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There is growing evidence that the dynamics of biological systems that appear to be exponential
over short time courses are in some cases better described over the long-term by power-law
dynamics. A model of rate adaptation at the synapse between inner hair cells and auditory-nerve
(AN) fibers that includes both exponential and power-law dynamics is presented here. Exponentially
adapting components with rapid and short-term time constants, which are mainly responsible for
shaping onset responses, are followed by two parallel paths with power-law adaptation that provide
slowly and rapidly adapting responses. The slowly adapting power-law component significantly
improves predictions of the recovery of the AN response after stimulus offset. The faster power-law
adaptation is necessary to account for the “additivity” of rate in response to stimuli with amplitude
increments. The proposed model is capable of accurately predicting several sets of AN data,
including amplitude-modulation transfer functions, long-term adaptation, forward masking, and

adaptation to increments and decrements in the amplitude of an ongoing stimulus.
© 2009 Acoustical Society of America. [DOI: 10.1121/1.3238250]

PACS number(s): 43.64.Bt, 43.64.Pg, 43.64.Wn [WPS]

I. INTRODUCTION

At the first synapse of the auditory pathway, the receptor
potential of an inner hair cell (IHC) is converted into a dis-
charge pattern on auditory-nerve (AN) fibers, where adapta-
tion in discharge rate in response to a constant sound stimu-
lus is observed. The IHC-AN synapse complex is believed to
be mainly responsible for this adaptation. Although the
mechanism that gives rise to synaptic adaptation is not com-
pletely understood, it could be caused either by the depletion
of neurotransmitter from a readily releasable presynaptic
pool of neurotransmitter (Moser and Beutner, 2000; Schnee
et al., 2005; Goutman and Glowatzki, 2007) or by the desen-
sitization of post-synaptic receptors (Raman ef al., 1994).

Modeling the adaptation in the IHC-AN synapse has
been a focus of extensive research over the last several de-
cades. Early attempts employed a single-reservoir system
with loss and replenishment of transmitter quanta (Schroeder
and Hall, 1974; Oono and Sujaku, 1974, 1975), and later
models added extra reservoirs (or sites) or more complex
principles of transmitter flow control (Furukawa and Mats-
uura, 1978; Furukawa et al., 1982; Ross, 1982, 1996; Schwid
and Geisler, 1982; Smith and Brachman, 1982; Cooke, 1986;
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Meddis, 1986, 1988; Westerman and Smith, 1988). In gen-
eral, the transmitter in these models lies in reservoirs or sites
close to the presynaptic membrane and diffuses between res-
ervoirs within the cell and out of the cell to the synaptic cleft.
Each diffusion step is controlled by a permeability param-
eter, and at least one of the permeabilities is dependent on
the stimulus. Mathematically, low-pass filters with appropri-
ate orders and cut-off frequencies can replicate the replenish-
ment and diffusion mechanisms between different transmitter
reservoirs. Depending on the interconnection of the reser-
voirs, the flow of transmitter for these models can be imple-
mented using either a cascade of low-pass filters or parallel
low-pass filters.

Adaptation in the IHC-AN synapse is very complex. Its
characteristics depend on stimulus intensity, duration, previ-
ous stimulation history, and spontaneous rate (SR) (Rhode
and Smith, 1985; Relkin and Doucet, 1991). The diversity
and complexity of adaptation pose a great challenge for suc-
cessful modeling of the dynamics of this synapse. Two mod-
els with different structures have been developed indepen-
dently in a series of studies (Meddis, 1986, 1988; Westerman
and Smith, 1988; Carney, 1993; Zhang et al., 2001; Sumner
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et al., 2002, 2003). However, the mathematical descriptions
of these two models are essentially equivalent despite their
structural differences (Zhang and Carney, 2005). Both of
these models are successful to some extent in simulating the
onset adaptation responses (characterized by two exponential
time constants) of the AN fibers. They have the same double-
exponential adaptation (rapid and short-term) in both onset
and offset responses (Zhang and Carney, 2005). However,
physiological data exhibit substantially different dynamics
between the offset and onset responses; in particular, the dis-
charge rate may drop below the spontaneous rate at stimulus
offset, sometimes to the point where there is a cessation of
firing (i.e., the discharge rate is zero), followed by a rela-
tively slow recovery to the spontaneous rate. Also the mag-
nitude and time course of the onset and offset adaptations of
the physiological data scale with the duration of the stimulus
(Kiang, 1965), providing one illustration of the long-term
behavior of AN response dynamics. Synapse models based
on exponential adaptation fail to account for the offset adap-
tation as well as these long-term response properties. For
example, physiological forward-masking data cannot be ex-
plained by these models without changing the model param-
eters such that they are inconsistent for onset and offset ad-
aptations, and the dynamics must also be adjusted for fibers
with different spontaneous rates (Meddis and O’Mard,
2005). These models also produce inaccurate responses to
amplitude-modulated (AM) signals (Nelson and Carney,
2004; Zhang and Carney, 2005) and to increments and dec-
rements in the amplitude of ongoing stimuli (Hewitt and
Meddis, 1991).

Zhang and Carney (2005) developed a strategy that ef-
fectively avoids the constraint on the time course of recovery
in the offset imposed by the onset parameters. A simple shift
in the upward and downward directions (by same amount) of
the pre-and post-synaptic responses, respectively, results in a
slower recovery with a cessation in the post-synaptic re-
sponse immediately after stimulus offset. It was reported that
an appropriate shift can produce a better modulation transfer
function (i.e., strength of AN synchronization to the envelope
of amplitude-modulated stimuli as a function of modulation
frequency) (Fig. 11, Zhang and Carney, 2005). However,
such a shift also results in a systematic variation in the av-
erage rate with modulation frequency, which is not observed
in AN responses (Joris and Yin, 1992), and also produces
unrealistic steady-state rates of low spontaneous-rate fibers
to tones at high sound levels (Nelson and Carney, 2004).

Hewitt and Meddis (1991) compared the responses of
eight different synapse models to a set of standard stimuli
and found no single model that could satisfactorily explain
all of the data in their target set of responses. Although ad-
dition of extra reservoirs or sites in the model (equivalent to
adding more exponential processes) tends to address more
response properties of the AN (e.g., Smith and Brachman,
1982; Payton, 1988), such a model becomes mathematically
intractable, and thus finding a set of parameters that works
well for a large set of AN response properties is difficult, if
not impossible.

Recently, power-law adaptation (PLA) has drawn a lot
of attention in describing the dynamics of biological systems
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at levels ranging from single ion channels up to human psy-
chophysics (Wixted and Ebbesen, 1997; Toib et al. 1998;
Fairhall et al., 2001; Leopold et al., 2003; Ulanovsky et al.,
2004; Lundstrom et al., 2008). Power-law adaptation is char-
acterized by an adaptation of discharge rate that follows a
fractional power of time or frequency rather than an expo-
nential decay (Chapman and Smith, 1963). In fact, power-
law dynamics can be approximated by a combination of a
large number of exponential processes with a range of time
constants (Brown and Stein, 1966; Thorson and Biederman-
Thorson, 1974; Drew and Abbott, 2006). It has been argued
that on short timescales, underlying mechanisms represent
the contribution of intrinsic nonlinearities (e.g., ion channel
dynamics). However, adaptation often exhibits power-law-
like dynamics over longer timescales, implying the coexist-
ence of multiple timescales in a single adaptive process
(Camera et al., 2006). In reality, multiple timescales exist in
the multiplicity of channel dynamics present in a single neu-
ron. To our knowledge, power-law dynamics has not yet
been employed to explain adaptation at the level of the AN.

To illustrate a general model of power-law adaptation,
suppose a stimulus s(7) produces a response r(f) that feeds
back into an integrator /(¢), such that the adapted response,
r(t)=max[0,s(¢)-1(¢)], and

t r(t') . .
1(r) = afo mdl = ar(t) * f(1)

where f(z) = 1/(t + B),

where « is a dimensionless constant and B is a parameter
with units of time (Drew and Abbott, 2006). The suppressive
effects of the response, I(1), are accumulated with power-law
memory that is intermediate between perfect (never forgot-
ten) and exponential processes (Drew and Abbott, 2006). I(z)
can be described as a convolution of a power-law kernel,
f(¢), with its prior responses, r(z).

