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Synopsis
Neonatal brain injury is an important cause of death and disability, with pathways of oxidant stress,
inflammation, and excitotoxicity that lead to damage that progresses over a long period of time.
Therapies have classically targeted individual pathways during early phases of injury, but more recent
therapies such as growth factors may also enhance cell proliferation, differentiation and migration
over time. More recent evidence suggests combined therapy may optimize repair, decreasing cell
injury while increasing newly born cells.
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Causes of early brain injury include stroke, birth trauma, metabolic or genetic disorders, status
epilepticus, and asphyxial events. Perinatal asphyxia presents as encephalopathy, or hypoxic
ischemic encephalopathy, occurring in 3 to 5 in 1000 live births [1], while stroke studies
conservatively estimate an incidence of 1 in 4000 live births [2]. It is classically thought that
hypoxic-ischemic (HI) injury leads to periventricular white matter damage in premature
infants, while term infants develop cortical/subcortical lesions [3], but more recent evidence
suggests that this distinction in injury type may not be so clear [4]. While many suffering from
perinatal brain injury die during early life, the majority of survivors exhibit neurological deficits
that persist, such as cerebral palsy, mental retardation or epilepsy [5]. Aside from hypothermia,
no established therapies exist, and treatment and care for the sequelae of early brain injury
requires significant resources. Even after maximal care, there is often little improvement in an
individual's overall abilities, with long-term effects on the family, health care system, and
society [6].

A search for therapies that can prevent injury progression or enhance repair of the immature
brain continues, with the goal of improving long-term motor and cognitive outcomes. Because
the neonatal and adult brain do not respond to insults in the same manner, secondary to
differences in gene regulation during hypoxia and altered susceptibility to oxidative stress and
excitotoxicity, alternate therapies must be sought [7]. Damage occurs via multiple pathways,
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and repair occurs over a period of days to weeks, if not months [8]. While some therapies that
manipulate injury pathways show promise, not all neonates will benefit from treatment.
Damage may be so severe or prolonged that repair may not be possible, or survivors may be
particularly devastated [9].

The term “neuroprotection” is frequently used to describe the treatment response to brain
injury, but should we think only about protecting neurons? Optimizing therapy for early brain
injury requires capitalizing on multiple pathways that not only prevent cell death, but also
enhance cell growth, differentiation, and long term integration into neural networks. In addition
to neuronal damage, injury to non-neuronal cell types, such as oligodendrocytes and astrocytes,
adversely affects development and results in long-term morbidity. By targeting the response
to injury, the goal is to utilize selected pharmacotherapies to salvage cells that would otherwise
die, protect cells from becoming injured or at risk for death by increasing tolerance, and also
repair injured cells and enhance neurogenesis. Recent evidence suggests that therapies may be
combined to enhance the protective and reparative processes, and thought must be given to the
best time to administer these interventions. Clearly, because injury evolves over long periods
of time with different mechanistic phases, therapies will also need to be administered over long
periods of time, with different drugs aimed at these temporally evolving targets.

To maximize the efficacy of post-injury treatment, we need to identify quickly those neonates
that will benefit from these therapies. A variety of clinical predictors have been used to identify
those at risk for hypoxic brain injury. These include low Apgar scores, cord blood or early
arterial acidosis, and seizures or the presence of encephalopathy on examination [10]. Cerebral
function monitoring using bedside amplitude integrated EEG (aEEG) has provided an efficient
means for identifying encephalopathy or prolonged seizure [11], but it does not replace full
EEG [12]. Brain imaging with magnetic resonance imaging (MRI), including newer techniques
such as spectroscopy (MRS), diffusion weighted (DWI) and diffusion tensor imaging (DTI),
and volumetric analyses, provides the most accurate assessment of injury [13]. These
techniques allow determination of the severity and evolution of brain injury, with specific
injury patterns being associated with poor outcomes such as loss of gray/white differentiation,
watershed injury, and thalamic or basal ganglia injury [14]. However, early and sequential
imaging in neonates is often not possible because of scanner availability or difficulty in
transporting these critically ill patients. Biomarkers for oxidative stress and inflammation, or
indicators of injury to other organ systems, are currently being studied but are of equivocal
value in identifying early neonatal brain injury. Given all of the available evidence, a
combination of encephalopathic physical exam and seizures provides the best estimate of
infants that may be at risk for brain injury [10]. This review will focus on recent developments
in treating neonatal brain injury, as well as on combination therapy that will potentially enhance
repair and optimize long-term outcomes.

