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Human immunodeficiency virus type 1 (HIV-1) genetic diversity, due to its high evolutionary rate, has long
been identified as a main cause of problems in the development of an efficient HIV-1 vaccine. However, little
is known about differences in evolutionary rate between different subtypes. In this study, we collected repre-
sentative samples of the main epidemic subtypes and circulating recombinant forms (CRFs), namely, sub-
subtype A1, subtypes B, C, D, and G, and CRFs 01_AE and 02_AG. We analyzed separate data sets for pol and
env. We performed a Bayesian Markov chain Monte Carlo relaxed-clock phylogenetic analysis and applied a
codon model to the resulting phylogenetic trees to estimate nonsynonymous (dN) and synonymous (dS) rates
along each and every branch. We found important differences in the evolutionary rates of the different subtypes.
These are due to differences not only in the dN rate but also in the dS rate, varying in roughly similar ways,
indicating that these differences are caused by both different selective pressures (for dN rate) and the
replication dynamics (for dS rate) (i.e., mutation rate or generation time) of the strains. CRF02_AG and
subtype G had higher rates, while subtype D had lower dN and dS rates than the other subtypes. The dN/dS
ratio estimates were also different, especially for the env gene, with subtype G showing the lowest dN/dS ratio
of all subtypes.

Human immunodeficiency virus type 1 (HIV-1) strains are
classified into three different groups (M, N, and O) that arose
from separate cross-species transmissions. While group N and
O infections are largely restricted to Central Africa (essentially
Cameroon), the worldwide pandemic is caused only by HIV-1
group M strains. Group M is further classified into nine dif-
ferent subtypes (A, B, C, D, F, G, H, J, and K), which in the
cases of subtypes A and F can be divided further into sub-
subtypes. Forty-three circulating recombinant forms (CRFs)
have been reported to be circulating worldwide (25; Los Alamos
National Laboratory Database [http://www.hiv.lanl.gov/content
/index]).

Since subtypes at least partly originated from founder effects
(22), it is not surprising that HIV-1 genetic forms show differ-
ent geographical distributions. Subtype B initially generated
the epidemic in North America, subsequently spread to Eu-
rope, and is still the predominant subtype in these regions (10,
24). However, the largest number of HIV-1 infections can be
attributed to subtype C (�50%), with most of them occurring
in southern Africa and India. CRF01_AE prevails mostly in
Asia, while subtypes D, G, and CRF02_AG cause the largest
numbers of infections in North and West Africa. In West
Central Africa, the geographic region where the HIV-1 pan-
demic originated, most genetic forms of HIV-1 can be found
(11, 12; http://www.hiv.lanl.gov/content/index).

HIV-1 is a lentivirus characterized by an extremely high
degree of genetic diversity. This is the result of an extremely

high mutation rate, caused by (i) the high error rate of reverse
transcriptase (RT) (�0.2 error per genome per replication
cycle), (ii) the high replication rate (viral generation time of 2.5
days, producing 1010 to 1012 virions per day), (iii) a high re-
combination rate of �42.4% in one round of replication with
markers spaced 1 kb apart, (iv) large viral populations, (v)
considerable natural selection from the immune system, and
(vi) drug pressure (19, 22, 23).

The mutation rates of genes that encode structural enzymes,
such as protease, RT, and integrase, are expected to present an
evolutionary rate that reflects the errors generated during re-
verse transcription, functional constraints, and cellular immune
selective pressure. Although drug selective pressure causes
resistance mutations to be fixed rapidly in these genomic re-
gions, this effect should be mostly absent in the viral evolution-
ary history of drug-naïve patients.

On the other hand, the evolutionary rate of env, which is the
main target of the host immune system, is expected to also
present the effect of the humoral immune response.

