suffers a
sharp phase transition at �b

c and each mutant genome reaches
a steady-state concentration that depends only on its muta-
tional coupling (13). However, we show that this is not the case

FIG. 5. Average equilibrium concentration of genomic strands in the bit string model for the four fitness landscapes studied as a function of
the per-bit mutation rate. � values for antagonistic, additive, and synergistic epistasis were 0.6, 1, and 1.4, respectively. For the Swetina-Schuster
landscape, ε was 0.01, and ε was 0.001 for all other landscapes. In all the diagrams we show the normalized population numbers (averaging over
200 independent replicates when � � 20,000) for genomic master strands (thick line) and their mutant spectrum (thin lines). N(0) was 50 in all
simulations.
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for SMR, since such a sharp phase transition is never observed
and different genomes rise and decrease in frequency depend-
ing on mutation rate (Fig. 5).

For more-realistic landscapes, �b
c is also larger for SMR

than for GR. The difference between both replication strate-
gies is maximized for the antagonistic landscape (7.43-fold
difference) and minimized for the synergistic landscape (4.72-
fold difference), while the additive landscape produces a 6.41-
fold difference in �b

c. No sharp phase transition is observed for
any of these three landscapes.

Therefore, a very important conclusion can be drawn from
this section: the sharp phase transition usually known as the
error threshold is characteristic of populations of GR replica-
tors and its occurrence depends on whether the fitness land-
scapes conform to the Swetina-Schuster model. Failure to
meet either of these requirements results in a lack of a sharp
phase transition at the critical mutation rate.

(ii) Statistical analysis of the distribution of the number of
mutations per genome. Next we sought to explore the effect of
the two extreme models of RNA virus replication and of land-
scape topology on the properties of the cloud of mutants gen-
erated around the master sequence. Figure 6a shows the pop-
ulation frequency of master genomes for both replication
modes and the four different fitness landscapes. A clear effect
of the replication mode is observed. While a master genome
replicating according to SMR will remain in the population at
frequencies over the extinction threshold (10�4) for a �b of
�0.148, irrespective of the landscape employed, a master ge-
nome using a GR strategy always crosses the extinction thresh-
old at much lower mutation rates (e.g., �b � 0.031 for the
synergistic landscape) (Fig. 6a). Indeed, irrespective of the
fitness landscape and the mutation rate employed in the sim-
ulations, the distributions of the number of mutations per

genome were significantly different both in location (Fig. 6b)
(Mann-Whitney test; P 	 0.001 in all comparisons) and shape
(Fig. 6c) (Kolmogorov-Smirnov test; P 	 0.001 in all compar-
isons), with GR always generating a much larger average mu-
tational load and a larger variance in the number of mutations
per genome. Figure 6b reflects once again the sharp phase
transition characteristic of the GR in a Swetina-Schuster land-
scape, with genomes increasing their average number of mu-
tations up to 16 (Fig. 6b). For the other landscapes, the
average number of mutations per genome increases
smoothly. For SMR, the landscape topology does not affect
to a large extent the average number of mutations per ge-
nome. However, for GR, the antagonistic landscape gener-
ates the largest mutational load for all mutation rates tested.
By contrast, the synergistic landscape generates the lowest
mutational loads. Therefore, the magnitude of the benefit of
SMR over GR (i.e., the difference between the surfaces
under both curves) varies across landscapes: it is largest for
the Swetina-Schuster landscape, followed by, in order of
size, the antagonistic landscape, the additive landscape, and
finally the synergistic landscape.

Similarly, the standard deviation of the number of mutations
per genome is also affected by the interplay between the mode
of replication and the landscape topology (Fig. 6c). Again, the
sharp phase transition characteristic of the combination of
Swetina-Schuster landscape and GR is reflected in the ob-
served sudden increase in variability in the number of muta-
tions per genome as the mutation rate approaches the critical
value. However, this fast increase was transient only until the
average mutational load reached its maximum value. After-
wards, the variance in the number of mutations sharply de-
creased and asymptotically approached the standard deviation
value observed for the SMR (Fig. 6c). For the other fitness

FIG. 6. Interplay between mutation rate, mode of replication, and the topology of the fitness landscape. (a) Frequency of the mutation-free
genomic strands. The dotted horizontal line represents the extinction threshold. (b) Average number of mutations per genome as a function of
mutation rate. (c) Standard deviation of the number of mutations per genome.
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landscapes, the standard deviation of the number of mutations
per genome does not sharply change, because its increase is
more monotonous. At low mutation rates GR produces larger
variances than SMR regardless of the landscape topology, with
the following rank order: antagonistic, additive, and synergis-
tic. As mutation rate increases, however, the differences be-
tween GR and SMR are reduced and the curves intersect at
some value of �b (Fig. 6c) beyond which GR produces less
variable populations than SMR. The precise value at which
SMR loses the advantage over GR depends on the landscape
topology: synergistic first, followed by antagonistic and finally
additive.

