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Previously a new method for ultrasound signal characterization using entropy Hf was reported, and
it was demonstrated that in certain settings, further improvements in signal characterization could be
obtained by generalizing to Renyi entropy-based signal characterization If�r� with values of r near
2 �specifically r=1.99� �M. S. Hughes et al., J. Acoust. Soc. Am. 125, 3141–3145 �2009��. It was
speculated that further improvements in sensitivity might be realized at the limit r→2. At that time,
such investigation was not feasible due to excessive computational time required to calculate If�r�
near this limit. In this paper, an asymptotic expression for the limiting behavior of If�r� as r→2 is
derived and used to present results analogous to those obtained with If�1.99�. Moreover, the limiting
form If ,� is computable directly from the experimentally measured waveform f�t� by an algorithm
that is suitable for real-time calculation and implementation.
© 2009 Acoustical Society of America. �DOI: 10.1121/1.3224714�

PACS number�s�: 43.60.Bf, 43.60.Lq, 43.60.Cg �EJS� Pages: 2350–2358
I. INTRODUCTION

In an earlier paper1 we reported on the application of
Renyi entropy If�r�, which is defined for all r�2 �r is
roughly a reciprocal “temperature”�, for the detection of
changes in backscattered radio frequency �rf� ultrasound aris-
ing from the accumulation of targeted nanoparticles in the
neovasculature in the insonified region of a tumor. That study
was motivated by the observation that acoustic characteriza-
tion of sparse collections of targeted perfluorocarbon nano-
particles presented challenges that might require the applica-
tion of novel types of signal processing.2 We were able to
show that signal processing based on a “moving window” Hf

analysis �see Eq. �7�� could detect accumulation of tissue-
targeted nanoparticles 30 min following nanoparticle injec-
tion. The signal energy, defined as the sum of squares over
the same moving window, was unable to distinguish mea-
surements made at any time during the 1 h experiment �as
was conventional B-mode imaging�. Subsequently we deter-
mined that moving window If�r� analysis, with r=1.99,
could distinguish the difference in backscatter measured at 0
and 15 min. Reduction in the accumulation time required to
reach detectability from 30 to 15 min is clearly of signifi-
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cance: potentially reducing both patient discomfort and in-
creasing clinical throughput. Moreover, although the compu-
tational effort to obtain the result precluded its clinical
application with currently available equipment, the study
raised the possibility of further sensitivity improvements by
using values of r closer to the limiting value of 2, where If�r�
approaches infinity. The purpose of the current study is to
investigate the behavior of If�r� as r→2 by extracting its
asymptotic form. While this involves use of the second de-
rivatives of f�t� at its critical points, which can be expected
to increase noise in the processing chain output, surprisingly
the resulting signal processing scheme does not sacrifice sen-
sitivity. Moreover, the operation count in this approach is
lower than that used to produce the signal envelope, which
currently is the standard for real-time ultrasonic imaging dis-
play, thus demonstrating its suitability for implementation in
a real-time imaging system to facilitate detection of molecu-
lar epitopes associated with neovasculature in a growing tu-
mor. As our technique is based on moving window analysis
of digitized rf, which requires some sacrifice in spatial reso-
lution, clinical implementation of entropy detection would
probably follow the same approach currently employed in
Doppler “imaging” systems, where the conventional B-mode
image is color-coded according to the blood cell velocity to
present a combined B-mode/velocity image; similarly, a

B-mode/entropy image could be made as well.

© 2009 Acoustical Society of America26�5�/2350/9/$25.00



II. APPROACH

All results in this study were obtained using the density
function wf�y� of the continuous function y= f�t�, assumed to
underlie the sampled rf data. Subsequently, wf�y� was used to
compute the entropy If�r�. As described in previous studies
wf�y� corresponds to the density functions used in statistical
signal processing.1 In contradistinction to statistical signal
processing, where f�t� is a random function, and often no-
where differentiable, we assume that the noise levels in our
apparatus are low enough so that with sufficient signal aver-
aging, noise may be eliminated, or at least reduced to a low
enough level, that derivatives of f�t� may be accurately com-
puted. From these derivatives the density function wf�y� may
be computed,1 which then facilitates calculation of the quan-
tities typically discussed in statistical signal processing �e.g.,
mean values, variances, and covariances�.3–5 However, in
that environment, the density function is usually assumed to
be continuous, infinitely differentiable, and to approach zero
at infinity. In our case wf�y� is not so well-behaved and has
�integrable� singularities. While this renders calculation of
the density function more difficult, applications of entropy
imaging based on wf�y� have shown the cost to be justified in
terms of increased sensitivity to subtle changes in scattering
architecture that are often undetected by more conventional
imaging.