To compare the dynamics of adaptation between a
power-law and a single exponential process, Fig. 1 illustrates
power-law (solid) and exponential (dashed) adaptation in re-
sponse to a unit step function [s(r)=1, >0] over four dif-
ferent time scales. For exponential adaptation [i.e., I(f)
=1/7,[or(t")exp(('=t)/ 7., )dt'], the transient response de-
cays exponentially to a steady-state value with a fixed time
constant regardless of the stimulus time scale. Because the
transition between the initial transient and the later sustained
response occurs at a fixed time, exponential adaptation ap-
pears to have increasingly sharp transitions when observed
over longer time scales. However, power-law adaptation has
a similar shape for all four time scales, indicating the “scale-
invariance” property of power-law adaptation. The responses
appear qualitatively similar to exponential adaptation over
any particular time period, and thus have no well-defined
transient or sustained responses. Nevertheless, if a conven-
tional time constant is evaluated from the responses of the
power-law adaptation, its value depends on the duration of
the responses being fit. This is illustrated by the power-law
adaptation examples in Fig. 1, where the responses to the
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FIG. 1. Tlustration of the dynamics of adaptation for exponential (dotted
lines) and power-law (solid lines) models for four different time scales (0—
0.1, 0-1, 0-10, and 0~100 s) in response to a unit step function. The param-
eters for the exponential adaptation are 7,=0.2 s and 7,,=0.1 s. The param-
eters for the power-law adaptation are «=5X 107> and 8=5X 1073 s. The
solid curves retaining a similar shape across different time scales demon-
strate the “scale-invariance” property of the power-law adaptation.

four different stimulus durations appear to have transient re-
sponses of different durations, even though they arise from
the same power-law adaptation.

Mathematically, the dimensionless constant a controls
the amount of adaptation and hence makes the power-law
adaptation scale-invariant (Drew and Abbott, 2006). In con-
trast, in the case of exponential adaptation, the equivalent of
«a has units of frequency (1/7,, where 7, is the time constant
in seconds); thus, the transition between transient and sus-
tained responses is fixed in time (i.e., it is not scale-invariant)
(Drew and Abbott, 2006). Moreover, the long tail of the
power-law kernel provides a longer memory for past re-
sponses than does exponential adaptation. The hypothesis of
this study was that inclusion of power-law adaptation in the
IHC-AN synapse could account for offset responses as well
as other long-term response properties of the AN.

This paper describes a model of rate adaptation at the
IHC-AN synapse that was incorporated into a composite
phenomenological model of AN responses (Zilany and
Bruce, 2006, 2007). Model responses were compared to
physiological data for several different stimulus paradigms.
The proposed PLA synapse model that includes both expo-
nential and power-law dynamics replaces the previous syn-
apse model having only exponential adaptation. Westerman
and Smith’s (1988) three-store diffusion model, which gives
rise to exponential adaptation, is followed by two parallel
power-law adapting paths that provide slowly and rapidly
adapting responses, respectively. The parameters of the
three-store diffusion model were adjusted to achieve desired
onset responses with two time constants (rapid and short-
term) and rate saturation at higher stimulus levels. It is worth
mentioning that power-law adaptation alone does not result
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TABLE I. Parameter values.

Power-law adaptation

Dynamics « (dimensionless) B (s)
Slow 5X107° 5x10™
Fast 1X 1072 1x107!

Fractional Gaussian noise
Spontaneous Standard deviation
rate (spikes/s) (spikes/s)

High (100) 200

Medium (5) 50
Low (0.1) 10

in rate saturation. The slowly adapting power-law component
significantly improves the AN response at stimulus offset and
also recovery after stimulus offset. The path with fast power-
law dynamics contributes to the unsaturated onset response
and to the “additivity” observed in AN rate responses to
stimuli with amplitude increments. Several studies have con-
firmed that the process of short-term adaptation is additive in
nature (Smith and Zwislocki, 1975; Smith, 1977; Abbas,
1979), meaning that the change in firing rate in response to
an increment/decrement in stimulus level does not greatly
depend on the time between the onset and the subsequent
change in level. Smith er al. (1985) showed that this property
also holds if increment responses are analyzed with different
window lengths that separate the portions of the response
associated with rapid and short-term adaptation. In contrast,
the small-window decrement response decreases with in-
creasing time delay (i.e., decrement responses are not addi-
tive over a short time window following the decrement).
With the inclusion of power-law dynamics in the synapse
model, the AN model presented in this paper can success-
fully account for a wide range of response properties of the
AN, including additivity.

Another “long-term” property of AN responses that was
addressed in this study is the pattern of correlations in re-
sponse rates over long time intervals. The discharge rate of a
single AN fiber is positively correlated over long time scales,
whereas its response is often negatively correlated over the
short term (Teich, 1989; Kelly et al., 1996). Strong correla-
tion of rate computed over widely separated analysis win-
dows is referred to as “long-range-dependence” (LRD). Jack-
son and Carney (2005) investigated the implication of this
effect of LRD in understanding SRs of AN fibers. They em-
ployed a fractional-Gaussian-noise-driven Poisson process to
model LRD rates of AN fibers (Teich, 1989; Teich and Lo-
wen, 1994). As LRD dramatically increases the variability of
estimates of mean discharge rates (Jackson, 2003), they ar-
gued that the entire AN fiber population may be made up of
neurons with only two or three true SRs. Incorporating ap-
propriate LRD effects in their simulations, they successfully
replicated the SR histograms of AN fibers. In order to model
the distribution of SRs, the same approach was adopted in
this study by adding a fractional Gaussian noise with appro-
priate parameters (Table I) in the slow power-law adaptation
path of the IHC-AN synapse model.

Zilany et al.: Long-term adaptation with power-law dynamics
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FIG. 2. (A) Schematic diagram of the model for the auditory periphery. The input to the model is an instantaneous pressure waveform of the stimulus (in
pascals) and the output is a series of AN spike times. The model includes a middle-ear filter, a feed-forward control-path, a signal-path (C1) filter and a
parallel-path (C2) filter, the IHC section followed by the synapse model, and the discharge generator. Abbreviations: outer hair cell (OHC), low-pass (LP)
filter, static nonlinearity (NL), characteristic frequency (CF), and inverting nonlinearity (INV). Cqyc and Cyyc are scaling constants that specify OHC and IHC
status, respectively. From Zilany and Bruce (2006, with permission). (B) IHC-AN synapse model: exponential adaptation (three-store diffusion model by
Westerman and Smith 1987, 1988) followed by parallel power-law adaptation models (slow and fast). Fractional Gaussian noise added at the input of the slow

power-law adaptation model results in the desired distribution of spontaneous rates.

Il. DESCRIPTION OF THE MODEL
A. Architecture of the PLA model

A schematic diagram of the PLA model for auditory-
nerve responses is shown in Fig. 2. Each section of the
model provides a phenomenological description of the major
functional components of the auditory periphery, from the
middle ear (ME) to the auditory nerve. The input to the ME
is an instantaneous pressure waveform of the stimulus (in
pascals) sampled at 100 kHz. The ME filter is followed by
three parallel filter paths: the C1 and C2 filters in the signal
path and the broad-band filter in the control-path. The feed-
forward control-path regulates the gain and bandwidth of the
Cl1 filter to account for several level-dependent properties in
the cochlea (Zhang et al., 2001; Bruce er al., 2003). The
parallel-path C2 filter is implemented based on Kiang’s two-
factor cancellation hypothesis (Kiang, 1990). The combined
response of the two transduction functions following the CI
and C2 filters provides the input to a seventh-order IHC low-
pass filter (Zilany and Bruce, 2006, 2007). The THC output
drives the model for the IHC-AN synapse. In this study, a
new model of the IHC-AN synapse replaced the previous
synapse model. Finally the discharge times are produced by a
renewal process that includes refractory effects (Carney,
1993). Detailed descriptions of the model stages are provided
in Zilany and Bruce (2006, 2007); the model code is avail-
able at the following website: www.bme.rochester.edu/
carney.
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B. Modifications of the model from previous version

The model described and evaluated in this paper mainly
differs from its predecessors (Zilany and Bruce, 2006, 2007)
in the IHC-AN synapse section, which will be described in
detail in the following sections. Another modification from
the previous version of the AN model is that the cut-off
frequency of the IHC low-pass filter was reduced from 3.8 to
3.0 kHz. The introduction of power-law adaptation in the
synapse model significantly increases synchrony to pure
tones, and thus the cut-off frequency was adjusted to match
the maximum synchronized responses of AN fibers to pure
tones as a function of characteristic frequency (CF)
(Johnson, 1980).

It should be noted that in previous versions of the model,
responses of the synapse were simulated for only one repeti-
tion of the stimulus. Because the discharge generator has
relatively long-term dynamics that can span from one stimu-
lus repetition to the next, a series of identical synapse output
waveforms was concatenated according to the number of
stimulus repetitions and the silent intervals between stimuli.
In contrast, the PLA synaptic model presented here has
power-law adaptation with memory that, in general, exceeds
the duration of a single stimulus repetition. Thus, for the
results described here, the responses of the IHC model (not
synapse) output were simulated for one repetition of the
stimulus, and then a series of identical IHC responses was
concatenated and used as the input to the synapse model.