HYPOTHERMIA
Therapeutic hypothermia has now become standard of care for neonatal HI brain injury.
Multiple animal models of perinatal brain injury demonstrate histological and functional
benefit of early initiation of hypothermia [15-19] (Table 1). Brief hypothermia provides partial
neuroprotection [20,21], but prolonged moderate hypothermia to 32-34°C for 24-72 hours
results in sustained improvement in behavioral performance in both newborn and adult animals
[18,19]. The only complications noted are transient effects on heart rate and blood pressure
[22].

Studies of therapeutic hypothermia in human neonates show a reduction in mortality and long-
term neurodevelopmental disability at 12-24 months of age, with the most benefit seen in
moderately encephalopathic infants [9,23-25]. Sustained protection does depend on the dose
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of hypothermia, with maximum benefit obtained with cooling to 33-34°C, as well as on limited
delay to treatment initiation [18,26]. Mild hypothermia to this level appears to be well tolerated
without serious adverse effects if initiated within the first 6 hours of life [23,27-29]. Recent
evidence shows that there are no changes in arterial blood pressure [30], but there may be some
mild changes in blood gas parameters [31]. There also appears to be an increased risk of
pulmonary hypertension in cooled infants, although generally not severe [32]. In selective head
cooling, treatment benefits infants with moderate, but not severe, aEEG changes, improving
survival without severe neurodevelopmental deficits or an increase in complications [9]. In
addition to severity of encephalopathy, larger infants appear to be more responsive to
hypothermia and at more risk for injury if hyperthermic at any point [33,34]. In a second
multicenter trial, whole-body cooling to 33.5°C initiated within 6 hours and continued for 72
hours resulted in less death and severe disability at 18 to 22 months [35]. Whole-body cooling
may be more effective in reducing temperature in the deep brain structures [36], and may be
more feasible in certain clinical settings [37].

GROWTH FACTORS
The response of the immature brain to milder forms of injury can help us learn about
mechanisms the brain uses to protect itself from insults. Animals treated with sublethal stress
are protected from subsequent insults that would otherwise be deadly [38,39]. For example,
immature rats that are exposed to hypoxia have reduced brain injury following HI that occurs
24 hours after this preconditioning stimulus, with protection that persists 1-3 weeks later [40,
41]. It is possible that injury may only be delayed, and protection may not be permanent;
however, hypoxic preconditioning does provide long-lasting histological and functional
protection for up to 8 weeks after neonatal rodent HI [42].

Hypoxia-inducible factor 1α (HIF-1α) activation is a key modulator of the protection against
subsequent HI injury that is induced by hypoxic preconditioning [38,43]. HIF-1α is a neuronal
transcription factor that stabilizes during hypoxia by binding to HIF-1β. Following
stabilization, it produces a variety of downstream targets that are neuroprotective, including
insulin-like growth factor-1 (IGF-1), vascular endothelial growth factor (VEGF), and
erythropoietin (EPO).

EPO is a 34-kDa glycoprotein that was originally identified for its role in erythropoiesis, but
has since been found to have a variety of other roles. Functions include modulation of the
inflammatory and immune responses [44], vasogenic and proangiogenic effects through its
interaction with VEGF [45,46], as well as effects on central nervous system (CNS)
development and repair. EPO and EPO receptor are expressed by a variety of different cell
types in the CNS, with changing patterns during development [47]. EPO plays a vital role in
neural differentiation and neurogenesis early in development, promoting neurogenesis in vitro
and in vivo [48].

Increasing evidence suggests that exogenously administered EPO has a protective effect in a
variety of different models of brain injury. Post-injury treatment protocols in newborn rodents
have demonstrated both short- and long-term histological and behavioral improvement [49].
A single dose of EPO given immediately after neonatal HI injury in rats significantly reduces
infarct volume and improves long-term spatial memory [50]. Single- and multiple-dose
treatment regimens of EPO following neonatal focal ischemic stroke in rats reduce infarct
volume [51] and improve both short-term sensorimotor [52] and long-term cognitive [53]
outcomes, but there may be more long-lasting behavioral benefit in female rats [54]. EPO
treatment initiated 24 hours after neonatal HI also decreases brain injury [55]. In addition, EPO
enhances neurogenesis and directs multipotential neural stem cells toward a neuronal cell fate
[45,48,56]. Following transient ischemic stroke, there is a temporary precursor-cell
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proliferation in the rodent subventricular zone (SVZ), a source of endogenous precursor cells
throughout the life of the rodent, with this precursor-cell proliferation and differentiation
favoring gliogenesis [57]. EPO has been shown to enhance neurogenesis in vivo in the SVZ
following stroke in the adult rat [45]. Neurogenesis has also been demonstrated following EPO
treatment, with an increase in newly generated cells from precursors [45,48,58] and possibly
also an effect on cell fate commitment in vitro [45,48].