We use the same conventions as in previous studies so
that

wf�y� = �
k=1

N

�gk��y�� , �1�

where N is the number of laps �regions of monotonicity of
f�t��, gk�y� is the inverse of f�t� in the kth-lap, and if y is not
in the range of f�t� in the kth-lap, gk��y� is taken to be 0.

We also assume that all experimental waveforms f�t�
have a Taylor series expansion valid in the domain �0,1�.
Then near a time tk such that f��tk�=0,

y = f�t� = f�tk� +
1

2!
f��tk��t − tk�2 + ¯ , �2�

where tk is a lap boundary. On the left side of this point Eq.
�2� may be truncated to second order and inverted to obtain

gk�y� � tk � �2�y − f�tk��/f��tk� , �3�

with

�gk��y�� � 1/�2f��tk��y − f�tk�� . �4�

The contribution to wf�y� from the right side of the lap
boundary, from gk+1�y�, is the same, so that the overall con-
tribution to wf�y� coming from the time interval around tk is

�gk��y�� � �2/�f��tk��y − f�tk��� , �5�

for 0� f�tk�−y�1 for a maximum at f�tk� and 0�y− f�tk�
�1 for a minimum. Thus, wf�y� has only a square root sin-
gularity �we have assumed that tk is interior to the interval
�0,1�; if not, then the contributions to wf come from only the
left or the right�. If, additionally, f��tk�=0, then the square

root singularity in Eq. �4� will become a cube-root singular-
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ity, and so on, so that the density functions we consider will
have only integrable algebraic singularities.

Figure 1 shows a typical waveform �inset� and its asso-
ciated density function, which may be divided into four dif-
ferent regions, A–D, separated by singularities �dashed lines�
corresponding to the critical points of f�t�. In general, three
types of behavior are possible in wf�y�: continuous, finite
jump discontinuity, and integrable singularity. In region A,
there are two singularities and a finite jump discontinuity. In
region B, wf�y� is continuous. In C and D, there are singu-
larities at the region boundaries. This figure shows that the
density functions possess significantly different attributes
from those usually considered in statistical signal processing.
To compare the current approach with that usually taken in
discussions of “random variable theory,” we point out that a
“random variable,” usually denoted X�t� �instead of our f�t��
is nothing more or less than a Lebesgue measurable function.
In many applications of random variable theory, X�t� is ev-
erywhere continuous but nowhere differentiable �e.g., the
Brownian motion�, and various means are devised to esti-
mate its probability density function. In the current investi-
gation, it is not necessary to estimate wf�y� by these means
since we may calculate it from f�t�. However, as f�t� is as-
sumed to be Lebesgue measurable, it is, in the strictly formal
sense, also a random variable, and wf�y� is its probability
density function. As we are investigating a subset of random
variables, where it happens that the probability density func-
tion may be calculated from the random variable itself, we
will carefully refrain from using this term, since it will only
raise associations with the reader’s mind that are misleading
in the current context.

The mathematical characteristics of the singularities of
wf�y� are important in order to guarantee the existence of the
following integral on which we base our analysis of signals

FIG. 1. �Color online� Plot of a typical density function wf�y� employed in
our study. Inset shows a time-domain waveform f�t� with five critical points
�left� and their relationship to the singularities of the associated density
function wf�y� �right�.
in this study:
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If�r� =
1

1 − r
log	


fmin

fmax

wf�y�rdy� , �6�

which is known as the Renyi entropy.6 It is similar to the
partition function in statistical mechanics with the parameter
r playing the role of an “artificial” reciprocal temperature1,7

�unrelated to the actual physical temperature in the scattering
region�; moreover, If�r�→−Hf, as r→1, using L’Hôpital’s
rule, so that If is a generalization of Hf as follows:

Hf = 

fmin

fmax

wf�y�log wf�y�dy . �7�

Previous studies have shown that this quantity can be more
sensitive to subtle changes in scattering architecture than are
more commonly used energy-based measures,2 with subse-
quent studies demonstrating further sensitivity improvements
using If at the suitable value of r.1 For the density functions
wf�y� encountered in our study, If�r� is undefined for r�2,
since as r→2−, the integral appearing in Eq. �6� will grow
without bound due to the singularities in the density function
wf�y� described in Eq. �5�. The behavior as r→2 is domi-
nated by contributions from these singularities, all of which
correspond to critical points of f�t�. This behavior is shown
in Fig. 2. Moreover, as shown in the figure, it is possible that
two slightly different functions, f�t� and f�t�+��t�, where � is
small, may have entropies, Hf and Hf+�, that are close, as
shown, but whose Renyi entropies, If�r� and If+��r�, diverge
as r→2. Previous studies have shown that this can happen in
practice.1 However, these results left open the possibility of
further sensitivity gains. The purpose of the present study is
to investigate the possibility of obtaining further sensitivity
improvements by pushing toward this limit. As described in
the Appendix, the asymptotic form of If�r� as r→2 is given
by

If ,� = log	 �
�tk�f��tk�=0


1

�f��tk��� . �8�

We will use this quantity to generate the images presented in

FIG. 2. Plots of If�r� and If+��r� �left� showing that while If�1�=−Hf and
If+��1�=−Hf+� may be close, If�r� and If+��r� diverge as r→2.
the current study.
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III. MATERIALS AND METHODS

A. Numerical computation of If,�

Calculation of If ,� via Eq. �8� is accomplished by fitting
a cubic spline to the experimentally acquired data array using
a well-known algorithm, which returns the second derivative
of the cubic spline �in an array having the same length as the
experimental data� and initializes data structures suitable for
rapid computation of its first derivative.8 Subsequently, an
array of corresponding first derivatives is computed and used
to bracket the critical points of the spline �i.e., the zero cross-
ings�. Linear interpolation is then used to estimate the exact
location of the bracketed zero crossings in order to obtain an
algorithm suitable for real-time implementation in a medical
imaging system. The total operation count is of order N�,
where N� is the number of points processed, and is more
than four orders of magnitude faster than the operation count
16 384N� required to compute If�r� used in our previous
study.1 For comparison, we also note that the operation count
required to produce the envelope of the same number of
points �i.e., to produce a conventional B-mode image� would
be of order N� log�N�� since computation of the envelope
requires use of the fast Fourier transform; for the value of
N�=512 used in our study below, this represents an increase
in processing speed of roughly ninefold.

B. Simulations

The convergence properties, stability in the presence of
noise, and effects of quantization error and sampling rate
have been extensively evaluated using simulated data. Sev-
eral types of waveforms have been investigated: Gaussian
and parabolic waveforms, for which the exact value of If ,�

may be computed and linear combinations of exponentially
damped sine waves that qualitatively resemble backscattered
ultrasonic waveforms. Several carefully chosen example
simulations illustrate guidelines for application of our algo-
rithm in order to avoid potential artifacts produced by experi-
mental factors.

The first of these is Fig. 3, which shows a plot of If ,� for
a noise-free Gaussian pulse f�t�=e−30�t − 0.5�2

for values of N�

ranging from 32, 64, 128,…, 8192. Even at N�=32 the esti-

FIG. 3. Simulation for a noise-free Gaussian pulse showing the dependence
of If ,� on the number of sampled points N�.
mated value of If ,� is within 1% of the exact value of
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log�1 /60�=−4.094. For moving window analysis of experi-
mental data, N� is the length of the moving window. Choos-
ing its length requires making trade-offs between sensitivity
�smaller N� implying loss of sensitivity, but increased spatial
resolution�, noise level �smaller N� implying increased noise,
but increased spatial resolution�, and spatial resolution.

However, noise can have a significant effect on the cal-
culation of If ,�. Figure 4 illustrates the impact of noise on the
Gaussian pulse �f�t�=e−30�t − 0.5�2

� that was just discussed. As
N� ranges from 32, 64, 128,…, 8192 and noise levels ranges
from 0 to 150 dB, the calculated value of If ,� can vary by
over 100% of its actual value. Eventually, as N� increases
and the noise level drops, our algorithm converges to a stable
value. However, as the plots indicate, the noise requirements
for a single peak function such as the Gaussian peak are
quite stringent, being greater than 100 dB to obtain 10%
accuracy.