Zilany et al.: Long-term adaptation with power-law dynamics 2393



C. PLA model of the IHC-AN synapse

Although many biological systems exhibit power-law
rather than exponential dependence on time, in some cases,
power-law adaptation alone underestimates the amount of
adaptation at short-times (Drew and Abbott, 2006). For ex-
ample, the response of an electrosensory neuron in electric
fish to a long duration (100-s) amplitude-modulated step
stimulus (Xu et al., 1996) was well described by power-law
adaptation from 20 ms to 100 s, but not from 0 to 20 ms [Fig.
2(b), Drew and Abbott, 2006]. This observation led Drew
and Abbott (2006) to argue for the presence of an additional
exponential adaptation component with a small time con-
stant. It is well-known that adaptation to sustained tones in
mammalian AN fibers involves at least three time scales:
rapid adaptation on the scale of milliseconds, short-term ad-
aptation on the scale of several tens of milliseconds, and
slow adaptation on the scale of seconds (Kiang, 1965). In
order to include all of these time scales, the new IHC-AN
synapse model has power-law adaptation following short-
term exponential adaptation components.

The variation in adaptation characteristics across differ-
ent AN fibers suggests that individualized sets of model pa-
rameters might be required to predict individual AN fiber
responses accurately. However, the goal of this study was to
determine a single parameter set that was satisfactory for a
wide range of response properties of AN fibers.

1. Exponential adaptation

This part of the synapse model is exactly the same as in
previous versions of the model (Zhang et al., 2001; Zilany
and Bruce, 2006, 2007), which included a time-varying
implementation of Westerman and Smith’s (1988) three-store
diffusion model. The parameters were determined according
to the derived equations (Appendix A of Westerman and
Smith, 1988) based on the desired response characteristics
for the onset and steady-state responses of the post-stimulus
time histograms (PSTHSs) to tones (Appendix in Zhang ef al.,
2001).

The onset response of the model AN fiber is governed
by exponential adaptation with two time constants (2 and 60
ms). The other parameters of the three-store diffusion model
in the exponential adaptation stage were set to produce spon-
taneous activity and rate saturation at higher stimulus levels
(Zhang et al., 2001).

2. Power-law adaptation

In the PLA model, the output of the exponential process
drives two parallel power-law adaptation paths, namely, slow
and fast power-law adapting components. The inclusion of
two power-law functions in the model was motivated by the
fact that one power-law adaptation component alone cannot
account for an important AN response property, additivity
(see below), while retaining the onset adaptation dynamics
set by the exponential processes. The selection of parameters
for these two power-law functions is more challenging and
was complicated by the fact that power-law adaptation has
no well-defined transient or sustained responses (Fig. 1). So,
rather than trying to fit individual data sets, parameters of the
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power-law functions were chosen in such a way that the
model qualitatively addressed a range of AN response prop-
erties for a wide variety of stimulus conditions. The param-
eters were then kept fixed and were not optimized to fit in-
dividual AN responses.

The parameters of the slow power-law component were
such that it closely followed the output of the exponential
adaptation model for onset responses (i.e., slow power-law
adaptation further adapts the signal, but with a time course
that is similar to that of its input). Because the power-law has
longer memory than the exponential function, the offset and
other long-term response properties were significantly im-
proved in the output of the slow power-law component.
Thus, model predictions for forward-masking paradigms and
for amplitude-modulated signals were also improved sub-
stantially by inclusion of the slow power-law adaptation
component.

However, the desired property of AN additivity cannot
be modeled with a power-law function that has the same time
course of adaptation as the exponential adaptation (see be-
low). To capture the phenomenon of additivity, a second
power-law function with faster adaptation was therefore in-
troduced in the model; this function adapts quickly and is
very responsive to increments in amplitude of an ongoing
stimulus. Thus the change in discharge rate in response to an
increment remains almost the same irrespective of the delay
between stimulus onset and presentation of the increment.
However, in response to decrements, both power-law com-
ponents turn off instantaneously and recover very slowly. As
the fast power-law component is very sensitive to increments
of the stimulus, it results in a highly synchronized response
to the envelope of amplitude-modulated signals and also to
pure tones at low frequencies (this synchrony is limited by
the THC low-pass filter).

As stated earlier, the parameters of the power-law func-
tions were adjusted to qualitatively address a wide range of
response properties of the AN. To determine the parameters
of the slow power-law function, two particular data sets were
used that require adaptation with longer memory and thus
were relevant to the power-law dynamics. The first one was
the offset responses to a pure tone stimulus across several
sound levels (Kiang, 1965), and the other one was the re-
sponses to a probe in a forward-masking stimulus paradigm
(Harris and Dallos, 1979). Once the parameters for the slow
power-law component were set, the parameters of the fast
power-law function were then chosen by qualitatively match-
ing the model responses with the physiological data for the
increment/decrement paradigm (Smith ez al., 1985). The pa-
rameters of both slow and fast power-law functions are pro-
vided in Table I. After all parameters were set, the model was
tested for a wide variety of AN response properties; the re-
sults are reported in Sec. IIL.

3. Implementation of the power-law function

The computation of power-law functions is very
expensive.1 As the duration of the signal increases, the cor-
responding computational time increases significantly be-
cause computation of each sample of the adapted response
requires memory from the onset of the signal (i.e., onset of

Zilany et al.: Long-term adaptation with power-law dynamics



the first repetition in case of more than one repetition of the
signal, which corresponds to time zero). As mentioned ear-
lier, the power-law function can be expressed as the convo-
lution of power-law kernel with its prior responses. When
possible, for computational efficiency, power-law kernels of
fast and slow power-law functions were approximated by
sixth- and tenth-order infinite impulse response (IIR) filters,
respectively. To ensure stability, these digital filters were
implemented as a cascade of second-order systems. The re-
sponses of the model for actual and approximate implemen-
tations were almost the same for short duration stimuli (Fig.
5). However, for very long stimuli (as in Fig. 6), the actual
implementation of the power-law functions was required to
replicate the physiological data.’

4. Implementation of SR

To model the distribution of SR, the fractional Gaussian
noise (fGn) was added in the slow power-law adaptation path
of the synapse model. The source of this noise within the
auditory periphery is not known; it was introduced in the
slow power-law path of the model for the following reasons.
First, the parameters of the slow power-law path did not alter
the dynamics of the noise significantly, whereas both expo-
nential and fast power-law adaptation would have changed
the noise dynamics substantially. That is, f{Gn maintains the
spectral properties of 1/f type noise with slightly altered
magnitude after the slow power-law adaptation. Note that the
fluctuation in the fGn also prevents the spontaneous rate
from continuously adapting toward a value of zero (result not
shown). Second, if the noise were added directly to the syn-
apse output, the added noise would “fill in” the pause in the
offset responses, and thus the dynamics of recovery would be
obscured by the noise.

Three parameter sets were used in this study to generate
fGn (with Hurst index H=0.9, which specifies the strength of
the LRD) corresponding to three classes of SR (low, me-
dium, and high). The rationale behind employing three true
SRs rather than two (a possibility suggested by Jackson and
Carney, 2005) will be examined in detail in Sec. IV. These
parameters, provided in Table I, were adjusted to simulate
the distribution of AN SRs in cat (Liberman, 1978). Because
the exponential adaptation model has a steady-state response
that determines spontaneous rate, the added fGn has zero
mean. It is worth noting that these parameters are different
from those used in Jackson and Carney (2005) for two rea-
sons. First, in Jackson and Carney (2005), refractory effects
were not included in the Poisson process, whereas the dis-
charge generator in the PLA model has refractory effects to
simulate realistic responses of the AN. Second, the parameter
values compensate for the slight alteration of the noise dy-
namics by the slow power-law adaptation.

lll. RESULTS

In this section, the spontaneous activity as well as re-
sponses of the model to a wide variety of stimuli, including
paradigms involving tones and noise, are compared to physi-
ological data from the literature.
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FIG. 3. Histogram of actual (upper panel) and model (lower panel) SR
estimates from 30-s recordings from 738 fibers in the auditory nerves of cats
(binwidth of 1 spike/s). (A) Actual AN SR histograms from Liberman
(1978, with permission). (B) Model histogram of SR estimates using the
same paradigm as in Liberman (1978) for 738 independent simulations.
Three parameter sets for the fGn were used, applied to the proportions of
different SR fibers reported in Liberman (1978). fGn parameters are pro-
vided in Table 1.

A. Spontaneous activity

The upper panel (A) in Fig. 3 is a histogram of SR
estimates from 30-s recordings for 738 cat AN fibers (Liber-
man, 1978). The lower panel (B) is a histogram of model SR
estimates, made using a paradigm that matched Liberman’s
(1978). A total of 738 independent simulations was carried
out, with the number of simulations for each SR class deter-
mined according to the proportions of different SR fibers
reported in Liberman (1978) [high SR (~61%), medium SR
(~23%), and low SR (~16%)]. As described in Sec. II, each
SR type was simulated by choosing one of three possible
parameter values for the fGn (Table I). The model histogram
matches the distribution of SRs reported for the physiologi-
cal data.

B. Responses to pure tones at CF
1. Recovery of spontaneous activity

At the offset of a tone pip, AN firing can be substantially
reduced relative to spontaneous rate and is often character-
ized by a pause in the response followed by a slower recov-

Zilany et al.: Long-term adaptation with power-law dynamics 2395



— 50 ms
=— 100 ms
— 200 ms
—— 500 ms
— 1sec

N

o

=)
.