In humans, EPO is safely used for treatment of anemia in premature infants [59]. EPO for
neuroprotection is given in much higher doses (1000-5000 U/kg/dose) than for anemia, to
enable crossing of the blood-brain barrier [52,60,61], with unknown pharmacokinetics in
humans. Recently, extremely low birthweight infants tolerated doses between 500 and 2500
U/kg/dose [62] (Table 2), and studies are ongoing.

VEGF is a regulator of angiogenesis that is also involved in neuronal cell proliferation and
migration [63]. The endothelial microenvironment establishes a vascular niche that promotes
survival and proliferation of progenitor cells, events which are tightly coordinated with
angiogenesis [64]. VEGF-A is the most important member of a family of growth factors that
also includes placental growth factor (PLGF) and VEGFs B, C, and D. VEGF-A is expressed
in cortical neurons during early development, switching to mature glial cells near vessels during
maturation. Following exposure to hypoxia, there is increased neuronal and glial expression
of VEGF-A [65], directing vascularization and stimulating proliferation of neuronal and non-
neuronal cell types [66-68]. VEGF also has chemotactic effects on neurogenic zones in the
brain [69], increasing migration of stem cells during anoxia [70,71]. VEGF knockout mice
have severe impairments in vascularization, neuronal migration and survival [72].

In adult ischemia models, intravenous VEGF administered 1 hour after insult increases blood-
brain barrier leakage and lesion size, but late administration 48 hours after ischemia enhances
angiogenesis and functional performance [73]. Both topical and intracerebroventricular
injection reduced infarct volume [74,75], and benefit has been shown in neurodegenerative
and traumatic models of injury as well. VEGF-overexpressing mice also show benefit from
direct neuroprotection resulting from inhibition of apoptotic pathways [63].

Other trophic factors have also shown promise, but given their role in normal
neurodevelopment the effects of treatment are not known. IGF-1 is important for growth and
maturation of the fetal brain as well as differentiation of oligodendrocyte precursors [76]. IGF-1
has prosurvival properties that can prevent perinatal hypoxic and excitotoxic injury [77,78],
and is also effective after intranasal administration [79]. Brain-derived neurotrophic factor
(BDNF) is a neurotrophin that also provides neuroprotection in neonatal HI [80-83]. BDNF
prevents spatial learning and memory impairments after injury, but its effectiveness is limited
by the stage of development [82,83]. While protective in mice when given on postnatal day 5
(P5), BDNF has no effect at later time points and actually exacerbates excitotoxicity if given
on the day of birth [82].

STEM CELL THERAPY
Neural stem cells (NSCs) are multi-potent precursors that self renew and retain the ability to
differentiate into a variety of neuronal and non-neuronal cell types in the CNS. They reside in
neurogenic zones throughout life, such as the SVZ and the dentate gyrus of the hippocampus
in rodents, and are responsible for maintaining baseline turnover of cells as well as replacing
injured cells through migration to penumbral tissue after injury. NSC transplantation has shown
potential as a therapeutic strategy in adult animal models of brain injury. Implanted cells
integrate into injured tissue [84], decreasing volume loss [85-87] and improving behavioral
outcomes [88,89]. In neonatal models, intraventricular implantation of NSCs after HI results
in their migration to injured areas [86,87] and differentiation into neurons, astrocytes,
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oligodendrocytes, and undifferentiated progenitors. These cells promote regeneration,
angiogenesis and neuronal cell survival in both rodent and primate models, and non-neuronal
progeny inhibit inflammation and scar formation [90,91]. While complications of implantation
have not been noted in these models, efficacy does depend on time of implantation, and the
therapeutic window is not known. More recent technology enables labeling of stem cells, which
can then be tracked from the site of implantation through their migratory path into the ischemic
tissue [92-95], making their identification and eventual outcome in humans possible.