These requirements are less stringent if f�t� has several
critical points. An example is shown in Fig. 5, which plots
If ,� for values of N� ranging from 32, 64, 128,…, 2048,
and for noise levels ranging from 0 to 150 dB for the
Gaussian modulated pulse f�t�=e−10�t − 0.5�2

sin�20��t
−0.5��+0.7 sin�20��t−0.5��+0.7 sin�10��t−0.5��. As the
plots indicate the noise requirements for a multipeak peak
waveform f�t� are far less stringent with 87% accuracy being
obtained at about 20 dB noise level for N�=512 �plotted

FIG. 4. Simulation for a Gaussian pulse showing the dependence of If ,� on
the number of sampled points N� and noise level.

FIG. 5. Simulation for an unquantized Gaussian modulated pulse showing

the dependence on the number of sampled points N� and noise level.
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using a heavier line in the plot family since these parameters
match values used in the experimental portion of our study�.

Figure 6 shows a plot of If ,� for values of N� rang-
ing from 32, 64, 128,…, 8192 for noise levels ranging from
0 to 150 dB for the simulated pulse f�t�=e−150�t − 0.55�2

	 sin�40��t−0.55��+0.7 sin�80��t−0.55��+0.7 sin�20��t−
0.55��+0.03 sin�10��t−0.55��. The “exact” answer is

4.149 073, found by running our algorithm with noise level
set to zero, no quantization error, and N�=8192, and is also
shown in the plot. The corresponding values of N� are indi-
cated on the right side of the figure. For values of N��512
the error is less than 13%. We also note that for larger values
of N� and lower levels of noise, our algorithm diverges with
If ,� becoming large and positive. This occurs only in quan-
tized simulations and is the result of the long perfectly flat
segments in the quantized data. This is an easily detected
fault and, since the If ,� images used in our experimental
study had pixel values of approximately 7 bits/symbol in
magnitude on the regions used to estimate accumulation of
targeted nanoparticles, can be ruled out as a possible artifact
in our study.

C. Nanoparticles for molecular imaging

A cross-section of the spherical liquid nanoparticles used
in our study is diagramed in Fig. 7. For in vivo imaging we
formulated nanoparticles targeted to �v
3-integrins of
neovascularity in cancer by incorporating an “Arg-Gly-Asp”

FIG. 6. Top panel: the simulated backscatter signal described in the text.
Bottom panel: plot showing the dependence of If ,� on the number of
sampled points N� and noise level at 8-bit quantization. The heavy black
line labeled “Exact” is at 4.149, the limiting value of If ,� obtained from our
algorithm in the unquantized, noise-free case with N�=8192.
mimetic binding ligand into the lipid layer. Methods devel-
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oped in our laboratories were used to prepare perfluorocar-
bon �perfluorooctylbromide, which remains in a liquid state
at body temperature and at the acoustic pressures used in this
study9� emulsions encapsulated by a lipid-surfactant
monolayer.10,11 The nominal sizes for each formulation were
measured with a submicron particle analyzer �Malvern Zeta-
sizer, Malvern Instruments�. Particle diameter was measured
at 200�30 nm.

D. Animal model

The study was performed according to an approved ani-
mal protocol and in compliance with guidelines of the Wash-
ington University Institutional Animal Care and Use Com-
mittee.

The model used is the transgenic K14-HPV16 mouse in
which the ears typically exhibit squamous metaplasia, a pre-
cancerous condition, associated with abundant neovascula-
ture that expresses the �v
3-integrin. Eight of these trans-
genic mice12,13 were treated with 1.0 mg/kg intravenous of
either �v
3-targeted nanoparticles �n=4� or untargeted nano-
particles �n=4� and imaged dynamically for 1 h using a re-
search ultrasound imager �Vevo 660 40 MHz probe� modi-
fied to store digitized rf waveforms acquired at 0, 15, 30, and
60 min after injection of nanoparticles. In both targeted and
untargeted cases, the mouse was placed on a heated platform
maintained at 37 °C, and anesthesia was administered con-
tinuously with isoflurane gas �0.5%�.