Although evolutionary rates will reflect selective pressure to
some extent, a more direct measure of selective pressure is the
ratio of nonsynonymous substitutions (dN) to synonymous sub-
stitutions (dS). This measure has been used previously to com-
pare the evolution of different HIV-1 lineages. Different levels
of selective pressure were found between subtypes, but these
were not consistent between different regions of env (4). HIV-2
was found to be under less selective pressure than HIV-1 (4).

Absolute dS and dN rates combine the information on mu-
tation rates as well as selective pressure. While synonymous
changes reflect mutation rates and generation times, nonsyn-
onymous changes are also affected by (immune) selective pres-
sure. When this new approach was applied to HIV-1 evolution,
Lemey et al. found that dS rates predict disease progression for
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HIV-1, and this may also be extrapolated to differences be-
tween HIV-1 and HIV-2 (15).

In this paper, we compare the evolutionary dynamics of
different HIV-1 subtypes at the population level in an attempt
to understand how the dN and dS rates contribute to the
differences in their evolutionary rates. A better characteriza-
tion of these factors should improve our understanding of the
genetic diversity of HIV and contribute to better vaccination
strategies and potentially a better understanding of differences
between subtypes in the development of resistance under drug
selective pressure.

MATERIALS AND METHODS

Data collection and subtyping. Sequences were collected from the Los Alamos
HIV-1 database. Data sets for seven different subtypes/CRFs were obtained,
representative of CRF01_AE, CRF02_AG, subtype A1, subtype B, subtype C,
subtype D, and subtype G. These lineages represent the most important epi-
demic strains. For the remaining subtypes, not enough data were found in public
databases. For each subtype, two data sets were collected, one for the pol gene
(bp 2,500 to 3,300 of the HXB2 sequence) and another for the env gene (bp 6,500
to 7,500 of the HXB2 sequence). There were not enough publicly available
sequences to form a representative sample of gag. Additionally, because a con-
siderable number of full-genome subtype B and C sequences are publicly avail-
able, we analyzed two data sets for these subtypes, derived from full-genome
sequences. These data sets allowed us to exclude the effect of sampling bias
because we could compare the results from the pol and env genomic regions
originating from the same full-genome sequences, as opposed to the previously
described data sets, where pol and env were sampled independently from each
other. The selection of the data set for every subtype aimed at the widest range
of collection years and geographic distribution of the samples. In this way, we
attempted to avoid a limitation of our sample to certain local epidemics and host
factors not representative of that subtype. Furthermore, previous studies have
shown the importance of the range of sampling times for the estimation of
evolutionary parameters. A short interval of sampling times naturally provides
less information about the average rate during that interval than does a long
interval (30). Sequences sampled from the same individuals and sequences with
drug resistance mutations in pol were excluded from the data sets.

The subtype assigned to each sequence by the Los Alamos database was
confirmed using the REGA subtyping tool v2 (REGAst) (5). REGAst analyzes
the phylogenetic signal of each sequence by using quartet puzzling (29) and
performs a phylogenetic analysis combining neighbor-joining phylogenetic tree
construction using PAUP (32) and the bootscanning analysis method (28). Se-
quences that were not unambiguously classified by REGAst or that were as-
signed to a different subtype from the one specified in the Los Alamos database
were removed from the data set.

The alignments of all the data sets were generated with Clustal X (33). When
editing the alignment, we kept the coding information for each sequence, using
the HXB2 coding sequence for the same genomic region as a reference. Inser-
tions relative to the HXB2 reference, as well as ambiguous and gapped regions,
were removed from the alignment (1).