ANTIOXIDANTS
Oxidative stress is an important component of early injury to the neonatal brain [96], resulting
from the excess formation of free radicals (FR) [reactive oxygen species (ROS) and reactive
nitrogen species (RNS)] under pathological conditions. These include superoxide anion
(O2

·−), hydroxyl radical (OH·), singlet oxygen (1O2
·) and hydrogen peroxide (H2O2) [97,98].

Antioxidant defenses such as superoxide dismutase (SOD), glutathione peroxidase (GPx),
catalase, and compounds such as vitamins A, C, E, beta carotene, glutathione and ubiquinones
scavenge FRs under normal conditions. Damage occurs when there is an imbalance between
their generation and uptake [97]. Following HI, there is an increase in superoxide and hydroxyl
radical production and rapid depletion of antioxidant stores, which leads to cell membrane
damage, excitotoxic energy depletion, cytosolic calcium accumulation, and activation of pro-
apoptotic genes that cause damage to cellular components and result in cell death [99].

The neonatal brain has a high rate of oxygen consumption and low concentration of anti-
oxidants, making it susceptible to damage [100,101]. In the rat, total GPx activity increases
between embryonic day 18 (E18) and postnatal day 1 (P1), but is still at lower levels than that
seen in the mature brain [102]. In humans, mature oligodendrocytes carry increased antioxidant
enzymes compared with the oligodendrocyte precursors present in the immature brain, which
may partially explain the susceptibility of premature infants to white matter damage
[103-105].

In an effort to reduce oxidative damage to the neonate, a number of strategies have been
employed including ROS scavengers, lipid peroxidation inhibitors, FR reducers, and nitric
oxide synthase inhibitors. Nitric oxide synthase (NOS) catalyzes the synthesis of nitric oxide
(NO) from the conversion of arginine to citrulline [106]. NO plays an important role in
pulmonary, systemic, and cerebral vasodilation, and is constitutively produced in response to
increased intracellular calcium by endothelial nitric oxide synthase (eNOS) in endothelial cells
and by neuronal nitric oxide synthase (nNOS) in astrocytes and neurons. An inducible isoform
of nitric oxide synthase (iNOS) also produces NO in response to cellular stress, which initiates
neuronal damage when converted to secondary reactive nitrogen species that facilitate nitration
and nitrosylation reactions [107]. Early endothelial NO is protective by maintaining blood
flow, but early neuronal NO and late inducible NO promote cell death [108]. Brain iNOS is
induced in multiple cell types during upregulation of the pro-inflammatory pathway after brain
injury [109], modifying binding to NMDA receptors and enhancing excitotoxicity [110].

Selective inhibition of nNOS or iNOS has shown potential as a neuroprotective strategy
[111]. Regions expressing nNOS correspond to those that are susceptible to excitoxicity,
expressing NMDA receptors in vivo and in vitro [112-114]. Destruction of neurons containing
nNOS or targeted disruption of the nNOS gene protects animals from HI injury [115] [113],
but nonspecific blockade of nNOS and eNOS is not protective [116]. There have been few
studies in human newborns examining cerebral NO production. Cerebrospinal fluid (CSF) NO
levels increase with severity of HI encephalopathy at 24 to 72 hours after asphyxia [117], with
increased NO and nitrotyrosine levels in the spinal cord as well [118]. Initial results in
premature infants treated with inhaled NO for prevention of bronchopulmonary dysplasia show
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reductions in ultrasound-diagnosed brain injury and improvements in neurodevelopmental
outcomes at 2 years of age, but long-term results are still pending [119,120].

