COMPARATIVE STUDY OF THE AGGLUTINOGENS OF THE ENDOSPORES OF BACILLUS ANTHRACIS AND BACILLUS CEREUS¹

CARL LAMANNA AND DANIEL EISLER

The Naval Biological Laboratory, School of Public Health, University of California, Berkeley, California

Received for publication August 13, 1959

Potentially, antigen-antibody reactions are a means for the specific identification of species. However, no such means are presently available to distinguish between cultures of Bacillus anthracis and Bacillus cereus (Brown et al., 1958 a, b). The serological investigations conducted have not exhausted all the possibilities for trial. Only serological studies comparing the vegetative phases of B. cereus and B. anthracis have been recorded. Bacterial endospores possess antigens distinct from those of parent vegetative organisms, and it has been shown that the antigenic structure of bacterial endospores may be sufficiently specific to have taxonomic value (Lamanna, 1940a, b). For these reasons we have undertaken a comparative study of agglutinins against spores of strains of B. anthracis and B. cereus to learn whether or not these antibodies can provide for a means for differentiation between the two organisms.

MATERIALS AND METHODS

Strains. From Fort Detrick 20 strains of B. anthracis of varied origins were obtained. Of these, 7 strains were represented by both a culture of a smooth and a rough variant of quite different virulence (table 4). In addition, the veterinary spore vaccine strain Carbozoo (Lederle) was studied. All strains were nonmotile, an important characteristic of B. anthracis for cultural differentiation from B. cereus (Sterne and Proom, 1957).

Dr. K. L. Burdon kindly supplied 8 strains, Dr. Ruth E. Gordon 5 strains, and Dr. E. A. Steinhaus 6 strains of *B. cereus*. We independently confirmed their authenticity using the criteria of Smith *et al.* (1952).

Preparation of spore suspensions. Inoculum for production of spore crops was prepared by

¹ This work was sponsored by the Bureau of Yards and Docks, U. S. Navy, under a contract between the Office of Naval Research and the Regents of the University of California. suspension of sporulated cultures in 0.85 per cent NaCl solution. Often it was desirable to insure that the inoculum was composed largely, if not exclusively, of spores by heat shocking the inoculum suspension for 7 min at 56 C, or 5 min at 60 C. For spore crops the surface of agar in flat wine bottles was inoculated and incubated for at least 2 weeks at 30 C for *B. cereus* and 35 C for *B. anthracis*. The medium for the crops was composed of 1.75 per cent agar, 0.5 per cent peptone, 0.25 per cent yeast extract, 0.125 per cent dextrose, 0.01 per cent K_2 HPO₄, 0.0025 per cent CaCl₂, 0.001 per cent MgSO₄·7H₂O, 0.001 per cent MnSO₄·H₂O.

Growths were harvested in sterile saline. The spores were recovered by centrifugation and washed 3 or more times by centrifugation from saline. Microscopic examinations of wet or stained smears were made to gauge the extent of contamination with vegetative forms. Preparations with vegetative organisms were discarded. Of course, this does not insure that the spore suspensions were absolutely free of vegetative cells and debris. The spore antigen suspensions were not treated in any way, such as adding a preservative, that knowingly would kill the spores. This was desirable since our interest was to study as closely as possible the natural state of endospore antigens.

Vegetative organisms suspension. B. cereus was grown at 30 C overnight, or for not more than a day, on agar slants. B. anthracis was grown in broth cultures aerated by shaking at 37 C.

Preparation of antisera. The turbidity of the antigen suspensions employed was equivalent to the no. 9 tube of a MacFarland nephelometer. With *B. cereus* spores a series of alternating (0.5 and 1.0 ml) subcutaneous and intravenous injections were given with varying rest periods between each series until a satisfactory agglutinating serum was obtained. With *B. anthracis*, 8 weekly (2 subcutaneous, 6 intravenous) 0.5-ml injections were given. New Zealand, Dutch, and

TABLE 1

Homologous spore and vegetative organism agglutinin titers of rabbit antispore serum before and after adsorption with homologous vegetative organisms