Estimation of phylogenetic trees. We used Bayesian Markov chain Monte
Carlo (MCMC) analysis, as implemented in BEAST (8), to estimate the phylo-
genetic trees that best describe the evolutionary history of each data set. We used
the HKY85 nucleotide substitution model, with four-category gamma-distrib-
uted rate variation among sites and two partitions in the codon positions (first
plus second codons and third codon), which has previously been shown to be the
best-performing nucleotide model for most virus data sets (31). A relaxed clock
with an uncorrelated log normally distributed prior allowed us to get a posterior
distribution of trees, with branch lengths in time units and substitution rate units
(6). A Bayesian skyline plot (BSP) population growth model with 10 grouped
intervals—intervals are separated by coalescent events—was used (9). Since it
allows the effective population size to vary between coalescent events, this model
avoids making restrictive prior assumptions on the demographic history by fitting
a wide range of demographic scenarios to the data (9). MCMC analysis was run
long enough for convergence to be obtained, typically for 100 � 106 generations.
To analyze convergence and stability, we used Tracer v1.3 software (http://tree
.bio.ed.ac.uk/software/tracer/), which allowed us to visualize the posterior distri-
bution for each parameter and provided an estimate of the effective sample size,
a measure of the number of “effectively independent” samples in each run, as
defined by Drummond et al. (7).

The most recent dating of the origin of HIV-1 group M refers to 1908 (1884–
1921) (35). We used this date as a calibrator for our results (as opposed to
specifying a prior)—the age for the root height of our analyzed subtypes should
always be younger than the origin of group M. However, since subtype D results
presented a date for the root height that was older than group M, the analysis was
performed by specifying a normal prior for the tMRCA (time of the most recent
common ancestor) of subtype D as 1950, with a standard deviation of 5 years
(95% confidence interval [CI], �1940 to 1960), consistent with previous dating
studies (14, 27, 35, 36). Since convergence was still not achieved for the pol data
set, we used the less parameter-rich exponential-growth demographic model in
addition to the previously used BSP model.

Estimation of dS and dN rates. Lemey et al. recently developed a method to
estimate absolute dS and dN rates in a Bayesian framework (15). In this method,
the contributions of dN and dS rates to the overall substitution rate are estimated
based on the posterior substitution rates estimated by MCMC analysis. Their
estimation is performed using a local codon model, as implemented in HYPHY
(15, 21). We used the MG94xHKY85 codon model (20), an extension of the
classical MG94 model with estimation of equilibrium codon frequencies, using
nucleotide frequencies specific to each codon position. This method was applied
to a sample of 200 trees taken from the posterior distribution of trees estimated
with BEAST. Codon model analysis decomposes the expected number of sub-
stitutions along each branch into a dS and a dN component. Based on the branch
lengths in time units, substitution rates can be obtained separately for dS and dN.
Given that the substitution rate for the external branches of the tree is an
accumulation of substitutions and possible deleterious mutations, we estimated
the substitution rate based only on the estimate for the internal branches of the
tree. This estimate resulted in a better agreement between the dS rates for pol
and env. Since the dS rate reflects the mutation rate and generation time, but not
selective pressure, we assumed that the dS estimates based on pol and env should
be very similar.

Although average dN/dS ratios can also be obtained using this approach, the
use of a local model leads to very large posterior distributions (data not shown).
Despite the fact that the dN and dS rates were calculated using the local model,
the values presented here were estimated based on the ratio between the global
dN and dS rates of each of the 200 trees, therefore making an assumption that
the dN/dS ratio is shared between branches. The presented errors of the dN/dS
estimations are therefore a CI estimation, not a posterior credibility interval, as
presented in the absolute rates. We report dN/dS estimates by using mean dN
and dS rates for all of the branches of each tree (see Fig. 3a) and mean dN and
dS rates only for the internal branches of each tree (see Fig. 3b).

Statistics. P values were calculated by counting the number of times that one
estimate was higher than the other for each of the 200 trees. This value, divided
by 200 and multiplied by 100, is considered the probability that the two compared
parameters come from different distributions and therefore are significantly
different. In this analysis, we performed 36 multiple pairwise comparisons. Cor-
recting for multiple testing is an important approach when multiple pairwise
comparisons are performed. However, on the other hand, it also reduces the
statistical power of the analysis. Therefore, while we still report P values of �0.05
as significant in our results, we stress that in using the Bonferroni correction, only
P values of �0.00138 should be considered significant.