E. Ultrasonic data acquisition

A diagram of our apparatus is shown in Fig. 8. rf data
were acquired with a research ultrasound system �Vevo 660,
Visualsonics, Toronto, Canada�, with an analog port and a
sync port to permit digitization. The tumor was imaged with
a 40 MHz single element “wobbler” probe and the rf data
corresponding to single frames were stored on a hard disk for
later off-line analysis. The frames �acquired at a rate of 40
Hz� consisted of 384 lines of 4096 8-bit words acquired at a
sampling rate of 500 MHz using a Gage CS82G digitizer
card �connected to the analog-out and sync ports of the Vevo�
in a controller PC. Each frame corresponds spatially to a

FIG. 7. �Color online� A cross-sectional diagram of the nanoparticles used
in our study.
region 0.8 cm wide and 0.3 cm deep.
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The wobbler transducer used in this study is highly fo-
cused �3 mm in diameter� with a focal length of 6 mm and a
theoretical spot size of 80	1100 �m �lateral beam width
	depth of field at 
6 dB�, so that the imager is most sensi-
tive to changes occurring in the region swept out by the focal
zone as the transducer is “wobbled.” Accordingly, a gel
standoff was used, as shown in Fig. 8, so that this region
would contain the mouse ear.

A close-up view showing the placement of transducer,
gel standoff, and mouse ear is shown in the bottom of the
figure. Superposed on the diagram is a B-mode gray scale
image �i.e., logarithm of the analytic signal magnitude�. La-
bels indicate the location of skin �top of image insert�, the
structural cartilage in the middle of the ear, and a short dis-
tance below this, the echo from the skin at the bottom of the
ear. Directly above this is an image of a histological speci-
men extracted from a K14-HPV16 transgenic mouse model
that has been magnified 20 times to permit better assessment
of the thickness and architecture of the sites where
�v
3-targeted nanoparticle might attach �red by 
3 staining�.
Skin and tumor are both visible in the image. On either side
of the cartilage �center band in image�, extending to the
dermal-epidermal junction, is the stroma. It is filled with
neoangiogenic microvessels. These microvessels are also
decorated with �v
3 nanoparticles as indicated by the fluo-
rescent image �labeled, in the upper right of the figure� of a
bisected ear from an �v
3-injected K14-HPV16 transgenic
mouse. It is in this region that the �v
3-targeted nanopar-
ticles are expected to accumulate, as indicated by the pres-
ence of red 
3 stain in the magnified image of a histological
specimen also shown in the image.

F. Ultrasonic data processing

Each of the 384 rf lines in the data was first up-sampled
from 4096 to 8192 points, using a cubic spline fit to the
original data set in order to improve the stability of the ther-
modynamic receiver algorithms. A by-product of this “order
N�” algorithm is simultaneous output of a corresponding ar-

8

FIG. 8. A diagram of the apparatus used to acquire rf data backscattered
from K14-HPV16 transgenic mouse ears in vivo together with a histologi-
cally stained section of the ear indicating portions where �v
3-targeted
nanoparticles could adhere and a fluorescent image demonstrating presence
of targeted nanoparticles.
ray of second derivative values of the fit function. Next, a

Hughes et al.: Real-time calculation of a limiting



moving window analysis was performed on the second de-
rivative data set, using Eq. �8� to compute If ,�, by moving a
rectangular window �512 points long, 0.512 �s� in
0.064 �s steps �64 points�, resulting in 121 window posi-
tions within the output data set. This produced an image for
each time point in the experiment. The window length was
chosen to match that used in previous studies;1,2 it corre-
sponds to the heavy black curve shown in Fig. 6. Analyses
were also performed using window lengths of 256
�0.256 �s� and 128 points �0.256 �s�. While they also pro-
duced statistically significant changes in If ,� versus time,
post-injection, the resulting If ,� versus time curves were
noisier, and required 1 h, post-injection, to exhibit statisti-
cally significant changes. As discussed previously, the opti-
mum choice of window length requires trade-offs between
sensitivity, noise level, and spatial resolution. In Sec. IV we
discuss the 512 point moving window length results since
they correspond most closely to previous results, which were
supported by independent histological results,1,2 and pro-
duced images with sufficient spatial resolution to indentify
relevant anatomical features in the mouse ear. Additionally, a
major goal of this study was to assess the numerical stability
of the algorithm, which is based on the second derivative of
an experimentally measured data set, and thus contaminated
by noise. Ordinarily, estimation of just the first derivative is
difficult. However, in our application, the effects of noise
might be mitigated by two factors: The second derivative is
obtained from a global fit to the data, and it appears in the
denominator of the expression for receiver output so that
values having large error are likely to make small contribu-
tions to the sum appearing in Eq. �8�.