200

Synapse output (spikes/s)

FIG. 4. Illustration of the “scale-invariance” property of the PLA model.
Here the output of the synapse model is shown before the discharge genera-
tor. The fGn was not included in the model to avoid fluctuation in the output.
The dotted line indicates the spontaneous rate of the fiber. The stimulus was
a 10-kHz tone at CF, 12 dB above threshold. The duration of the signal
varied from 100 ms to 1 s, but the inter-stimulus interval was fixed at 200
ms in all cases. Responses to 50 repetitions of the stimulus were averaged.
The dynamics of recovery from the stimulus offset to spontaneous rate
scales according to the duration of the signal.

ery (on the order of several tens of milliseconds) to sponta-
neous activity (Harris and Dallos, 1979; Smith, 1977,
Westerman, 1985). The amount of reduction in rate and the
exact nature of recovery depend on the stimulus level (Yates
et al., 1985) and also on the fiber’s spontaneous rate (Relkin
and Doucet, 1991). Low spontaneous-rate (LSR) neurons
take a longer time to recover from prior stimulation as com-
pared to high spontaneous-rate (HSR) neurons (Relkin and
Doucet, 1991).

To demonstrate the scale-invariance property of the PLA
model, the output of the synapse model is shown in Fig. 4 in
response to a tone stimulus (tone at CF = 10 kHz, 12 dB
above threshold) with different durations, but with a fixed
inter-stimulus interval of 200 ms. The signal durations used
were 50, 100, 200, 500, and 1000 ms. Responses to 50 rep-
etitions of the stimulus were averaged. The dotted line indi-
cates the (high) spontaneous rate of the fiber. To avoid fluc-
tuations in the output and to emphasize the relevant response
details for this simulation, fGn was not included in the model
for this illustration. For short-duration signals (<~200 ms),
a 200-ms silent interval is adequate for full recovery to spon-
taneous rate, whereas longer signals require longer inter-
stimulus intervals to completely recover to spontaneous rate.
Since power-law adaptation has long memory for past re-
sponses, the dynamics of recovery after signal offset for the
PLA model scales according to the duration of the signal. In
contrast, the recovery to spontaneous rate in the exponential
adaptation model (results not shown) would occur over a
constant time period irrespective of the duration of the signal
because the time constant of the exponential process is fixed.
It should be noted that the relatively steady-state part of the
PLA model response is noticeably reduced in response to
longer duration signals because the responses do not fully
recover to spontaneous rate during the inter-stimulus inter-
val.
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FIG. 5. Effects of spontaneous rate on recovery in experimental [upper
panels (A)] and model [lower panels (B)—(D): previous model, new PLA
model with approximate and actual implementations, respectively] histo-
grams of two AN fibers in response to 500-ms duration constant-amplitude
stimuli. The stimuli were presented once a second. Each histogram repre-
sents 2 min of data collection. Left panels: CF = 1.82 kHz, HSR (unit 43 in
data); right panels: CF = 10.34 kHz, LSR (unit 41 in data). (A) From Kiang
(1965, with permission). (B) Model histograms of AN fibers at 25 dB SPL
using the previous model (Zilany and Bruce, 2007) that has only exponential
adaptation in the synapse model. (C) PLA model histograms at 25 dB SPL
with approximate power-law implementation. (D) PLA model histograms at
25 dB SPL with actual power-law implementation.

Figure 5(a) shows PSTHs for a HSR AN fiber with CF
= 1.82 kHz on the left and for a LSR AN fiber with CF =
10.34 kHz on the right (from Kiang, 1965). The stimulus was
120 repetitions of a 500-ms tone followed by a 500-ms silent
period. Figure 5(b) shows corresponding responses of the
previous AN model that had only exponential adaptation in
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the synapse model. In contrast to the physiological data, the
responses of the previous model show no pause in the re-
sponse after the stimulus offset and a very quick recovery to
spontaneous activity. The two lower panels [Figs. 5(c) and
5(d)] show the PLA model responses for both the approxi-
mate and actual implementations of the power-law functions.
In general, the PLA model responses closely resemble the
physiological data. Also, as expected, the model response
computed using the actual power-law implementation has a
slightly slower recovery than the response computed with the
approximation.

2. Long-term recovery

Young and Sachs (1973) measured the recovery of the
discharge rate of single AN fibers to tone pips after exposure
to 60-s long continuous tones. Both the exposure and test
tones were at the fiber’s CF. The 100-ms test tones were
presented once per second at 19 dB sound pressure level
(SPL) either before or after the exposure. The total duration
of pre- and post-exposure test signals were 10 and 60 s,
respectively. Effects of exposure level on recovery were
studied at four exposure SPLs (29, 59, 74, and 89 dB). The
post-exposure test-tone response rates were fitted to an ex-
ponential to determine the time constant of recovery.

Figure 6 shows the recovery of post-exposure responses
(to pre-exposure response rates) for a HSR AN fiber with CF
= 2.15 kHz, using the stimulus paradigm described above.
The left panels [(A)and (C)] show physiological responses
from cat (Young and Sachs, 1973), and the right panels [(B)
and (D)] show corresponding model responses. Recovery of
the post-exposure response was fitted to an exponential, and
the computed time constants are shown in the lower panels.
The stimulus paradigm was the same for both actual and
model fibers, except that the test signal used for the model
was reduced to 9 dB SPL, to approximately match the level
with respect to threshold to that of the cat AN fiber. Model
responses to ten repetitions of the input stimulus were aver-
aged, as was done for the experimental data.

Following exposure, the discharge rate to the test tone is
transiently reduced, and the time constant of recovery in-
creases as the exposure level increases, even though re-
sponses during the exposure saturate in response to higher-
level exposure tones. Young and Sachs (1973) argued that
there exists an additional suppression mechanism other than
exposure evoked suppression to account for this phenom-
enon. The PLA model with two parallel power-law adapta-
tion paths can qualitatively address this issue. Although the
steady-state rate saturates at higher levels, model responses
at onset have a much wider dynamic range (Smith, 1988). As
the power-law function has a long memory (which extends
back to the onset of the exposure stimulus), the reduction in
the test signal responses continues to increase for higher-
level exposure tones. In addition to the slow power-law com-
ponent, the fast power-law component also plays a signifi-
cant role in this case, as this component is very sensitive to
level at the onset of the stimulus. For a good quantitative fit
between model responses and actual data, the two parallel
power-law adaptation paths could be driven by two separate
inputs with a significant emphasis on the fast power-law
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FIG. 6. Effect of exposure level on recovery for an AN fiber with CF = 2.15
kHz (HSR). The stimulus paradigm is illustrated at the top. Left panels [(A)
and (C)] show the actual experimental responses, and the right panels [(B)
and (D)] show the corresponding model responses. Duration of the exposure
signal was 60 s, and the exposure levels were 29, 59, 74, and 89 dB SPLs
(shown on the right/above of each curve). The test signal (100-ms long
applied once per second) was also at CF with level 19 dB SPL (fixed).
However, the test signal level in the model responses was at 9 dB SPL to
match with the level of the experimental fiber with respect to its threshold.
Total durations of the pre- and post-exposure test signals were 10 and 60 s,
respectively. Recoveries of the post-exposure responses (fitted to an expo-
nential) are shown with their corresponding time constant values. [(A) and
(C)] From Young and Sachs (1973, with permission). [(B) and (D)] Model
responses of recovery employing the same experimental condition as in the
data. Responses to ten repetitions of the same stimulus were averaged.

component (results not shown). As the mechanism of these
power-law functions is not known, and to keep the model
structure simpler, both power-law functions of the PLA
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model are driven by the same input (i.e., the exponentially
adapted THC output). Note that since the recovery in the
responses of the previous models (that have only exponential
adaptation) does not scale with the duration of the stimulus,
those models cannot account for these long time constants
(on the order of several seconds) of recovery.

3. Effects of SR and inter-stimulus interval on
adaptation at tone onset

Rhode and Smith (1985) and Miiller and Robertson
(1991) investigated the effect of fiber types on adaptation
after stimulus onset in cat and guinea-pig, respectively. They
found that LSR fibers show no or very little adaptation,
whereas HSR fibers show substantial adaptation. However,
Relkin and Doucet (1991) pointed out that the inter-stimulus
intervals used in these studies may have been too short to
allow for full recovery from stimulation in previous repeti-
tions, especially for LSR fibers. They reported that an inter-
stimulus interval of 300 ms was long enough for a 100-ms
duration signal (40 dB above threshold) to allow onset re-
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sponses to fully recover in HSR fibers, but not in LSR fibers.
The model was used to simulate their experiment using both
HSR and LSR model fibers.