RESULTS

Data sets. The curated data sets that were used for the
analysis are summarized in Table 1. The data sets covered a
minimum sampling time range of 11 years (subtype G) and a
maximum time range of 23 years (subtype B env) (Table 1).
The samples were collected from diverse geographic regions,
with the objective of covering all of the subepidemics of each
subtype.

tMRCAs. The tMRCA for each subtype was estimated, and
the results are summarized in Table 2. By using the BSP de-
mographic model, we made no assumptions on the shape of
demographic growth of the population. For the pol data set of
subtype D, convergence and stability of our run were not
achieved using the BSP demographic model. Since the expo-
nential-growth demographic model has previously been shown
to reliably explain the demographic history of HIV-1 (24, 26,
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34), we used this model as an alternative and were then able to
achieve convergence and stability of that run.

Substitution rate. Since external branches of the tree
present an excess mutation rate that does not necessarily re-
flect the substitution rate of the virus, and consistently with the
next sections (also see Materials and Methods), for our statis-
tics we considered only the internal branches of the tree. When
analyzing the posterior distribution of the substitution rates in
the internal branches of the tree, we found particular differ-
ences between different data sets. CRF02_AG had a higher
mean substitution rate than all other subtypes in both pol and
env, while subtype D had lower rates in pol and in env (along
with subtype B in pol). Subtype G showed a similar pattern to
that for CRF02_AG; however, probably due to the smaller
number of samples and time span in this data set, the 95% CI
was very broad (Fig. 1).

The differences in mean substitution rate between subtypes
can be due to differences in the generation time, mutation rate,
or (immune) selective pressure. While the first two factors
should mostly be reflected in the dS rate, the latter should
impact the dN rate. Therefore, we further explored the con-
tributions of synonymous and nonsynonymous substitutions to
the differences in the substitution rates.

dS rates. We applied this method to our data set and ana-
lyzed the dS and dN rates of each subtype for pol and env.
Assuming that the dS rate is mostly a product of mutation rate
and generation time, it is reasonable to assume that pol and env
should result in similar dS rate estimates for each data set. This
assumption was violated when we inferred a dS rate for all
branches in the tree (data not shown). Because terminal branches,
which represent both substitutions and the mutational load,
may be responsible for this, we decided to summarize dN and
dS rates for the internal branches. In this case, we found that
the posterior distributions of the dS rates for the internal
branches were approximately the same—with a slightly higher
mean in env-–in most of the analyzed subtypes, except for
subtypes B and G (P � 0.005) and C (P � 0.015) (Fig. 2a). The
analysis of full-genome data sets allowed us to test the hypoth-
esis that these differences were due to sampling errors between
genomic regions. For subtypes B and C, we could collect such
full-genome data sets since there is a reasonable number of
publicly available sequences. Comparing the results of the full-
genome data sets (B full and C full) with the other data sets
collected independently for the two genomic regions, we found
that for subtype C this difference was clearly maintained, while
for subtype B the estimate for the env data set considerably
decreased. Therefore, we suspect that our dS rate differences
for subtype B may be due to sampling differences between pol
and env.

Comparing the dS rates across subtypes, it was evident that
posterior estimates were higher for CRF02_AG in pol (P �
0.03 versus subtype A1), with a trend in env (P � 0.2 versus
subtype B), and subtype G rates were higher than those for the
other subtypes in both pol (P � 0.045 versus subtype A1) and
env (P � 0.005 versus subtype B) (Fig. 2a). This indicates a
higher mutation rate or shorter generation time for these sub-
types than for the others.