As described in the introduction, under a purely SMR mech-
anism, the number of mutations per genome should conform
to a Poisson distribution, whereas for a GR mechanism the
distribution departs from the Poisson model and fits the more
complex Luria-Delbrück distribution. To confirm this expecta-
tion, we ran Kolmogorov-Smirnov tests for deviations of the
Poisson null hypothesis. As expected, under the SMR, the
numbers of mutations per genome were Poisson distributed for
all combinations of �b and landscapes (P � 0.050 in all tests).
Furthermore, the distributions of mutations per genome gen-
erated under the GR scheme departed from the null Poisson
model for values of �b that were �0.035 for the Swetina-
Schuster, additive, and antagonistic landscapes (P � 0.019 in
all tests) and 0.015 for the synergistic one (P � 0.011).

The take home message from this section is that, if one looks
for differences between SMR and GR in terms of where in
sequence space the cloud of mutants is placed and how big it
is, the results strongly depend on the fitness landscape.
Whereas SMR is quite insensitive to the topology, GR is
greatly affected.

(iii) Interplay between epistasis and critical mutation rate.
In the previous section, we observed that for a given replication
mode the most divergent results were always observed for the
two extremes of the epistatic landscape. To further character-
ize the effect of the epistasis on the replication dynamics, next
we sought to explore the effect of the fitness landscape curva-
ture (�) on �b

c. To do so, we ran simulation experiments
similar to those described in the above sections but varying � in
0.1 intervals (Fig. 7). Irrespective of the mode of replication,
the shapes of the relationship were similar: antagonistic epista-
sis (� 	 1) barely affects �b

c, whereas increasing the strength of
synergistic epistasis (� � 1) allows for almost linear or expo-
nential increases in �b

c of up to 14% for an � of 2. In good
agreement with the results shown in previous sections, what
most strongly determines the magnitude of �b

c is the mecha-
nism of replication, with �b

c being around 1 order of magni-
tude larger for SMR than for GR across the entire range of �.

From these results we conclude that the critical mutation
rate is insensitive to antagonistic epistasis but that it dramati-
cally increases as epistasis becomes more and more synergistic.
The biological meaning of this difference is clear. Antagonistic
epistasis means that genomes with multiple mutations are fitter
than expected under a multiplicative model and, therefore,
may persist in the population for long periods of time before
being removed by selection. Therefore, the extinction of the
master genotype is only weakly affected by changes in �b

c. By
contrast, increasing synergistic epistasis means that the perni-
cious effect of multiple mutations goes beyond the multiplica-

tive expectation and thus that mutant genomes will be removed
from the population in a very efficient way by natural selection;
henceforth, only the master sequence survives and produces
progeny. This “population robustness” effect allows �b

c to in-
crease up to the point at which it is not possible anymore to
produce progeny of master sequences from a master template.

DISCUSSION

It is known that the mode of virus replication can change the
rates at which deleterious mutations occur. Depending on
whether genomes replicate according to a stamping machine
model or geometrically one may observe different fractions of
mutation-free genomes in the offspring. Luria’s SMR (25) im-
plies that the copies produced during the first round of repli-
cation will be the only templates for the generation of the
entire viral population. Experimental data suggest that �X174
replicates in such a way (7). However, in GR, as for example in
the case of phage T2 (25), all the synthesized copies during
infection serve as templates in the following generations. In-
termediate situations have also been described for other vi-
ruses like the phage �6 (4). As far as we know, previous
attempts to model virus replication have not integrated the
many features that we have explored here: mode of replication
involving genomic and antigenomic strands, topology of fitness
landscape, and mutation rates.