G. Image processing

All rf data were processed off-line to reconstruct If ,�

images. Total analysis time using the new algorithm was less
than 5 min on an eight core desktop computer �compared to
the roughly week-long time required to execute the If�1.99�
analysis on a cluster of just over 20 computers that was re-
ported previously1�. A representative set of these images is
shown in the bottom row of Fig. 9. For comparison, the top
row shows conventional B-mode images, i.e., logarithm of
the signal envelope. The left columns show images con-
structed from the rf data sets acquired 0 min after injection
while the right column shows the images constructed from
data acquired 120 min post-injection. The look-up-table of

FIG. 9. Top row: conventional B-mode images at 0 min �left�, and after
injection of �v
3-targeted nanoparticles �right�. Bottom row: corresponding
If ,� images.
the entropy images have been inverted to produce a display
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in which pixels corresponding to tissue are brighter than sur-
rounding pixels, in order to facilitate comparison with the
conventional images. As expected, the conventional images
exhibit higher spatial resolution compared with the If ,� im-
ages, which employ a moving window in their construction.
While the window is discernible in the entropy images, it is
not a cause of major concern since our goal is automatic
quantitative detection of changes in scattering architecture in
the physical region represented by the image. As may be
seen from the figure, the bright regions in If ,� and conven-
tional images are correlated. Moreover, as time passes from 0
to 120 min, both rows of images show a reduction in contrast
between tissue of the ear �bright regions� and darker back-
ground �corresponding to the gel couplant�. In the If ,� images
this corresponds to an increase in If ,�. As discussed below
this effect is consistently observed in all If ,� images from the
group of K14-HPV16 transgenic mice injected with
�v
3-targeted nanoparticles, and it is not observed in If ,�

images from any of the control groups. As stated in previous
publications, there are no statistically significant changes in
signal energy images in any of the groups studied.2

Subsequently, a histogram of pixel values for the com-
posite of the 0, 15, 30, and 60 min images was computed as
described in previous papers.1,2 Image segmentation of each
type of image, at each time point in the experiment, was then
performed automatically using its corresponding histogram
according to the following threshold criterion: The lowest
7% of pixel values were classified as “targeted” tissue, while
the remaining were classified as “untargeted” �histogram
analysis was also performed using 90% and 87% thresholds,
with 93% having the best statistical separation between time
points�. The mean value of pixels classified as targeted was
computed at each time post-injection.

IV. RESULTS AND DISCUSSION

The results obtained after injection of targeted nanopar-
ticles and nontargeted nanoparticles by If ,� receiver are
shown in Fig. 10. Both curves show the time evolution of the
change �relative to 0 min� in mean value of receiver output in

FIG. 10. If ,� image enhancement, i.e., change relative to 0 min, obtained
after injection of �v
3-targeted nanoparticles �closed circles� and nontar-
geted nanoparticles �open circles� into four K14-HPV16 transgenic mice in
each case.
the enhanced regions of images obtained from the four ani-
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mals in the targeted and the four animals in the nontargeted
groups. Standard error bars are shown with each point. At 15
min the change in mean value of If ,� is more than two stan-
dard errors from zero, implying statistical significance at the
95% level. There is no statistically significant change in im-
age brightness for the nontargeted nanoparticles’ group. As
the results show, the algorithm for computation of If ,� is
stable in the presence of experimental noise.

The results presented in this paper extend earlier studies
where it was shown that an entropy-based measure Hf was
able to detect targeted nanoparticles in tumor
neovasculature2 after 30 min of accumulation time. Subse-
quently, the time required to detect targeted nanoparticles
was reduced to 15 min using a generalization of entropy
If�r�, with r=1.99, although the time required for signal
analysis was greatly increased.1 In the current study based on
If ,�, the analysis time has been reduced from days to minutes
using an algorithm suitable for real-time implementation,
while maintaining sensitivity that permits detection of nano-
particle accumulation at 15 min.