dN rates. Not surprisingly, the dN rates were found to be
much higher in env than in pol (Fig. 2b). This can most prob-
ably be attributed to the humoral immune pressure of the host,
which results in a much faster accumulation of amino acid
substitutions in env. CRF02_AG and subtype G presented a
trend for higher dN rates than those for other subtypes (P �
0.07 and 0.08, respectively, versus subtype A1 in pol and P �
0.06 and 0.14, respectively, versus subtype B in env), consistent
with the dS rate estimates, probably indicating an important

TABLE 1. Data sets used in analyses of pol and env genes of each of the CRFs/subtypes

Subtype/CRF

pol env

No. of
sequences Time spana Sequence length

(nucleotides)b
No. of

sequences Time spana Sequence length
(nucleotides)b

CRF02_AG 113 1990–2005 792 62 1991–2003 843
CRF01_AE 84 1990–2006 787 95 1990–2006 825
A1 43 1985–2004 799 58 1985–2004 802
B 63 1983–2005 799 93 1982–2005 931
B (full genome) 43 1982–2005 799 43 1982–2005 931
C 83 1986–2005 799 102 1986–2005 864
C (full genome) 30 1989–2005 799 30 1989–2005 702
D 44 1985–2005 799 59 1983–2002 859
G 81 1992–2003 799 34 1992–2003 885

a Year of collection of the oldest sample to year of collection of the youngest sample.
b Length in the alignment, after editing.

TABLE 2. Posterior distributions of tMRCAs for each
subtype data seta

Subtype/CRF

tMRCA HPD for pol tMRCA HPD for env

Mean Upper
value

Lower
value Mean Upper

value
Lower
value

CRF01_AE 1,975.5 1,980.5 1,970.3 1,975.9 1,980.6 1,970.6
CRF02_AG 1,976.3 1,981.4 1,970.5 1,975.1 1,980.0 1,969.0
A1 1,954.2 1,967.7 1,939.7 1,954.6 1,968.7 1,940.3
B 1,960.3 1,968.5 1,950.6 1,959.2 1,966.5 1,950.9
B (full genome) 1,966.1 1,972.3 1,959.4 1,965.3 1,970.6 1,959.7
C 1,952.3 1,963.4 1,940.2 1,952.0 1,962.3 1,939.9
C (full genome) 1,955.3 1,971.8 1,933.9 1,955.0 1,971.5 1,934.4
D with prior 1,946.7 1,955.5 1,938.0 1,944.4 1,952.2 1,935.4
D without prior 1,857.0 1,932.8 1,751.0 1,854.1 1,931.2 1,749.9
G 1,969.7 1,978.3 1,959.9 1,969.3 1,977.3 1,959.9

a The tMRCA was estimated using MCMC analysis, using the software
BEAST. For all subtypes, the BSP method with a log normal relaxed-clock
assumption was used, except for the pol data set of subtype D, where the
exponential-growth demographic model was used instead of BSP. HPD, highest
posterior density interval.
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effect of mutation rate and replicative fitness on dN rates as
well.

For env, subtype D presented a lower dN rate than those
for all subtypes, except subtype A1 (P � 0.05 compared to
CRF01_AE). Since we already found such a tendency in dS
rates, we can speculate that this difference was due to a lower
replicative fitness or mutation rate of subtype D (Fig. 2b).

dN/dS ratio. Interestingly, the use of all branches of the tree
versus using only the internal branches generated different
dN/dS ratio estimates. This stresses the importance of remov-
ing the terminal branches from the analysis, as we mentioned
above. In Fig. 3a, we present the dN/dS ratios for subtypes
when all branches of the posterior distribution of trees are
included in the analysis, and in Fig. 3b, we present the dN/dS
results when only internal branches are summarized. In both
cases, the relative magnitudes of the dN/dS values for different
subtypes vary between pol and env, indicating independent