In this work we analyze a model describing the within-cell
replication of positive-sense RNA viruses that make no sub-
genomic mRNAs and encode a single polyprotein that is self-

c
b

c
b

FIG. 7. Mean critical mutation rate, �� b
c, as a function of the sign

and strength of epistasis, �. Each data point is the result of averaging
20 independent runs at equilibrium. Error bars represent standard
deviations. The population equilibrium values were obtained by aver-
aging the entire population at generation 20000 over 200 independent
runs. The vertical dotted line at a � of 1 corresponds to the additive
fitness landscape. (a) SMR; (b) GR.
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processed into structural and nonstructural components. We
develop a mathematical model using as key variables the
genomic and antigenomic RNA strands (considering mutation-
free and mutant genomes), the viral polyprotein, the transla-
tional complexes formed by viral RNA and cellular ribosomes,
and the mature virions. However, the model is defined in quite
general terms, so it can be easily modified to account for any
other genomic organization. Genetic heterogeneity is intro-
duced with a simplified quasispecies structure of the strands
considering master genomes (which have the higher fitness)
and the pool of deleterious mutants for each strand’s polarity,
which are grouped into a single variable denoting an average
mutant sequence different from the master one. We analyze a
Swetina-Schuster single-peak-fitness landscape (41), which as-
sumes that mutations have a large deleterious effect. We ex-
plore the critical mutation rate at which master sequences
disappear and the sensitivity to mutations of viral populations
replicating according to SMR or GR. We have shown that the
extinction of the master genome takes place at a higher mu-
tation rate for SMR, indicating that this strategy is less sensi-
tive to the effect of deleterious mutations. On the other hand,
GR displays a lower critical mutation rate, being more sensi-
tive to mutation. Consistently, we have also shown that mild
mutational effects tend to accumulate more in GR and that
under such a growth kinetics the population collapses at inter-
mediate mutation rates. However, the SMR strategy is less
sensitive to the accumulation of mild mutations, and viral
strands continue to exist at mutation rates that produce a
collapse of viral populations replicating geometrically.

A critical assumption of our model is that mutations have
two immediate effects. First, they preclude the right interaction
of mutant RNAs with ribosomes, thus fully preventing their
translation, and, second, they reduce their efficiency of inter-
action with the wild-type replicase, thus negatively affecting
their transcription. Certainly, with the exception of mutations
generating stop codons, severely modifying ribosomal entry
sites, or altering signals for replicase binding, it is assumed that
mutations will not necessarily have such a severe effect. By
removing these assumptions and moving to the proteins the
effect of mutations, we clearly increase the realism of our
models. However, this increase in realism will come with a cost
in terms of model complexity due to the necessity of incorpo-
rating interactions between mutant proteins and the four RNA
species, each interaction governed by a different set of param-
eters. On the one hand, complementation of defective ge-
nomes by wild-type proteins will increase the chances of mu-
tant genomes persisting in the viral population, effectively
reducing the strength of purifying selection (44). However, this
possibility does not represent a problem in our formulation
because we assume that mutant genotypes are replicated and
encapsidated only by wild-type proteins. On the other hand,
the presence of proteins with impaired functions will reduce
the replication/encapsidation efficiency of both wild-type and
mutant genomic RNAs. This second option has not been taken
into consideration in our current formulation and is the subject
of ongoing research. Finally, readers should keep in mind that
our model is an extension of the basic quasispecies model (12,
13) that has impacted the virology community so much. As in
Eigen’s original formulation, the fitness of mutant genotypes

does not depend on mutations affecting translated proteins but
is an inherent property of the RNA molecules.

To gain further insights into the replication process and the
genesis and fate of variability, we complement the analysis of
the mathematical model with a model of digital genomes which
considers the intrinsic noise due to small population sizes and
incorporates different fitness landscapes, including the above-
mentioned Swetina-Schuster single-peaked landscape plus the
more realistic and rugged additive and epistatic ones. This
model consistently shows that, for the SMR case, the critical
per-bit mutation rate is higher and the mutational load is lower
regardless of the fitness landscape used in the simulations.
However, the topology of the fitness landscapes does indeed
affect the results. The error threshold and the sharp transition
to error catastrophe predicted by the quasispecies theory (13)
only hold for the Swetina-Schuster landscape and for GR.
However, by assuming an SMR model, which should be the
norm for many viruses, even with this unrealistic fitness land-
scape the sharp transition disappears. Furthermore, neither
the additive nor the epistatic (on its two configurations) land-
scape shows such a sharp transition. Therefore, all the results
here shown suggest that the existence of a sudden error thresh-
old is very sensitive to the selection of the topology of the
fitness landscape and of the mode of replication and that, thus,
caution needs to be used in its application to real RNA virus
populations for which nothing is known about their fitness
landscapes or their mode of replication.