Several other antioxidant strategies that either block FR production or increase antioxidant
defenses are being studied. Melatonin is an indoleamine that is formed in higher quantities in
adults and functions as a direct scavenger of ROS and NO. It has been found to provide long-
lasting neuroprotection in experimental HI and focal cerebral ischemic injury [121,122], and
human neonates treated with melatonin were also found to have decreased pro-inflammatory
cytokines [123,124]. Allopurinol has mixed effects that have shown promise in animal and
human studies. Xanthine oxidase-derived superoxide and H2O2 react with NO to form
damaging RNS. Allopurinol reduces FR production by inhibiting xanthine oxidase while also
scavenging hydroxyl radicals. High-dose allopurinol given 15 minutes after HI in P7 rats
decreases acute edema and long-term infarct volume [125]. Short-term benefits have also been
seen in neonates undergoing cardiac surgery for hypoplastic left heart syndrome [126]. Early
allopurinol in asphyxiated infants improved short-term neurodevelopmental outcomes and
decreased serum NO levels after administration; however, there may be only a brief window
for benefit, as no improvement in long-term outcomes was seen with later treatment after birth
asphyxia [127]. Deferoxamine (DFO) is an iron chelator that decreases FR production by
binding with iron and decreasing the production of OH· that occurs via the Fenton reaction
[128,129], while also stabilizing HIF-1α to produce its downstream products VEGF and EPO
[128]. DFO is protective during exposure to H2O2 or excitotoxicity in vitro [130], and in animal
models of HI and transient ischemic stroke in vivo [128,131,132]. N-acetylcysteine (NAC) is
a glutathione precursor and FR scavenger that attenuates lipopolysaccharide-induced white
matter injury in newborn rats [133,134], but results for other antioxidant compounds, such as
vitamin E, have been inconclusive [135].

EXCITOTOXICITY
Glutamate plays an important role in progenitor cell proliferation, differentiation, migration
and survival in the developing brain. Excitotoxicity refers to excessive glutamatergic activation
that leads to cell injury and death [136]. Glutamate accumulates in the brain after HI [137]
from a variety of causes, including vesicular release [138] and reversal of glutamate
transporters [139,140]. Glutamatergic receptors include N-methyl-D-aspartate (NMDA),
alpha-3-amino-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), and kainate. NMDA
receptor activation, while important for synaptic plasticity [141], can increase intracellulular
calcium and pro-apoptotic pathways via caspase-3 activation if overactivated [142,143].
Excitotoxicity has long been known to play a part in the progression of HI brain injury, and
differences in receptor expression contribute to the vulnerability of the developing brain
[144]. NMDA, as well as AMPA and kainate, receptors on oligodendrocyte precursors play a
large part in their susceptibility to damage in premature HI-induced white matter injury
[145-147].

There has long been a search for agents that decrease brain injury by decreasing excitotoxicity.
Dizocilipine (MK801) is a noncompetitive NMDA receptor antagonist that has been studied
in humans, but is poorly tolerated and has also been shown to increase apoptosis and decrease
neuronal migration in animal models [148]. Memantine is a low affinity noncompetitive
NMDA receptor antagonist that is well tolerated in adults for Alzheimer's-type dementia
[149]. Post-HI treatment with memantine attenuates acute white matter injury in P6 rats,
resulting in long-term histological improvement in vivo and restoring neuronal migration in
vitro [150-152]. Another method to decrease excitotoxicity is the use of topiramate, an AMPA-
kainate receptor antagonist that is an FDA-approved anti-epileptic for patients greater than 2
years of age. It has been shown to protect newborn rodents from excitotoxic brain lesions
[153], reducing brain damage and cognitive impairment when administered within two hours
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of the insult [154]. An IV preparation of topiramate does not yet exist for human use, but this
treatment shows potential as a therapy for early newborn seizure and injury. Cannabinoids have
also shown promise as a treatment for neurodegenerative disorders [155] and in adult models
of ischemia [156] or trauma [157]. They are involved in control of synaptic transmission, and
their receptors (CB1 and CB2) are expressed on neurons and glia [158,159]. In the immature
brain, cannabinoids have effects on excitotoxic lesions [160], and the agonist WIN 55,212-2
reduces short-term brain injury when administered after neonatal HI [161].

Magnesium sulfate has shown some benefit in preventing white matter damage in animal
models [162-164], and one possible mechanism of its neuroprotection is the blockade of
NMDA receptors [165]. In a multicenter clinical trial of mothers treated with magnesium who
were at risk for preterm delivery, no perinatal side effects were seen and there was some benefit
in the neurodevelopment of survivors [166]. However, magnesium administered to asphyxiated
term neonates did not result in improvements in aEEG patterns, and when given in larger doses
was associated with profound hypotension [167,168].