selective pressure effects in each gene. On the other hand, the
relative orders of the dN/dS ratios are different in Fig. 3a and
b. As we mentioned above, the terminal branches of the tree
are associated with an excess of mutations that do not neces-
sarily reflect substitutions. We should stress here that the val-
ues for the dN/dS ratios estimated here are not normalized for
the proportions of synonymous and nonsynonymous substitu-
tion sites in the data sets. Therefore, the dN/dS values are
higher than those normally reported using the classical dN/dS
estimation method, and importantly, a dN/dS value of 1 should
not be interpreted as an expectation of neutrality. The relative
orders of dN/dS ratios in the different subtypes did not reflect
dS and dN rates separately. For example, despite the higher
absolute dN and dS rates, subtype G presented a lower dN/dS
value in env than those for all other subtypes (Fig. 3b). How-
ever, we cannot draw any conclusions concerning the relative
ordering of dN/dS rates between subtypes, since there are

FIG. 1. Total substitution rate and 95% CI for the posterior distribution estimated in the Bayesian MCMC analysis of each of the seven
analyzed subtypes/CRFs for pol (white squares) and env (gray diamonds). Only internal branches of the tree were included in this analysis.
Substitution rate is presented as the number of expected substitutions per site per year. The P values of significantly different distributions are
presented for pairwise comparisons in the table below the plot. P values for the env data set comparisons correspond to the upper right part of
the matrix, while pol P values are presented in the lower left part of the matrix. AG, CRF02_AG; AE, CRF01_AE; A1, sub-subtype A1; B, subtype
B; B full, subtype B full-genome data set; C, subtype C; C full, subtype C full-genome data set; D, subtype D; G, subtype G; NS, not significant.

12920 ABECASIS ET AL. J. VIROL.



discrepancies both between the B and B full and between the
C and C full data sets.

DISCUSSION

In this study, we performed a comparative analysis to inves-
tigate the determinants of the rate of evolution of HIV-1 sub-
types. We collected data sets representative of the geographic
distribution of the most important epidemic subtypes, compris-
ing sequences sampled over relatively long time intervals.

We found that the substitution rate varies between subtypes,
with CRF02_AG and subtype G showing higher substitution
rates in both pol and env. Compared to other subtypes, subtype
B showed a lower substitution rate in pol than in env. While
this fact is difficult to explain, we can speculate that even
though strains with drug resistance were excluded, our pol
sample was derived to a greater part from patients undergoing
therapy—and therefore representing viruses with lower repli-
cation rates—than was the case for the env data set. In fact, the
greatest motivation to sequence the pol region is to verify
whether resistance is causing therapy failure, while the moti-
vation to sequence env is more related to mapping the genetic
variability of HIV worldwide, with samples taken less often
from treated patients. However, substitution rates are influ-
enced both by biological properties of the virus and by selective
pressure, which we assume to be mostly immune selective
pressure, with the former reflected in the dS rate and the latter
in the dN rate. We estimated these parameters separately to

understand their differential contributions to the total substi-
tution rate.

dS rates were found to be similar in pol and env, and some-
times slightly elevated in the latter. This indicates that this
parameter mostly reflects biological properties of the subtypes,
such as mutation rate and generation time, and implicitly
shows that the sample (data set) for each subtype was infor-
mative—even though the sequences used were not from the
same patients for pol and env, the results were similar—and
that our method can efficiently separate dN and dS contribu-
tions to the substitution process. However, the differences in
dS rate between pol and env for subtypes B and G are intrigu-
ing. It has been proposed in a previous study that the substi-
tution rate of a strain is inversely proportional to the speed of
transmission of the epidemic (16). Therefore, we suspect that
these differences might be due to a nonrepresentative sampling
of these subtypes in one or both of the genomic regions, with
an overrepresentation of certain transmission groups. We tested
this hypothesis by looking at two data sets that were derived
from subtype B and C full-genome sequences and therefore
comprise pol and env sequences from the exact same patients.
We found here that the differences between pol and env dS
rates in subtype B were considerably decreased, indicating that
especially for subtype B, there was a sampling problem affect-
ing our estimations. On the other hand, for the other subtypes,
we can assume that a representative sample was collected.
Ideally, we should have always used sequences from the same
patients for both genes. However, these are very difficult to