Real-time performance appears to have been purchased
at the price of reduced statistical sensitivity, in view of prior
observation that If�1.99� separated by over five standard er-
rors from 0 at 15 min �Ref. 1� as compared to the two stan-
dard error separation obtained with the real-time receiver
�see Fig. 10�. It is possible that preprocessing of the data by
bandpass filtering might improve the statistical performance
of the algorithm without significant increase in computa-
tional overhead. This will be studied in a future report.
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APPENDIX: DERIVATION OF ASYMPTOTIC FORM

As described in Sec. II, the limiting form of If�r� as
r→2 will now be derived. The first step is to observe that the
integral in Eq. �6� may split into two parts, one correspond-
ing to the region where the function is clearly bounded and
one corresponding to its singularities as shown in Fig. 11.
Thus,



f�tk�

f�tk+1�−�k+1

wf�y�2−�dy

= 

f�tk�

f�tk�+�k

wf�y�2−�dy + 

f�tk�+�k

f�tk+1�−�k+1

wf�y�2−�dy

= 

f�tk�

f�tk�+�k

wf�y�2−�dy + Bk, �A1�

where we have written Bk for the integral over the unshaded
region between f�tk�+�k and f�tk+1�−�k+1 in Fig. 11. We ob-
serve that Bk is bounded as �→0, while the integral appear-

ing in Eq. �A1� is not.
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Next, we consider the small interval of length �k near
the singularity of wf�f�tk�� �shaded regions of Fig. 11�. This
is the singularity corresponding to the kth extrema of f�t�:
f�tk�; also shown is the adjacent singularity corresponding to
an extrema of f�t� at tk+1. The dashed lines in these regions
represent the one over square root limiting form described in
Eq. �5�. By choosing �k small enough we may make the ratio
of the solid and dashed curves arbitrarily close to 1. In other
words, Eqs. �1� and �5� tell us that in these shaded regions
the following difference can be made as small as we like:

�wf�y − �k�/
ak

�y − f�tk�
− 1� , �A2�

where ak=�2 / f��tk�=�2 / �f��tk�� �assuming a minimum at
f�tk�, the argument for a maximum is similar�. Moreover, if a
particular choice of �k yields the desired accuracy, i.e.,
makes the difference small enough, choosing a smaller value
of �k will produce greater accuracy. Since the number of
extrema in our time-domain function f�t� is finite, we pick
the minimum �k, call it �, yielding the desired accuracy in all
of the shaded regions �i.e., at all singular points of wf�y��.
With this choice of � Eq. �A1� becomes



f�tk�

f�tk+1�−�

wf�y�2−�dy = 

f�tk�

f�tk�+�

wf�y�2−�dy + B̃k, �A3�

and Eq. �A2� becomes

�wf�y − ��/
ak

�y − f�tk�
− 1� � E , �A4�

or

wf�y − ��/ak/�y − f�tk� = 1 � E�y� , �A5�

where E� �E�y�� may be chosen to be as small as we like by

FIG. 11. An enlarged plot of a singularity of the density function wf�y�2−�

�solid curve� and Eq. �5� �dashed curves�; quantities relevant for derivation
of Eq. �A12�. As the shaded regions shrink the ratio between the dashed and
solid curves approaches 1. The darker shading corresponds to the region
discussed in the text.
choosing small enough �. As a result
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wf�y − ��2−� = � ak

�y − f�tk�
�2−�

�1 � E�y��2−�

= � ak

�y − f�tk�
�2−�

�1 � Ẽ�y�� , �A6�

where, once again, Ẽ�y� may be made arbitrarily small, i.e.,

for every Ẽ�0 there exists some ��0 such that Ẽ� �Ẽ�y��
for all y in between f�tk� and f�tk�+�.

Combining Eqs. �A3� and �A6� now yields



f�tk�

f�tk�+�

wf�y�2−�dy + B̃k

= 

f�tk�

f�tk�+� � ak

�y − f�tk�
�2−�

�1 � Ẽ�y��dy + B̃k

= 

f�tk�

f�tk�+� � ak

�y − f�tk�
�2−�

dy

� 

f�tk�

f�tk�+� � ak

�y − f�tk�
�2−�

Ẽ�y�dy + B̃̃ . �A7�

The second integral above may be bounded by

�

f�tk�

f�tk�+� � ak

�y − f�tk�
�2−�

Ẽ�y�dy�
� 


f�tk�

f�tk�+� � ak

�y − f�tk�
�2−�

�Ẽ�y��dy

� 

f�tk�

f�tk�+� � ak

�y − f�tk�
�2−�

Ẽdy

� Ẽ

f�tk�

f�tk�+� � ak

�y − f�tk�
�2−�

dy . �A8�

This inequality may be converted to an equality by replacing

the Ẽ factor with a smaller �positive� number. In general, this
number will depend on the behavior of wf�y� near the singu-