ANTI-INFLAMMATORY THERAPY
Maternal infection is a known risk factor for white matter damage and poor outcomes, such as
cerebral palsy [169-171]. The inflammatory response and cytokine production that
accompanies infection may play a large role in cell damage and loss [172]. Local microglia
are activated early and produce pro-inflammatory cytokines such as TNF-α, IL-1β and IL-6,
as well as glutamate, FRs, and NO. Systemic administration of these cytokines increases
excitotoxic lesions [173], while therapies that block microglial activation and cytokine release
protect the brain from excitotoxic damage [174].

Minocycline is a tetracycline derivative that crosses the blood-brain barrier and has anti-
inflammatory effects, including decreasing microglial activation and caspase-3 expression
[175,176], lipid peroxidation [177], and other pro-inflammatory activity [178] while increasing
anti-apoptotic gene expression [179,180]. Minocycline has shown promise in a number of
animal models of neurodegenerative or ischemic disease [175,181-185]. In the neonatal brain,
minocycline appears to decrease tissue damage and caspase-3 activation in rodents when given
immediately before or after injury, but results are inconsistent [186-188]. Low- and high-dose
regimens were effective in reducing short-term HI-induced inflammation, protecting
developing oligodendrocytes [188] and myelin content in neonatal rats [189], but this effect
was only transient in another study of neonatal rodent stroke [187]. Delayed therapy was found
to decrease TNF-α and matrix metalloproteinase MMP-12, but efficacy was lost when
treatment was extended for a week after stroke [190]. These effects also appear to be species
dependent, with an increase in injury in developing C57B1/6 mice [191].

CELL DEATH INHIBITORS
Apoptosis is a critical component of normal brain development. While necrosis plays a major
role in early neuronal death in both the immature and mature brain following injury [192], a
spectrum of cell death that includes apoptosis occurs within the first 24 hours following
neonatal HI [193], and may result in heterogeneous responses to anti-apoptotic therapies
[194]. It is also probable that apoptosis and cleavage and activation of caspase-3 are responsible
for more of the cell death that occurs in delayed phases of injury and neurodegeneration
[195].

Specific and non-specific inhibition of caspases or cysteine proteases, which are highly
activated after HI, has been attempted with some success [196-199]. For example, calpain or
caspase-3 inhibitors such as MDL 28710 and M826 protect neonatal rats after HI [197,200].
Pretreatment with the hormone 17β-estradiol is neuroprotective in immature rats, and appears
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to work through both anti-apoptotic and FR scavenging pathways [201]. In addition, the nuclear
enzyme poly (ADP-ribose) polymerase (PARP) is activated during stress and enables DNA
repair; however, the PARP-1 isoform also contributes to ischemic neuronal injury by depleting
energy stores and activating microglia, leading to cell death. PARP-1 is more abundant in the
immature brain, and its blockade protects against excitotoxicity and ischemic injury [202]. The
PARP-1 inhibitor 3-aminobenzamide reduces injury after focal ischemia in P7 rats [203], but
PARP-1 blockade appears to protect males preferentially [202].

COMBINATION THERAPY
Single therapy that attacks any of the aforementioned injury pathways often results in only
mild improvement. For example, therapeutics targeting apoptosis may prevent delayed cell
death, but would not effect earlier necrotic and excitotoxic injury. Hypothermia has become
the standard of care in many institutions since showing benefit in moderately encephalopathic
newborns; however, it does not completely protect or repair an injured brain, and benefits may
not necessarily be long lasting [204,205], so the search for adjuvant therapies continues.
Combinatorial therapy may provide more long-lasting neuroprotection, salvaging the brain
from severe injury and deficits while also enhancing repair and regeneration, hopefully
providing additive, if not synergistic, protection.

Xenon is approved for use as a general anesthetic in Europe and has shown promise as a
protective agent. It is an NMDA antagonist, preventing progression of excitotoxic damage. It
appears to be superior to other NMDA antagonists, possibly through inhibition of AMPA and
kainate receptors, reduction of neurotransmitter release, or effects on other ion channels
[206-208]. Combination xenon and hypothermia initiated 4 hours after neonatal HI provided
synergistic histological and functional protection when evaluated at 30 days after injury
[209]. Hypothermia does reduce glutamate and glycine release [210], and NMDA receptor
antagonism may explain these effects. More recently, an additive effect was shown after HI in
P7 rats that were cooled to 32°C and received 50% xenon, with improvement in long-term
histology and functional performance that exceeded the individual benefit of either [211]. More
extensive studies on xenon use in human neonates are necessary.