Left panels in Fig. 7(a) show the PST histograms of the
PLA model for a HSR (upper) and a LSR (lower) fiber. The
tone stimulus at CF (2 kHz) was 100 ms in duration with a
level 40 dB above threshold and was presented 50 times with
inter-stimulus intervals of 0.103, 0.303, and 1.9 s. For the
LSR fiber, the peak at the stimulus onset was reduced to
~74% with decreasing inter-stimulus interval from 1.9 to
0.103 s. In contrast, the peak onset of the HSR fiber was
decreased to only ~90% for the same condition. It should be
noted that the spontaneous rate of the HSR fiber was signifi-
cantly reduced for the 0.103-s inter-stimulus interval condi-
tion because the duration of the inter-stimulus interval was
not sufficient to allow full recovery to spontaneous rate be-
fore the onset of each subsequent signal (see Fig. 4). For the
results in the right panels, the onset spike rate was computed
using the number of spikes in the most populated 1-ms bin of
the response histogram after the onset of the stimulus. The
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onset peak for each AN fiber was normalized by the onset
peak for that neuron when the inter-stimulus interval was 1.9
s. The right upper panel [Fig. 7(b)] shows the averaged re-
sponses from 12 HSR and 18 LSR AN fibers from chinchilla
(Relkin and Doucet, 1991). Solid bars show the responses of
HSR fibers, and open bars represent LSR fiber responses.
Model responses shown in Fig. 7(c) were also averaged from
AN fibers with CFs ranging from 1 to 20 kHz (logarithmi-
cally spaced) for both HSR and LSR fibers. Similar to the
physiological data, the model HSR fibers were almost com-
pletely recovered when the inter-stimulus interval was 0.303
s, but the LSR fibers were ~80% recovered by this time.
This result is further supported by the observation of Young
and Sachs (1973) that different SR classes have different
time course of recovery at equal sound levels. However, their
behavior was identical for SR classes when plotting the re-
covery of time constants vs driven rate instead of stimulus
level. The PLA model responses are also consistent with the
observation by Young and Sachs, 1973 (results not shown).

C. Responses to tones with amplitude
increments/decrements

1. Conservation of energy

Westerman and Smith (1987) reported that the total tran-
sient response associated with an incremental stimulus para-
digm shows a form of conservation. They computed the tran-
sient AN responses for two contiguous 300-ms tone bursts
with the first tone (at CF) varying in level (5, 10, 15, and 20
dB above threshold) and the second tone (also at CF) fixed at
a higher level (43 dB above threshold). Transient response
components were obtained by fitting the histograms to a
characteristic equation [having rapid, short-term, and sus-
tained responses (Westerman and Smith, 1987)]. Then com-
ponent integrals were calculated separately from the back-
ground (first tone) and increment portion of the response
histogram. The integral of each component is the product of
the component magnitude and the time constant and equals
the number of spikes contributed by that component to the
total transient response.

The upper panels [(A) and (B)] in Fig. 8 show the PST
histograms of one AN fiber (CF = 5.99 kHz, HSR) in re-
sponse to the above incremental stimulus paradigm. Panel
(A) represents the physiological response from a gerbil AN
fiber (Westerman and Smith, 1987), and panel (B) shows the
corresponding model responses. As the level of the first (so-
called “background”) tone increases, the amount of transient
response associated with it also increases, whereas the tran-
sient activity in response to the second tone decreases.

The rapid and short-term transient components were
evaluated separately for both background and increment por-
tions of the tone and are shown in the lower panels [(C) and
(D)]. Panel (C) shows the average results for seven gerbil
AN fibers (Westerman and Smith, 1987). Panel (D) repre-
sents the model’s rapid and short-term components deter-
mined from the model histograms shown in panel (B). The
combined transient response associated with the two portions
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of the stimulus (background and post-increment) remains
roughly constant (although slightly less for the rapid compo-
nent) and thus exhibits conservation.

2. Increments/decrements

The effects of prior adaptation on responses in the
increment/decrement paradigm are illustrated in Fig. 9. Left
panels (A) compare the increment responses of the model
AN fiber with three different versions of the synapse model:
one with only exponential adaptation (i.e., the previous
model), one with exponential followed by slow power-law
adaptation (middle panel), and one with exponential fol-
lowed by both slow and fast power-law adaptations (lower
panel). The stimulus was a 60-ms duration pedestal tone at
CF (4.16 kHz), 13 dB above threshold, with a 6-dB increase
in level occurring at various delays (up to 40 ms) after the
onset of the pedestal. The increment responses were obtained
by subtracting the response to the pedestal tone from the
response to the tone with an increment in level. It is evident
that the responses to the increment paradigm were not addi-
tive in the first two cases (especially for the short window at
the onset of the increment), which justifies the inclusion of a
fast power-law component in addition to a slow power-law
adaptation component in the PLA model (as mentioned in
Sec. IT C 2). In Fig. 9(b), the change in firing rate was ana-
lyzed over two windows: 0.64 ms (onset window, circles)
and 10.2 ms (large window, upward triangles), both windows
beginning at the time of the change in the response following
the increment. Dotted lines show the physiological data from
gerbil (Smith ef al., 1985), and the solid lines represent the
corresponding PLA model responses (of a HSR fiber) for the
same stimulus paradigm. For both physiological data and
model responses, the incremental change in discharge rate
remains almost constant irrespective of the delay. As men-
tioned earlier, the fast power-law component in the PLA
model adapts very quickly and is also very sensitive to in-
crements of the stimulus. As a result, the change in discharge
rate to an increment in stimulus level is almost the same,
irrespective of the time delay at which the increment occurs.
Thus, model responses exhibit additivity for both small and
large analysis windows in response to increments in tone
level.

Figure 9(c) shows the change in firing rates of an AN
fiber (CF = 3.58 kHz, HSR) for decrements in level to an
ongoing stimulus. The decrement stimulus paradigm is simi-
lar to the increment paradigm, except that the change in level
is negative. Both small (0.64-ms) and large (10.2-ms) analy-
sis windows were used (circles and upward triangles, respec-
tively). Dotted lines show the physiological data from Smith
et al. (1985), and solid lines indicate the corresponding PLA
model responses. As in the physiological data, model re-
sponses after decrements are additive for the large window
analysis, but onset window decrements are clearly not addi-
tive.

D. Forward masking

The responses of AN fibers to a probe stimulus are re-
duced immediately following stimulation by a masker. This
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FIG. 8. AN fiber histograms and conservation of adaptation in both rapid and short-term components for the amplitude increment response paradigm
(binwidth of 2 ms). [(A) and (C)] Physiological responses from gerbil (Westerman and Smith, 1987). [(B) and (D)] PLA model responses. The stimulus was
at CF (5.99 kHz, HSR) with duration of 600 ms. The initial levels of the tone were 5, 10, 15 and 20 dB above threshold (background). At 300 ms, the intensity
was increased to 43 dB above threshold (increment) in all cases. (A) Actual AN fiber histograms from Mongolian gerbil: from Westerman and Smith (1987,
with permission). (B) Model histograms using the same paradigm as above, except that the highest level of the background tone was 25 dB above threshold
(because the model fiber shows a wider dynamic range than the corresponding AN fiber of the physiological data). (C) Mean values of rapid and short-term
components from six fibers; from Westerman and Smith (1987, with permission). (D) Model transient responses (for one AN fiber) from the corresponding
model histograms (one fiber) shown in (B) using the same method as employed in the data.

reduction in response is presumed to be a function of adap-
tation and is likely to contribute to the psychophysical phe-
nomenon of forward masking. Several physiological studies
have been performed in different species to study the recov-
ery of AN responses using forward-masking paradigms (e.g.,
Smith, 1977; Harris and Dallos, 1979; Westerman, 1985).
Figure 10 shows an example of the post-stimulus recov-
ery function of a chinchilla AN fiber (CF = 2.75 kHz, HSR)
in the left panels (Harris and Dallos, 1979), and the model
responses with the same paradigm are shown in the right
panels (B). The masking stimulus was 100 ms in duration,
tone frequency was matched to CF (2.75 kHz), and tone
level was 30 dB above threshold. The probe was 15 ms in
duration, 20 dB above threshold, and its frequency was
matched to CF. The probe responses are expressed as a per-
cent of the control response (i.e., when there was no masker)

2400 J. Acoust. Soc. Am., Vol. 126, No. 5, November 2009

and are shown as a function of probe delay, ranging from 1
to 150 ms. The histograms on the right show the responses
that were used to compute the data points on the left. The
PLA model responses agree with the physiological data; as
the delay between masker offset and probe onset increases,
the probe responses are less reduced as the AN fiber shows
more recovery from adaptation. In contrast, the previous
model shows significantly less reduction in rate than the
physiological data, especially at short delays [shown by the
dotted line, Fig. 10(b)]. In fact, the masked probe response of
the previous model never fell below 50% of the control re-
sponse, even at very small delays and high masker levels
(result not shown).