FIG. 2. Synonymous (a) and nonsynonymous (b) substitutions in pol (white squares) and env (gray diamonds) for the analyzed subtypes and
CRFs and 95% CI of the posterior distribution estimated in the Bayesian MCMC analysis. Only internal branches of the tree were included in this
analysis. Substitution rate is presented as the number of expected substitutions per site per year (subs/site/year). The P values of significantly
different distributions are presented for pairwise comparisons in the table below the plot. P values for the env data set comparisons correspond
to the upper right part of the matrix, while pol P values are presented in the lower left part of the matrix. AG, CRF02_AG; AE, CRF01_AE; A1,
sub-subtype A1; B, subtype B; B full, subtype B full-genome data set; C, subtype C; C full, subtype C full-genome data set; D, subtype D; G, subtype
G; NS, not significant.
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obtain, as many samples sequenced in pol are not sequenced in
env and vice versa. It can be speculated that some factors may
have impacted the mutation rate differently in pol and env, e.g.,
secondary structures or drug selective pressure. The first effect

could be expected to be consistent across most subtypes, while
the latter may be more pronounced for subtype B than for
other subtypes, since treatment is still predominantly a matter
in developed countries affected mostly by subtype B. The fact

FIG. 3. (a) dN/dS ratios based on all branches of the tree for all subtypes/CRFs in pol (white squares) and env (gray diamonds) and standard
deviation of each estimate. (b) dN/dS ratios based only on internal branches of the tree for all subtypes/CRFs in pol (white squares) and env (gray
diamonds). dN/dS ratios were calculated from the global dN and dS absolute estimates of each of 200 analyzed trees.
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that the pol dN rate was lower than expected according to the
env results may indicate that by removing strains with drug
selective pressure we have introduced a bias in our subtype B
data set.

A previous study has shown that CRF02_AG has a higher
replicative fitness than subtype B in vitro (18). Our result of a
higher dS rate of CRF02_AG is consistent with a higher rep-
licative fitness in vivo. The fact that subtype G showed similar
dN and dS substitution rates to those of CRF02_AG and the
fact that they are very closely related evolutionarily indicate
that they have similar characteristics in vivo. It also appears
from our study that the complicated and recently unraveled
recombination history of these two strains did not affect the
biological properties of these closely related strains (2).

Subtype D showed a tendency for lower dN and dS rates
than those of other subtypes. Recent results showed a faster
disease progression in subtype D infection (3, 13), in the light
of which our results could be interpreted as showing that a
lower evolutionary rate correlates with a higher level of virus
pathogenesis. However, Lemey et al. showed that HIV-2,
which is less pathogenic than HIV-1, has a lower substitution
rate than HIV-1. Therefore, it may be that differences between
HIV-1 and -2 are not necessarily transposable to differences
between subtypes (15). These seemingly contradictory obser-
vations are therefore a matter of further investigation.

The dN/dS ratio analysis revealed additional insights with
respect to evolutionary patterns. For example, although this
was not evident from the absolute dN and dS rates, subtype G
showed a lower dN/dS ratio in env than those of all other
subtypes. It is not that subtype G had a lower dN rate, but
rather that the dS rate was high. While dN/dS ratios are com-
monly used, it seems that measuring dN and dS rate parame-
ters separately may be more informative for the biological
properties of HIV-1. Indeed, taking into account the dS rate
variation among genes has recently been shown to be impor-
tant for comparative selective pressure analyses (17).

In conclusion, our results suggest that there are differences
in the biological properties of HIV-1 subtypes, particularly in
their replicative fitness and (immune) selective pressure. Fur-
ther studies should be performed to better understand the
impact of these differences in clinical issues such as pathogen-
esis and the response to antiretrovirals.
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