		Antiserum Titers							
Strain	Serum No.*	Before	adsorp- on	After a tio	After adsorp- tion				
		Spore	Vege- tative	Spore	Veg- eta- tive				
B. cereus					-				
NRS201	60NZW	1024		1024	<8				
Ba2(19)	61NZW	1024	<4	1024	<8				
NRS847	62NZW	SA	32	SA	8				
NRS1256	67ANZW	1024	<8	1024	<4				
NRS617	17,21NZW	2048	16	1024	<8				
	10NZW	4096	<8	>2048	<8				
	9.10D	4096	<8	4096	<8				
Ba2(16)	11.12NZW	4096	SA	4096	SA				
(,	11.12D	4096	SA	2048	SA				
Ba2(22)	13NZW	1024	8	1024	64				
242(22)	13.14D	2048	8	2048	32				
Ba2(23)	15.16NZW	1024	SA	1024	SA				
Du=(10)	15 16D	2048	SA	2048	SA				
NRS793	1 2NZW	2048	<2	2048	<8				
1110100	1D	4096	<2	4096	28				
NRS046	4NZW	SA	8	SA SA					
1110510	34D	SA		SA					
ND 8929	5.6NZW	1006	1 9	> 1006	20				
N11.62.52	5.6D	4090		> 4090	04				
NDG944	5,0D	4090	10	> 4090	20				
N N N 8244	7.01121	2048	10	>4090	04				
P anthra	10			1024	<8				
D. aninra-									
Carbora	ONZW	0500		640	-00				
Carbozoo	8INZW	2500		640 #190	< 20				
901	9INZW	2560	00	5120	<20				
381	4IN Z W	2560	80	320	320				
	DOIN ZW	2560	40	320	<20				
	04INZW	160	<20	40	<20				
9040	70INZW	1280	160	160	<20				
3845	56INZW	1280	>20	<20	<20				
	o7Cal	1280	20	640	<20				
	68Cal	1280	< 20	640	<20				
9050	69INZW	1280	<20	80	<20				
389K		640	SA	2560	<20				
3908	30NZW	2560	<20	2560	<20				
	58INZW	1280	<20	1280	SA				
	59NZW	1280	<20	640	<20				
	DUNZW	80	<20	640	<20				
	02NZW	640	<20	640	<20				
	70Cal	320	<20	640	<20				
	71Cal	1280	<20	640	<20				
	73Cal	1280	<20	320	<20				
	75Cal	640	< 20	640	< 20				

TABLE 1-Continued

		Antiserum Titers								
Strain	Serum No.*	Before tic	adsorp- on	After adsorp- tion						
		Spore	Vege- tative	Spore	Veg- eta- tive					
B. anthra-										
cis		1								
391R	16NZW	320	1280	320	SA					
	17NZW	320	1280	1280	SA					
	18NZW	1280	2560	640	SA					
394S	32NZW	640	<20	320	<20					
	33NZW	640	<20	320	<20					
	34NZW	640	<20	320	<20					
395R	37NZW	640	160	80	<20					
	38NZW	640	<20	320	<20					
	42NZW	640	80	2560	<20					
399S	19NZW	± 5120	320	5120	<20					
400R	45NZW	2560	SA	2560	<20					
	46NZW	640	<20	1280	<20					
	48NZW	2560	$<\!20$	2560	<20					

< Refers to a negative reading at this lowest dilution tested; > refers to a positive reading at this highest dilution tested; SA = spontaneous agglutination.

* NZW refers to New Zealand White, D to Dutch, and Cal to California breeds of rabbits. Each number represents serum from an individual rabbit.

California breeds of rabbits were employed. Sera obtained before immunization did not agglutinate vegetative bacilli or endospores. To prevent death from anthrax, 4 weekly injections of 150,000 units of Penicillin G Procaine Crystalline (Lederle) were given to each rabbit concomitant with the spore injections. The procedure was followed not only with the hope of protecting the animals, but to prevent germination of spores (Curran and Evans, 1946) and infection with probable formation of specific vegetative state antibody. Still another group of animals was injected (once subcutaneously and 3 times intravenously) with $\frac{1}{10}$ the spore concentration listed above and given penicillin daily. Considerable mortality resulted in all the groups.