The influence of masker level on the post-stimulus re-
covery function is shown in Fig. 11. The same paradigm
described above was used, except that the masker level var-
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ied from 10 to 60 dB above threshold. For both experimental
and model paradigms, an inter-masker interval of 230 ms
was used for the +10 and +20-dB maskers but was in-
creased to 330 ms for higher masker levels to minimize the
buildup of long-term effects. The upper panel (A) shows the
median responses from 37 fibers with CFs ranging from 0.5
to 16 kHz from chinchilla (Harris and Dallos, 1979). Model
responses shown in the lower panel (B) are averaged from
ten fibers (six HSR and four LSR fibers) with CFs spaced
logarithmically across the same range. Both the time course
of recovery and the magnitude of forward masking increase
with increasing masker level, and both tend to saturate at
higher masker levels. Although PLA model responses quali-
tatively match with the chinchilla data, the recovery of
model probe responses in the mid-delays (10-50 ms) is
greater than the corresponding physiological responses; this
difference could possibly be explained by differences be-
tween the spontaneous rates of the model and the data which
are not specified in Harris and Dallos (1979). It should be
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noted that model LSR fibers show longer time courses of
recovery and more reduction in probe response than the cor-
responding responses of HSR fibers.

E. Responses to amplitude-modulated tones

A systematic study of cat AN responses to sinusoidally
amplitude-modulated (SAM) tones by Joris and Yin (1992)
serves as an excellent template for a detailed evaluation of
the PLA model in response to AM stimuli. The equation
representing a SAM signal is given by

s(t) =[1 + m sinQ27f,,t) Isin(27f.1),

where m is the modulation depth and f,, and f,. are modula-
tion and carrier frequencies, respectively. Figure 12 illus-
trates the effect of increasing modulation depth (m) on PSTH
shapes and the corresponding synchrony and modulation
gain of an AN fiber with CF = 20.2 kHz (HSR fiber). The
left panels [(A) and (C)] show the physiological responses
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for the data points on the left. (A) From Harris and Dallos (1979, with permission). (B) Model responses for the same paradigm as in the experiment. The solid
line with filled circles represents the responses of the PLA model, and the dashed line with open circles indicates the responses of the previous model (Zilany

and Bruce, 2007).

from cat (Joris and Yin, 1992), and the right panels [(B) and
(D)] show corresponding model responses with matched car-
rier frequency (at CF), modulation frequency (100 Hz), and
other stimulus conditions. Modulation depths were varied
from O to 0.99, and each response is accompanied by a half-
wave rectified version of the respective input AM stimuli
(i.e., a modulation gain of 0 dB) to the right (two cycles of
the responses are shown). Model responses are simulated for
a stimulus level 17 dB above the threshold of the model
fiber. For both physiological data and model predictions, the
modulation of the response increases with modulation depth
and appears more modulated than the corresponding half-
wave rectified input stimulus in almost all cases. Because the
offset adaptation of the model response shows a pause with a
very slow recovery to spontaneous activity, the model AN
fiber is less responsive in the dip of the envelope, and thus
shows enhanced phase-locking, with responses clustered
near the peak of the envelope.

The lower panels [(C) and (D)] of Fig. 12 show the
synchronization coefficient’® (R) and modulation gain
[20 10g(2R/m), in decibels] derived from the corresponding
histograms of the physiological data (A) and AN model re-
sponses (B) shown above. The dotted line shows the syn-
chrony that would result if the response histogram perfectly
followed the stimulus envelope. When the strength of syn-
chrony for both model and physiological data is above the
dotted line, the modulation gain is positive. Note that model
responses show a higher synchronization coefficient than the
corresponding data at higher modulation depths, which is
due to the inclusion of fast power-law component in the
model, as discussed further below. However, the previous
AN model shows negative or near 0-dB gain (the model fiber
in this case was substantially responsive in the dips of the
AM stimulus and thus was not as well synchronized as the
newer model responses).
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Figure 13 illustrates the effects of modulation depth (m)
and modulation frequency (f,,) on envelope synchrony as a
function of AM stimulus level. The left panels [(A) and (C)]
show physiological data from cat (Joris and Yin, 1992), and
the corresponding model responses are shown in the right
panels [(B) and (D)]. In this illustration of the effect of
modulation depth [upper panels, (A) and (B)], the carrier
frequency (set to the fiber’s CF) was 2 kHz for a HSR fiber.
The general non-monotonic shape of the synchrony-level
function remains unchanged as the modulation depth is var-
ied, but the range of levels over which significant synchrony
is observed increases with increasing depth. The effect of
modulation frequency on the synchrony-level function
[lower panels, (C) and (D)] was studied for a HSR fiber with
CF = 20 kHz and m=0.99. As for the physiological data,
model synchrony-level functions superimpose at low f,,, al-
though unlike the data, the curves are slightly separated at
levels higher than the best modulation level (BML) (the level
at which the response is maximum). At high f,, in both data
and model, the entire synchrony-level curve shifts down-
ward. In the PLA model responses, the BML remains almost
constant as f,, increases (Fig. 13, lower panels), similar to
that observed in cat (Joris and Yin, 1992) [but note that an
upward shift in BML with increasing f,, was observed in
guinea pig AN responses by Yates (1987)].

Physiological and model AN modulation transfer func-
tions (MTFs) of high-CF fibers (>10 kHz) are shown in Fig.
14. Model MTFs were determined for a population of fibers
with CFs spaced logarithmically (ranging from 10 to 20 kHz)
at a level 10 dB above threshold for high, medium, and low
SR fibers. Responses of 24 AN fibers (according to the pro-
portions of SRs in the AN population) were simulated. Both
physiological and model MTFs are low-pass in shape with
cutoffs between ~600 and 1000 Hz. Each MTF is character-
ized by a shallow, slightly positive slope at f,,’s below BMF

Zilany et al.: Long-term adaptation with power-law dynamics
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FIG. 11. Forward-masking recovery functions for a population of fibers;
masker level is the parameter. Masker stimuli were tones with frequency
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dB, 15-ms duration. (A) Actual median recovery functions from 37 fibers
with CFs ranging from 0.5 to 16 kHz. From Harris and Dallos (1979, with
permission). (B) Model average recovery functions from ten CFs (HSR and
LSR) spaced logarithmically (range of 0.5-16 kHz).

and by a sharp roll-off above BMF. Because the bandwidths
of model AN fibers increase with CF, they are able to encode
higher modulation frequencies; if this were the only factor
limiting phase-locking to AM stimuli, the cut-off frequencies
of the model MTFs would be expected to increase as a func-
tion of CF. However, as noted in Joris and Yin (1992), there
exists an upper limit of f,, above which AN fibers cannot
synchronize to the envelope because of low-pass filtering in
the IHC, in addition to the progressive rejection of the side-
bands by the sharp filtering in the cochlea, as discussed fur-
ther below.

Figure 15 shows the relationship between AN fiber
tuning-curve parameters (CF and bandwidth) and the MTF
cut-off frequency. Left panels [(A) and (C)] show the physi-
ological responses from cats (Joris and Yin, 1992), and the
right panels [(B) and (D)] represent the corresponding model
responses. Model responses were determined from a popula-
tion of AN fibers (all operating at 10 dB above threshold)
with CFs ranging from 250 Hz to 20 kHz (spaced logarith-
mically) for high (n=61), medium (n=23), and low (n
=16) SR fibers. For better comparison to Joris and Yin
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(1992), medium SR fibers were included in the low SR
group. Note that the abscissae in the lower panels differ be-
cause model responses had smaller bandwidths than the
physiological data. This difference is explained by the fact
that model responses were simulated using the 50th percen-
tile of Q,, (CF/bandwidth) values (Zilany and Bruce, 2006)
from Miller er al. (1997) which did not include the large
range of bandwidths observed by Joris and Yin (1992). Be-
cause tuning bandwidth increases with CF, a positive corre-
lation between the MTF cut-off frequency and CF is evident
from both physiological data and model responses. However,
MTF cut-off frequency saturates at higher CFs, which sug-
gests that some mechanism in addition to peripheral band-
pass filtering must exist to limit the response modulation. It
is hypothesized here that the IHC low-pass filter is a candi-
date for this limitation, as discussed in detail in Sec. IV.
The effect of SR on maximum synchronization to f,, is
shown in Fig. 16. The upper panel (A) shows physiological
data from cats (Joris and Yin, 1992), and the lower panel (B)
represents model responses. Model responses were deter-
mined from a population of AN fibers with CFs ranging from
250 Hz to 20 kHz, including high, medium, and low SR
fibers. Stimuli were 10 dB above threshold for each model
fiber, and the maximum synchrony was chosen from re-
sponses to a wide range of f,,’s (10 Hz-2 kHz). Both physi-
ological data and model responses show that low-CF fibers
tend to have lower maximum synchrony than high-CF fibers
with similar SRs. However, model responses do not show an
inverse relationship between maximum synchrony and SR
for high-CF fibers, in contrast to the physiological data. This
discrepancy could be due to the fact that the parallel fast
power-law component provides significant synchronized re-
sponses to the envelope, irrespective of the model fiber’s SR.