Recent results suggest that antagonistic epistasis should
dominate in viral genomes (2, 30, 34, 42). This being the case,
our results suggest that natural selection would have favored
viruses using an SMR mechanism, as a way of reducing muta-
tional load. With the combination of antagonistic epistasis and
SMR, the average number of mutations per genome will be
minimized and the critical mutation rate increased and also the
range of mutation rates at which SMR is still a better choice
than GR will be larger than for a synergistic landscape. It is
generally assumed that RNA viruses have mutation rates on
the order of magnitude of the inverse of genome length (11).
For the digital genomes used here, this would be equivalent to
a mutation rate of 1/32 (0.031). Even at this value, the combi-
nation of an antagonistic landscape and an SMR model pro-
vides the best solution. Antagonistic epistasis usually appears
in small genomes as a consequence of the lack of genetic
redundancy that also makes genomes extremely sensitive to the
effect of mutations (20, 32). Due to their parasitic lifestyle,
RNA viruses have been selected for fast replication at the cost
of an increased sensitivity to mutations. However, a pure SMR
strategy may minimize the impact of mutation accumulation
and preserve in the population mutation-free genomes at fre-
quencies that would not be possible by adopting a pure GR
strategy. In this sense, SMR may represent a mechanism of
genetic robustness.

Whether RNA viruses may have evolved some mechanisms
to buffer the deleterious effects of mutations has recently at-
tracted the attention of researchers (5, 27, 28, 31, 43). Robust-
ness is defined as a reduced sensitivity to perturbations affect-
ing phenotypic expression (8). RNA virus populations may owe
their robustness to several of the following mechanisms (re-
viewed in reference 16). First, the above-mentioned hypersen-
sitivity to mutational effects of individual genomes translates
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into robustness at the population level as a consequence of a
more efficient purifying selection that maintains average fitness
high (20). Second, high mutation rates characteristic of RNA
viruses may impose a strong selective pressure that pushes
virus populations toward regions of the sequence space where
the density of neutral mutations is higher (5, 31). Third, the
variable and random ploidy of viruses and frequent coinfection
events enhance the possibility of genetic complementation.
Fourth, segregation of segments during mixed infections and
homologous recombination are forms of sex that may re-create
mutation-free genomes (28). Fifth, cellular buffering mecha-
nisms (e.g., heat shock proteins) can be utilized by the viruses
to their own benefit as an extrinsic source of robustness. The
results reported in this study suggest that, in addition to these
five potential mechanisms, compacted genomes characterized
by an excess of antagonistic epistasis may benefit from an SMR
model because they will accumulate less deleterious mutations,
have a higher critical mutation rate, and suffer to a lesser
extent from the effect of deleterious mutations, that is, they will
have increased their robustness.
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the Spanish Ministerio de Ciencia e Innovación, grant BFU2006-
14819-CO2-01/BMC. We also acknowledge support from the Santa Fe
Institute.

REFERENCES

1. Ball, L. A. 2001. Replication strategies of RNA viruses, p. 105–118. In D. M.
Knipe, P. M. Howley, D. E. Griffin, R. A. Lamb, M. A. Martin, B. Roizman,
and S. E. Straus (ed.), Fields virology, 4th ed. Lippincott Williams & Wilkins,
Philadelphia, PA.

2. Bonhoeffer, S., C. Chappey, N. T. Parkin, J. M. Whitcomb, and C. J. Petro-
poulos. 2004. Evidence for positive epistasis in HIV-1. Science 306:1547–
1550.

3. Carrasco, P., F. de la Iglesia, and S. F. Elena. 2007. Distribution of fitness
and virulence effects caused by single-nucleotide substitutions in tobacco
etch virus. J. Virol. 81:12979–12984.

4. Chao, L., C. U. Rang, and L. E. Wong. 2002. Distribution of spontaneous
mutants and inferences about the replication mode of the RNA bacterio-
phage �6. J. Virol. 76:3276–3281.
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