Sera were collected from 7 to 14 days after the last injection of antigen and stored near 0 C, or in a freezer at -20 C. As a preservative, merthiolate was employed in a final concentration of 1 to 10,000. Agglutination reactions. As found in the past (Lamanna, 1940a, b), the traditional agglutination procedures proved inadequate for measuring spore agglutinin. Maximal titers were obtained with spore suspensions made up to an optical density of 0.6 as measured in a Coleman Jr. spectrophotometer at 640 m μ , mixed in 0.1-ml quantities with 0.1 ml of 2-fold serially diluted antiserum, and then shaken vigorously for 30 to 60 min at room temperature. It was desirable for ease in reading to add 0.8 ml of saline per tube after the shaking was completed. One reading was made immediately after the shaking, and usually a second reading was taken after overnight storage in a refrigerator. The latter observations were often more intense in the appearance of agglutination, resulting in one or several tubes higher positive readings. Prozones were encountered frequently (Lamanna, 1940*a*). Spontaneous agglutination was also noted with the endospores. Some strains of bacilli were more notorious offenders than others in this regard. An uninvestigated feature of spontaneous agglutination was its irregular occurrence among spore crops of a given strain cultivated at different times. Another annoying feature of spore

TABLE 2

Endospore agglutination tests with heterologous strains of Bacillus cereus and Bacillus anthracis employing antisera against B. cereus spores adsorbed with homologous strain vegetative organisms. Results recorded as number of strains giving the indicated titer.

		B. ce	reus Stra	ains			B. anthracis Strains				
Antiserum Strain and Rabbits	Total no	Titer			T -4-1	Titer				Homologous Strain Titer	
	Total no.	< 8	8-64	128-512	1024+	Total no.	<8	864	128-512	1024+	
NRS201 (NZW60)	17	5	1	1	10	19	8	2	3	6	1024
Ba2(19) (NZW61)	17	0	1	4	12	20	10	1	6	3	1024
NRS847 (NZW12)	17	0	10	.4	3	18	7	5	0	6	SA
NRS1256											
(NZW67A)	17	1	3	7	6	19	6	8	0	5	1024
NRS617											
(NZW10)	17	7	2	1	7	17	8	3	1	5	2048
(NZW17, 21)	17	5	2	6	4	20	10	1	1	8	1024
(D9, 10)	17	1	6	5	5	19	8	2	2	7	4096
Ba2(16)											
(NZW11, 12)	17	1	2	2	12	19	7	4	5	3	4096
(D11, 12)	17	0	2	5	10	20	8	5	3	4	2048
Ba2(22)											
(NZW13)	17	1	9	6	1	20	12	1	3	4	1024
(D13, 14)	17	1	9	5	2	21	10	5	1	5	2048
Ba2(23)				·							
(NZW15, 16)	17	3	1	6	7	20	9	1	2	8	1024
(D15, 16)	17	1	2	2	12	20	8	0	2	10	2048
NRS793											
$(NZW1, 2) \dots$	17	6	2	4	5	18	8	3	2	5	2048
(D1)	17	3	3	2	9	18	6	1	3	8	4096
NRS946											
(NZW4)	17	6	8	3	0	18	6	8	1	3	SA
$(D3, 4) \dots \dots$	17	4	3	8	2	20	10	0	5	5	SA
NRS232											
$(NZW5, 6) \dots$	17	0	2	1	14	19	11	1	3	4	4096
$(D5, 6) \dots \dots$	17	0	0	4	13	19	10	1	6	2	4096
NRS244											1000
$(NZW7, 8) \dots$	17	0	3	2	12	19	8		4		4096
(D7)	17	0	2	2	13	18	6	5	4	3	1024

agglutination studies is the tendency of the spores to be trapped in the liquid-air interface and to climb up the wall of the tube in a film of liquid which creeps up the wall of the tube away from the meniscus. This phenomenon is limited to salt solutions, and solutions with the most diluted quantities of antiserum, and suggests the phenomenon is a reflection of a relatively hydrophobic quality at the spore surface.

Before testing for heterologous endospore agglutinins, the spore antisera were adsorbed with homologous vegetative organisms to insure that agglutinations observed were specific for endospore agglutinins.

RESULTS AND DISCUSSION

Endospore antisera did not agglutinate vegetative organisms, or did so in low titer relative to spores. Vegetative B. cereus injected into rabbits resulted in either none or low titer agglutinins against endospores which were readily and and specifically removable by adsorption with homologous strain spores.