F. Responses to noise stimuli

The shuffled autocorrelogram (SAC) and the cross-
stimulus autocorrelogram (XAC) provide convenient and ro-
bust ways to quantify temporal information (discharge times)
in response to wideband noise before and after polarity in-
version (Joris, 2003; Louage et al., 2004). SACs reveal that
AN fibers are more temporally consistent (i.e., tend to dis-
charge at the same point in time on repeated presentations of
the same stimulus) in response to stochastic noise stimuli
than in response to periodic tones. The normalized SAC also
reveals how spikes are constrained in their timing jointly by
cochlear filtering and phase-locking to fine-structure and en-
velope. The maximum SAC value, referred to as the central
peak, is always reached at a delay near O ms. Joris (2003)
argued that the central peak of the SAC reflects synchroni-
zation to different waveform features for fibers with different
CFs. Responses of low- and high-CF fibers reflect phase-
locking to fine-structure and envelope, respectively. The cen-
tral peak also shows large differences across different classes
of SRs. The shapes of the SAC and XAC change with in-
creasing CF: for CFs above the range of pure-tone phase-
locking, the SAC and XAC become indistinguishable.

The upper panels in Fig. 17 show the central-peak height
of normalized SAC to broadband noise (70-dB SPL) as a
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had only exponential adaptation in the synapse model.

function of CF. Panel (A) shows the physiological responses
from cats (Louage et al., 2004), and the right panel (B) rep-
resents corresponding PLA model responses. Each point rep-
resents the response from a single fiber. Model responses
were determined for a population of fibers with CFs ranging
from 250 Hz to 20 kHz (20 fibers logarithmically spaced) for
high (plus), medium (circle), and low (downward triangle)
SR fibers. In both physiological data and PLA model re-
sponses, the height of the central peak decreases with CF but
asymptotes for CFs near the limit of pure-tone phase-locking
(4-5 kHz), where it sometimes barely exceeds unity (a value
of 1 in the normalized SAC corresponds to no temporal cor-
relation). For fibers of similar CF, there is a considerable
range of peak heights in the physiological data. Interestingly,
the SR distribution within that range is bimodal: generally
low/medium-SR fibers have larger peak heights than
high-SR fibers. This bimodality is not dependent on a par-
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ticular choice of stimulus level and is also observed for re-
sponses obtained at a fixed suprathreshold level. Model re-
sponses are closest to the upper range of the peak heights in
the physiological data, suggesting that discharge patterns in
the model are more regular than in the data.

Figure 17(c) shows the ratio of XAC and SAC values at
delay 0O for a population of AN fibers (Louage et al., 2004),
and Fig. 17(d) shows the corresponding PLA model re-
sponses. Model responses were determined for a population
of fibers with CFs ranging from 250 Hz to 20 kHz (20 fibers
logarithmically spaced) for high (plus), medium (circle), and
low (downward triangle) SR fibers. As in the physiological
data, the ratio of XAC and SAC values in the model re-
sponses has a sigmoidal relationship as a function of CF
which illustrates a transition from the fine-structure coding at
low CFs to envelope coding at high CFs (Louage et al.,

Zilany et al.: Long-term adaptation with power-law dynamics
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using the same paradigm as in the experiment.

2004), and there is no apparent distinction across the SR
groups.

IV. DISCUSSION
A. Achievement with regard to previous models

The PLA model is successful in describing a range of
response properties of AN fibers that were not adequately
addressed by previous models. Models having only exponen-
tial adaptation produce responses that do not scale with the
duration of the stimulus, which affects the recovery after
stimulus offset as well as long-term response properties of
these models. Power-law dynamics significantly improved
the offset-recovery response, which in turn provided better
responses to forward-masking and AM signals. The model
also successfully replicated the histogram of AN SRs using
only three true SRs with long-term fluctuations. Due to the
addition of fGn to the input of the slow power-law adaptation
path, the model responses are positively correlated over the
long term and are negatively correlated over the short term
(result not shown).

The IHC-AN synapse model presented in this study has
two parallel paths with slow and fast power-law dynamics,
following a stage with exponential adaptation. The model
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was thus capable of replicating additivity seen in AN re-
sponses to stimulus increment paradigm. Both the slow and
fast power-law adaptation components contributed to higher
synchronized responses to the envelope of AM signals and
also to pure tones at low frequencies. It is worth mentioning
that this model was also capable of producing strongly syn-
chronized responses of high-CF fibers to low-frequency
tones at high stimulus levels (Joris et al., 1994); for example,
the synchronization coefficient of a model AN fiber with CF
= 10 kHz to a 80 or 90 dB SPL, 800 Hz tone is ~0.9,
whereas the maximum synchronization coefficient of an
800-Hz model fiber to a tone at CF is ~0.83 (Johnson,
1980).

One of the important achievements of the PLA model is
that it can explain two seemingly contradictory aspects of
forward-masking data reported by Harris and Dallos (1979)
and Young and Sachs (1973). Harris and Dallos (1979)
showed that the reduction in probe responses saturated at
higher levels as the masker-evoked responses saturate at
higher levels. However, Young and Sachs (1973) showed
that the time course of recovery continues to increase with
masker/exposure level, even though the masker discharge
rates saturate at higher levels. The duration of the forward
masker (100 ms) in Harris and Dallos (1979) is much shorter

Zilany et al.: Long-term adaptation with power-law dynamics 2405
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than that of Young and Sachs (1973), which was 60 s. In
response to a short duration masker and at small masker-
probe delays, the fast power-law component of the PLA
model remains almost shut off and contributes very little to
the probe response at higher masker levels; it is the slow
power-law adaptation component that contributes to the
probe response at these higher levels. As the input to the
slow power-law component (i.e., exponential output) satu-
rates at higher levels, the reduction in probe response also
nearly saturates in the output of the slow power-law adapta-
tion. Therefore, the reduction in probe response at short
masker-probe delays becomes nearly saturated at higher lev-
els, as Harris and Dallos (1979) observed. This is also con-
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sistent with another observation by Smith (1977) that for
shorter forward maskers, recovery depends on the discharge
rate in response to the masker rather than on absolute masker
intensity. However, when the duration of the masker and
masker-probe delay is sufficiently long, both fast and slow
power-law components contribute to the recovery and ex-
hibit recovery time courses that increase with level, as ex-
plained in Sec. III B 2.

B. Source of power-law adaptation

Although power-law dynamics has been prevalent in de-
scriptions of sensory adaptation, identification of their physi-
cal basis remains enigmatic. In some preparations, the site of
power-law adaptation has been located in the conversion of
the receptor potential into action potentials (French and
Torkkeli, 2008). French (1984) observed no detectable adap-
tation in the receptor potential in cockroach tactile spine,
whereas power-law adaptation exists in the action potential
trains of the associated somatosensory neurons (Chapman
and Smith, 1963). Even direct electrical stimulation of action
potentials, which bypassed the mechanotransduction stage,
produced the same power-law adaptation (French, 1984),
suggesting that post-synaptic membrane dynamics could be
responsible for the observed adaptation. In the visual system,
studies of temporal contrast in mammalian (rabbit and
guinea pig) retina by Smirnakis et al. (1997) showed that the
timescale of adaptation varies as a function of the period
between stimulus switches, indicating the presence of mul-
tiple timescales or power-law adaptation.

Recently, Zhang et al. (2007) observed spike-rate adap-
tation in AN fiber responses to stimulation by a cochlear
implant using high-rate pulse trains (of 300-ms duration),
which suggests that adaptation is not purely a synaptic phe-
nomenon. They fitted the rate vs time functions (adaptation
at the onset) with two-exponent models and reported time-
constants (rapid 8 ms, and short-term 80 ms) which were
slightly higher than those of similar acoustic studies. Al-
though these time constants have little dependence on onset
spike rate, they do show a strong relationship with input
stimulus pulse rate. On the other hand, in simultaneous re-
cordings from IHCs and AN fiber terminals, Goutman and
Glowatzki (2007) observed that during a 1-s IHC depolariza-
tion, the synaptic response was depressed more than 90%,
indicating that synaptic depression was the main source for
adaptation in the AN. In their experimental data, the time
course of transmitter release was fitted with three exponential
transient components (with time constants of ~2, ~18, and
~176 ms) in addition to a longer-term component that they
described as being “robust” to adaptation. However, as the
duration of their measurements was relatively short, it is not
clear whether the adaptation in the release would scale with
the duration of the stimulus (which would suggest the pres-
ence of power-law dynamics of adaptation).

In the above experiments, only responses at the onset
were investigated. However, there exists a substantial body
of experimental data describing adaptation to various acous-
tic stimulus features, such as responses to stimulus offset,
forward masking, and increment/decrement paradigms. Re-
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(model responses) are different from those in the left panels (actual responses).

sponses to similar stimulus paradigm are required in the
above-mentioned experiments to elucidate the degree of con-
tribution by synaptic and membrane mechanisms to the ad-
aptation observed with acoustic excitation.

The strength of onset adaptation to acoustic stimuli
seems more consistent across AN fibers, whereas the strength
of suppression at offset seems to vary across fibers (even
with similar SRs) (Kiang, 1965; Harris and Dallos, 1979).
Similarly, Zhang et al. (2007) observed that some fibers were
strong adapters and others showed weak adaptation in their
electrical stimulation experiment, indicating that membrane
dynamics might be responsible for the variable adaptation
seen in the offset and long-term response properties of the
AN. Also, in general, neural dynamics are more likely to
give rise to power-law rather than exponential adaptation.