N-acetylcysteine (NAC) is a medication approved for neonates that is a scavenger of oxygen
radicals and restores intracellular glutathione levels, attenuating reperfusion injury and
decreasing inflammation and NO production in adult models of stroke [212,213]. Adding NAC
therapy to systemic hypothermia reduced brain volume loss at both 2 and 4 weeks after neonatal
rodent HI, with increased myelin expression and improved reflexes [214]. Inhibition of
inflammation with MK-801 has also been effective when combined with hypothermia in
neonatal rats post HI injury [215]. In P7 rats who underwent HI followed by early topiramate
and delayed hypothermia, improved short-term histology and function was seen [216]. The
inhibition of inflammation may provide a window for protection if hypothermia is delayed,
which is possible given difficulty in initiation of cooling if infants are born at an outside hospital
or transport is delayed.

CONCLUSION
Most studies have focused on singular mechanisms of injury, such as oxidative stress,
inflammation, and excitotoxicity. More recent evidence suggests that injury occurs over long
periods of time and that therapies may need to be administered over much longer periods than
have been previously entertained. While hypothermia and single pharmacotherapies show
promise, combined therapy may be necessary to increase the therapeutic time window for
protection and repair, making recovery possible.
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Table 1

Hypothermia Studies (discussed in text)
Study Species Type of

cooling Primary outcome

Laptook, et al., 1994. pig whole body Decreased histological/behavioral impairment
Towfigh, et al., 1994. rat head Improved histology
Thoresen, et al., 1995 pig whole body Improved MRI measures
Gunn, et al., 1997. ovine head Improved EEG/histology
Laptook, et al., 1997 pig whole body Less encephalopathy/histological damage
Bona, et al., 1998 rat whole body Improved histology/no change in sensorimotor function
Gunn, et al., 1998 human head Safe for mild systemic/moderate head cooling
Azzopardi, et al., 2000 human whole body Only mild abnormalities in VS seen with cooling
Thoresen & Whitelaw, 2000 human head Non-hazardous changes in HR/BP with cooling
Eicher, et al., 2005 human whole body Mild-mod abnormalities with cooling, improved outcomes
Gluckman, et al., 2005 human head Beneficial in infants with less severe EEG changes

Shankaran, et al., 2005 human head Reduced death/disability, trend toward improvement at
18-22 months

Wyatt, et al., 2007 human head Less death/disability at 18 months
Battin, et al., 2009 human whole body No effect on mean arterial blood pressure
Sarkar, et al., 2009 human both Pulmonary dysfunction common but not severe
Robertson, et al., 2009 human whole body Demonstrates ability to cool in low resource setting
BP=blood pressure; EEG=electroencephalogram; HR=heart rate; mod=moderate; MRI=magnetic resonance imaging; VS=vital signs

Clin Perinatol. Author manuscript; available in PMC 2010 December 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Gonzalez and Ferriero Page 21

Table 2

Human Studies of Neuroprotectants (discussed in text)
Treatment Mechanism Study Primary outcome
Hypothermia multiple (see Table 1)
EPO growth factor Juul, et al., 2008 High dose EPO safe in ELBW infants

Inhaled Nitric Oxide antioxidant Schreiber, et al., 2003 Lower incidence of severe IVH and PVL
Ballard, et al., 2006 Decreased neurodevelopmental disability

Melatonin antioxidant
Gitto, et al., 2004 Decreased pro-inflammatory markers,

nitrates/nitrites

Gitto, et al., 2005 Reduced pro-inflammatory cytokines,
improved clinical outcome

Allopurinol antioxidant Clancy, et al., 2001 Neurocardiac protection in HLHS infants
Benders, et al., 2006 Postnatal treatment had no effect

Magnesium Sulfate ↓ excitotoxicity

Levene, et al., 2002 Increased Mg dose associated with
hypotension

Groenendaal, et al., 2002 No positive effect on aEEG patterns

Crowther, et al., 2003 May improve pediatric outcomes when given
to mothers during pregnancy

Khashaba, et al., 2006 No effect on post-natal level of EAA
aEEG=amplitude integrated EEG; EAA=excitatory amino acids; ELBW=extremely low birth weight; HLHS=hypoplastic left heart syndrome;
IVH=intraventricular hemorrhage; Mg=magnesium; PVL=periventricular leukomalacia
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