In table 1 are recorded agglutinin titers for homologous strain spores and vegatative organisms tested against the antispore sera prepared. The agglutination tests were done with the antisera both before and after adsorption with vegetative bacilli. The data indicate the existence of endospore specific agglutinins and provide the rational factual basis for the comparative study of spores of *B. anthracis* and *B. cereus*. Note the unexpected finding with 4 *B. cereus* and 1 *B. anthracis* spore antisera of a low titer rise in vegetative cell agglutinin after adsorption with vegetative organisms. In these cases it is possible that the attempted adsorption incompletely removed a vegetative bacillus agglutinin while eliminating a vegetative cell agglutination inhibitor.

Tables 2 and 3 record the spore agglutinin titers for the strains studied and demonstrate a widespread degree of cross reactions between the B. cereus and B. anthracis strains. The sera cannot be employed to distinguish between the two organisms, this in spite of the fact that in many cases agglutination titers were lower for the heterologous than homologous species.

An antianthrax serum prepared in the horse by injection of Sterne's spore vaccine (Weybridge strain) made available by the Microbiological

TABLE 3Endospore agglutination tests with heterologous strains of Bacillus cereus and Bacillus anthracis
employing antisera against B. anthracis spores adsorbed with homologous strain vegetative
organisms. Results recorded as number of strains giving the indicated titer.

		B. cereus Strains					B. anthracis Strains				
Antiserum Strain and Rabbits	Tatal no	Titer			m ()	Titer				Homologous Strain Titer	
	Total no.	<8	8-64	128-512	1024+	Total no.	<8	8-64	128-512	1024+	
Carbozoo											
$(NZW8, 9) \dots$	16	8	5	3	0	20	8	0	2	10	2048
399 (NZW19) 391 (NZW16, 17,	17	10	2	4	1	18	14	2	2	0	SA
18)	17	7	10	0	0	20	7	2	0	11	1024
381 (NZW53, 76) 400 (NZW45, 46,	16	9	7	0	0	14	8	1	4	1	256
48)	16	4	7	4	1	18	0	12	5	1	1280
395 (NZW38, 42) 394 (NZW32, 33,	17	6	9	2	0	17	3	6	6	2	SA
34)	17	13	4	0	0	18	11	1	3	3	2048
390											
(NZW30, 58, 59,											
63)	17	7	8	2	0	18	10	0	1	7	1024
(CAL70, 71, 75)	17	9	6	2	0	18	9	1	5	3	1024
384 (CAL67, 68)	17	10	7	0	0	21	14	5	1	1	2048
385 (NZW17)	17	13	4	0	0	19	10	3	6	0	256

		В. а	ereus Antis	era (12 Stra	ains) B. anthracis Antisera (10 Strains)					
Spore Agglutinogen	LD50 for Mouse	Test	ed*	Nega	tive*	Test	.ed*	Nega	tive*	
		Strains	Sera	Strains	Sera	Strains	Sera	Strains	Sera	
B. anthracis										
384S	70	12	21	0	3	8	8	3	3	
385R	1×10^{7}	12	20	3	10	9	10	3	4	
3868	330	12	21	5	13	9	10	2	2	
387R	5×10^{6}	12	21	0	3	10	11	3	3	
388S	260	12	21	12	21	10	11	9	9	
389R	2×10^{7}	12	21	8	14	10	11	5	6	
390S	200	12	21	0	3	9	9	2	2	
391R	5×10^{5}	12	21	1	3	9	9	1	1	
3928	570	12	21	12	21	10	10	8	8	
393R	5 × 10	12	21	11	20	10	11	6	7	
3948	1900	12	21	0	20	7	8	3	4	
395R	4 × 104	12	10	1	3	7	7	3	4	
3005	200	12 Q	15	Ô	0	5	5	0	0	
400B	7×107	2	20	0	0	4	4	3	3	
1	/ × 10	6	0	1	2	н 6	т 6	0 9	2	
1	12	12	91	19	2	10	11	2	0	
417	10	12	21 91	14	41 6	10	11	6	9 7	
410	30 1 <i>5</i>	12	21 01	0 10	0	10	11	0	(
379	15	12	21	12	21	10	10	8	9	
380	10	12	21	2	3	9	10	4	5	
381		12	21	1	5	9	10	3	3	
Carbozoo	$5 \times 10^{\circ}$	12	21	1	2	9	10	1	1	
B. cereus					_	10				
NRS1256		11	20	2	7	10	14	10	14	
NRS617		11	18	0	0	7	9	5	5	
NRS847†		0				0				
NRS946†		0				0				
NRS232		11	19	0	0	10	14	4	4	
NRS244		11	19	2	7	10	14	10	11	
NRS249		11	21	0	0	10	14	3	4	
NRS701		12	21	0	0	10	14	4	6	
NRS793		11	19	0	0	10	14	0	0	
NRS201		11	20	2	7	10	14	2	3	
NRS201A		12	21	0	0	10	14	1	1	
$Ba2(1)\ldots\ldots\ldots$		12	21	3	7	10	14	10	14	
Ba2(10)		12	21	0	0	10	14	1	1	
Ba2(16)		11	19	1	2	10	14	8	12	
Ba2(19)		11	20	1	2	10	14	7	11	
Ba2(20)		12	21	0	2	10	14	0	0	
Ba2(22)		11	19	2	4	10	14	6	7	
Ba2(23)		11	19	1	3	10	14	3	6	
Ba2(24)		12	21	1	4	10	14	8	12	
			1		1	ł.	1	1	1	