lar point y= f�tk�. For clarity, we denote this constant by Ẽk.
With this notation, Eq. �A8� becomes



f�tk�

f�tk�+� � ak

�y − f�tk�
�2−�

Ẽ�y�dy

= Ẽk

f�tk�

f�tk�+� � ak

�y − f�tk�
�2−�

dy , �A9�

where Ẽ� Ẽk�0 and hence may also be made as small as we
wish by reducing �. The common integral appearing in Eqs.
�A7� and �A8� may be computed as



f�tk�

f�tk�+� � ak

�y − f�tk�
�2−�

dy = ak
2−�


f�tk�

f�tk�+�

�y − f�tk��1−�/2dy

=ak
2−�� �y − f�tk���/2

�/2
�

f�t �

f�tk�+�
k
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=ak
2−� �f�tk� + � − f�tk���/2

�/2

=
2ak

2��/2

�
, �A10�

so that Eq. �A7� becomes



f�tk�

f�tk+1�−�

wf�y�2−�dy =
2ak

2��/2

�
� Ẽk

2ak
2��/2

�
+ B̃̃k

=
2ak

2��/2

�
�1 � Ẽk� + B̃̃k, �A11�

which we sum over all minima to obtain

= �
k

f��tk��0

2ak
2��/2

�
�1 � Ẽk� + B̃̃k, �A12�

a sum of bounded and unbounded terms, whose unbounded
term is computable directly from the experimentally acces-
sible function f�t� using ak=�2 / f��tk�=�2 / �f��tk��.

For the maximum we have the asymptotic term



f�tk�−�

f�tk� � ak

�f�tk� − y
�2−�

dy . �A13�

So that the contribution to Eq. �6� from all of the maxima
becomes



f�tk�−�

f�tk� � ak

�f�tk� − y
�2−�

dy = ak
2−�


f�tk�−�

f�tk�

�f�tk� − y�1−�/2dy

=ak
2−�� �f�tk� − y��/2

�/2
�

f�tk�−�

f�tk�

=ak
2−� �f�tk� − f�tk� + ���/2

�/2

=
2ak

2��/2

�
, �A14�

we now have a different expression for ak=�−2 / f��tk�
=�2 / �f��tk��.

Adding the contributions for the maxima and minima we
obtain



fmin

fmax

wf�y�2−�dy = �
�tk�f��tk�=0


2ak
2��/2

�
�1 � Ẽk� + B̃̃k

= �
�tk�f��tk�=0


4��/2

��f��tk��
�1 � Ẽk� + B̃̃k. �A15�
Cross multiplying by �
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�

fmin

fmax

wf�y�2−�dy = �
�tk�f��tk�=0


4��/2

�f��tk��
�1 � Ẽk� + �B̃̃k,

�A16�

taking the logarithm of both sides and letting �→0 we have

lim
�→0

�log 
 + log	

fmin

fmax

wf�y�2−�dy��
= log	4 �

�tk�f��tk�=0


1

�f��tk��
�1 � Ẽk�� . �A17�

Now taking the limit �→0 so that the Ẽk→0 we obtain

lim
�→0

�log � + log	

fmin

fmax

wf�y�2−�dy��
= log	4 �

�tk�f��tk�=0


1

�f��tk��� . �A18�

This shows that as �→0, the leading term in log�wf�y�2−�dy
always behaves like log 1 /�, regardless of f�t�; but the next
term in the asymptotic expansion, the right-hand side of Eq.
�A18�, does depend critically on f�t�, and is the quantity we
seek.

Multiplying both sides by 1 / �1−r�=1 / �1−2+��→−1
and then cancelling minus signs on both sides of the equa-
tion, we obtain

lim
�→0

�− log � − If�2 − ��� = − log	4 �
�tk�f��tk�=0


1

�f��tk��� .

�A19�

For imaging applications, where offset removal and res-
caling are typically performed when pixel values are as-
signed, we define the new quantity
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If ,� � − lim
�→0

If�2 − �� − log 4 + log �

= log	 �
�tk�f��tk�=0


1

�f��tk��� . �A20�

We will use this quantity to generate the images presented in
Sec. IV.
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