TABLE 4 Number of heterologous antisera with which the indicated Bacillus anthracis and Bacillus cereus strains did not show spore agglutination

* The greater number of sera than strains used to produce the antisera represents duplication of antisera production with individual strains in different rabbits.

† These strains on repeated cultivation gave spore crops that spontaneously agglutinated so that agglutination titers with these strains could not be obtained. These spores did induce antibody causing agglutination of spores of other cultures.

TABLE 5

Agglutinin titers of endospores of Bacillus anthracis and Bacillus cereus tested against antiserum adsorbed with spores of a strain of the heterologous species

		Results of Agglutinin Titrations on Adsorbed Serum								
Antiserum Adsorbed	Strain Used	Anthra	x strains tes luction in ti	sted for ter	B. cereu red	B. cereus strains tested for reduction in titer				
Antiserum Adsorbeu	for Adsorption		Aggluti	nin titer		Agglutinin titer				
		Total no.*	Reduced	Not reduced	Total no.*	Reduced	Not reduced			
B. anthracis	B. cereus									
$Carbozoo(8, 9) \dots$	NRS249	7	0	7	10	4	6			
381 (NZW53, 76)	NRS201A	6	3	3	4	3	1			
395(NZW38, 42)	Ba2(22)				9	7	2			
390(NZW45, 46, 48)	NRS249	8	1	7	8	6	2			
400(NZW30, 58, 59, 63)	Ba2(16)	16	4	12	14	0	14			
394 (NZW32, 33, 34)	Ba2(20)	3	3	3	7	1	6			
B. cereus	B. anthracis									
NRS232(D5, 6)	384	7	5	2	17	4	13			
NRS1256(67A)	390	8	6	2	17	3	14			

* In this total the strain used to adsorb the antiserum is not included.

Research Establishment, Porton, England, gave agglutinin reactions with spores of 13 of 16 B. *cereus* and 1 of 21 B. *anthracis* strains tested.

In spite of the cross reactions there are individual strains which in contrast to the majority of the strains do not cross react with many or any of the antisera of the heterologous species. The data, therefore, have been presented in table 4 to demonstrate this fact. B. anthracis spores of 5 strains, 388, 392, 393, 417, and 379, did not agglutinate with the B. cereus antisera. It would be a fortunate circumstance if these results were attributable to the absence of cross reacting species antigens in the endospores of these organisms. This explanation is unlikely. These same strains are also those which show the least tendency to react with antisera prepared against other strains of the homologous species (table 4). Of itself, this fact could mean that the spores of these strains in their agglutinogen content are strain specific, being lacking in antigens held in common with other strains of the parent species. Proof of this situation would be the inability of antisera prepared against spores of these strains to agglutinate spores of heterologous strains of the parent and other species. Data of this kind available for some of the B. cereus strains do not show this result (table 4). Thus,

antiserum against strain NRS244 agglutinates spores of all of 17 *B. cereus* and 12 of 18 *B. anthracis* strains.

The capacity of a strain to induce agglutinin against a variety of strains when it, itself, is incapable of being agglutinated by antisera against these same strains may appear to be paradoxical. An explanation could be that the physical-chemical character of the surface of spores of some strains do not yield readily to agglutinating forces in spite of their reaction with agglutinin. The test for this hypothesis would be to observe for adsorption of agglutinin in the absence of agglutination. Another possible explanation is that the endospore is composed of a number of antigens, but, unlike other strains, only one or a few of these antigens appear on the spore surface. Thus, the spore would be capable of inducing synthesis of a multiplicity of agglutinins while being agglutinable by only one or a few of these agglutinins. An example of this kind has been reported (Doak and Lamanna, 1948).

It is obvious that we have not found strains inducing formation of antibody reacting only with the homologous species' spores. If species specific antigen exists, it will have to be unmasked by selectively adsorbing out nonspecies specific 1960]

antibody from antisera. Efforts in this direction, using a single strain as adsorbent, were not promising (table 5). Whether a properly selected battery of strains can be found to remove by adsorption all antibodies but species specific antibody is questionable but can be properly considered a suitable subject for future research.

A cursory examination of precipitinogens isolated by acid hydrolysis of spores revealed cross reactions by spore antisera against the two organisms. Thus, the antigenic relationships found are not limited to agglutinogens.

One school of thought maintains that *B. cereus* as a species includes *B. anthracis* as a pathogenic variety (Smith *et al.*, 1952; Brown *et al.*, 1958 *a, b*). The present findings of antigenic relationships between the endospores of the two organisms is not in conflict with this concept but cannot be considered as final proof of the contention. A strong case for the independent identity of *B. anthracis* as a species has been made on the basis of studies of characteristics other than antigenic ones (Nordberg, 1953; Burdon, 1956; Leise *et al.*, 1959).

ACKNOWLEDGMENTS

We wish to express our appreciation of the interested and proficient technical assistance of Mrs. C. T. Drake and Miss Eleanor Kunishige.

SUMMARY

Rabbit antisera against endospores of *Bacillus* anthracis and *Bacillus cereus* were prepared and studied by agglutination tests. Antigens specific to the spore phase were shown to exist. The antigenic constitution of the endospores of both organisms is complex and includes both intraand interspecies agglutinogens. It was not possible to distinguish between the endospores of the two organisms by means of agglutination tests.

REFERENCES

- BROWN, E. R., MOODY, M. D., TREECE, E. L., AND SMITH, C. W. 1958a Differential diagnosis of Bacillus cereus, Bacillus anthracis, and Bacillus cereus var. mycoides. J. Bacteriol., 75, 499-509.
- BROWN, E. R., TREECE, E. L., AND SMITH, C. W. 1958b Immunologic studies on the antigenic interrelationships between *Bacillus cereus*, *B. anthracis*, *B. mycoides* and the nonrhizoid variant of *B. mycoides*. Bacteriol. Proc., 1958, 49.
- BURDON, K. L. 1956 Useful criteria for the identification of *Bacillus anthracis* and related species. J. Bacteriol., **71**, 25-42.
- CURRAN, H. R. AND EVANS, F. R. 1946 The activity of penicillin in relation to bacterial spores and the preservation of milk. J. Bacteriol., 52, 89-98.
- DOAK, B. W. AND LAMANNA, C. 1948 On the antigenic structure of the bacterial spore. J. Bacteriol., 55, 373-380.
- LAMANNA, C. 1940a The taxonomy of the genus Bacillus. II. Differentiation of small-celled species by means of spore antigens. J. Infectious Diseases, 67, 193-204.
- LAMANNA, C. 1940b The taxonomy of the genus Bacillus. III. Differentiation of the largecelled species by means of spore antigens. J. Infectious Diseases, 67, 205-212.
- LEISE, J. M., CARTER, C. H., FRIEDLANDER, H., AND FREED, S. W. 1959 Criteria for the identification of *Bacillus anthracis*. J. Bacteriol., 77, 655-660.
- NORDBERG, B. K. 1953 Continued investigations of some important characteristics in anthrax-like microorganisms as viewed from a point of view of differential diagnosis. Nord. Veterinärmed., 5, 915–924.
- SMITH, N. R., GORDON, R. E., AND CLARK, F. E. 1952 Aerobic spore forming bacteria. U. S. Dept. Agr. Monograph No. 16.
- STERNE, M. AND PROOM, H. 1957 Induction of motility and capsulation in Bacillus anthracis. J. Bacteriol., 74, 541-542.