C. Factors influencing the MTF

MTFs at the level of the AN are characterized by low-
pass filter shapes with sharp roll-offs and positive gains
(ranging 0-5 dB) in the low-pass region. The offset adapta-
tion properties of the IHC-AN synapse account for enhanced
phase-locking to the stimulus envelope in AN fibers. As
mentioned earlier, both the slow and fast power-law adapta-
tion components of the model contributed to this synchroni-
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zation and resulted in positive modulation gains in the model
MTFs. However, the cut-off frequency (i.e., bandwidth) and
the slope of the roll-off in model MTFs are slightly different
than those of physiological MTFs (Fig. 14). At least two
filtering actions by different mechanisms limit the frequency
above which the AN fiber’s instantaneous discharge rate is
no longer modulated at f,,: mechanical and temporal filtering
(Greenwood and Joris, 1996). The local basilar partition mo-
tion driving the IHC is a mechanically bandpass-filtered ver-
sion of the cochlear input. The Q,, value, specified as a
function of CF, sets the bandwidth of this filter in the model.
Placing the carrier frequency at fiber CF, this filter progres-
sively removes the sideband components of the AM stimulus
in the local motion as f,, increases. The removal of sideband
components effectively reduces the envelope amplitude
variation and thus influences the MTF cut-off frequency. In
model responses, higher Q10 values (i.e., lower bandwidths)
at a particular CF produce MTFs with lower cut-off frequen-
cies (results not shown). It is to be noted that the model Q,,
values are significantly higher at higher CFs than those in
Joris and Yin (1992), and hence the cut-off frequencies of the
model MTFs are lower.

The temporal filter resides in the stage between me-
chanical motion and AN spikes and acts as a low-pass filter
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that limits synchronization of AN responses to temporal
variations in the IHC input. This added constraint on the
bandpass-filtered signal further changes the magnitude of
synchronization to envelope. A seventh-order low-pass filter
with a cut-off frequency of 3.0 kHz was used in the model to
represent this stage. However, both the order and the cut-off
frequency of this low-pass filter influence the MTF shape
(results not shown). A higher-order filter results in a MTF
with a sharper roll-off, and a higher cut-off frequency of this
temporal filter causes a higher cut-off frequency in the model
MTF, unless it is already limited by the bandwidth of the
basilar membrane (mechanical) filter (i.e., Q;, value). There-
fore, it is possible to accurately replicate individual physi-
ological MTFs using appropriate model Q,, values and the
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correct order and cut-off frequency of the IHC low-pass fil-
ter. This result illustrates that accurate modeling can identify
or predict potential mechanisms of certain processes where
direct physiological study is either very cumbersome or im-
possible.

D. Implementing SRs: Three rather than two true SRs

Jackson and Carney (2005) showed that a model with
only two or three SRs with long-term fluctuations could de-
scribe the histogram of AN SRs in cat. In the case of two true
SRs, instead of using an inhomogeneous Poisson process,
they employed a Poisson-equivalent integrate-and-fire model
in which negative values of the driving function (not recti-
fied) have a negative effect on the output. In particular, the
negative input values reduce the value of the running integral
that accumulates toward threshold and thus delay the time of
discharge occurrence. Although this property achieves the
distribution of low SRs in the histogram, it produces AN
responses that are inconsistent with physiological observa-
tions. For instance, in the PSTHs of low SR fibers in re-
sponse to tones, the peak onset response strongly depends on
the silent interval between stimulus offset and the next onset;
shorter intervals reduce the onset responses because the fiber
does not have enough time to recover, and on the other hand,
sufficiently longer silent intervals produce sharp, large-
magnitude peaks at the onset. However, in Jackson and Car-
ney’s (2005) model with two true SRs, the negative input
values for low SR fibers (which tend to have driving func-
tions with more negative values) would result in the opposite
pattern of response: longer silent intervals will accumulate
more negative values, which will then result in greater reduc-
tion in the onset than for short intervals. In the three true SR
model, negative inputs do not contribute to the running inte-
gral, and thus this unwanted result is not observed. This re-
sult suggests that the three true SR model better accounts for
the observed AN responses as well as for the distribution of
SRs. In the PLA model, the discharge generator (inhomoge-
neous Poisson process) section was implemented in such a
way that the negative driving function has no effect on the
output responses (i.e., equivalent to rectification of the driv-
ing signal). Three fGn parameter sets designed correspond-
ing to three true SRs were able to describe the SR histogram
of AN fibers, while maintaining other features of AN re-
sponses to a wide variety of stimuli.

Although fGn with appropriate parameters was added in
the slow power-law adaptation path, the physiological corre-
late of this noise along the auditory-periphery is not clear.
Kelly et al. (1996) reported that this noise is independent of
CF and SR of the AN fiber. They argued that this fractal
phenomenon originates either in the IHC or at the synaptic
junction between IHC and AN fibers. Also, Teich and Lowen
(1994) speculated on a number of possible origins of the
observed fractal behavior, such as the slow decay of intrac-
ellular calcium in the hair-cell receptor or fractal ion-channel
statistics.
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FIG. 17. Upper panels: central-peak height of normalized SAC to broadband noise (70-dB SPL) vs CF for a population of AN fibers. Lower panels: ratio of
the value at delay 0 of XAC and SAC for a population of fibers. Left panels [(A) and (C)] show the actual responses from cat, and the right panels [(B) and
(D)] represent the corresponding PLA model responses. Each point represents response from a single fiber. [(A) and (C)] From Louage et al. (2004, with
permission). [(B) and (D)] Model responses for a population of fibers with CFs ranging from 250 Hz to 20 kHz (20 fibers logarithmically spaced) for high

(plus), medium (circle), and low (downward triangle) SR fibers.

E. Implications for complex sounds and
psychophysics

In general, adaptation yields an efficient sensory code by
removing redundant information inherent in the environmen-
tal cues. The natural acoustic environment is made up mostly
of transients rather than constant stimuli. Adaptation helps to
efficiently encode stimuli with statistics that vary in time
(Delgutte, 1980). To encode efficiently, a neural system must
change its coding strategy as the distribution of stimuli
changes. Power-law dynamics, possessing no privileged ti-
mescales, is invariant with respect to changes in temporal
scale, and such a system could therefore adjust its effective
adaptation timescale to the environment. Recently, studies in
the auditory midbrain (Dean et al., 2005) and cortex (Wat-
kins and Barbour, 2008) show that neurons respond to recent
stimulus history by adapting their response functions accord-
ing to the statistics of the stimulus, alleviating the so-called
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“dynamic range problem.” However, the mechanism and ori-
gin of this adaptation along the auditory pathway remain
unclear. An auditory-nerve model with appropriate long-term
dynamics (power-law-like) in the IHC-AN synapse, such as
that presented in this study, could successfully account for
this adaptation, including the time course of adaptation. Fur-
ther studies with this model will pursue this phenomenon.
Many psychophysical studies have mapped out the mag-
nitude and time course of forward masking using a variety of
stimulus paradigms (Hanna er al., 1982; Zwicker, 1984; Dau
et al., 1996b). Several fundamental features of these data
cannot be easily explained with the responses of single AN
fibers (Relkin and Turner, 1988). Sub-cortical neural process-
ing appears to have strong influence on perception in these
tasks (Nelson er al., 2009), but specific mechanisms under-
lying the transformation of forward-masked stimuli have not
been carefully tested with experiments or models. The phe-
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nomenological model described here provides a realistic
front-end to test central models with an input that reasonably
predicts several related sets of AN data.

Recently, Dau er al. (1996a) developed a model of signal
processing in the auditory system to explain the psycho-
physical thresholds for various masking conditions (Dau er
al., 1996b). They employed an adaptation stage in the pe-
ripheral system that has five feedback loops, connected in
series, with five different time constants. In each loop, the
output is the input signal divided by a low-pass-filtered ver-
sion of the output, similar to a single-loop model proposed
by Siebert and Gambardella (1968) to account for the effects
of stimulus level and duration on adaptation in the discharge
rates of AN fibers. Although these models can address rate
adaptation to some extent, they do not have power-law dy-
namics because the time constants of the low-pass filters are
fixed. The model by Dau et al. (1996a) explained the psy-
chophysical data well, except for the forward-masked thresh-
olds obtained with brief maskers, which were too high com-
pared to the measured data. They pointed out that it was the
adaptation stage in the model that was responsible for this
behavior. As the time constants (ranging from 5 to 500 ms)
of the low-pass filters in the adaptation-loop model are fixed
irrespective of the masker duration, recovery in the masker
offset does not scale appropriately with the duration of the
masker. Thus, although the model explained the forward-
masked thresholds for long maskers, it failed to address the
thresholds for brief maskers. In this regard, the new AN
model with power-law dynamics in the adaptation stage
would be a better candidate to explain these monaural psy-
chophysical data as well as other binaural masking data
(Breebaart et al., 2001) that also employed the peripheral
model of Dau et al.(1996a).

One of the most obvious features of a speech signal is
amplitude modulation, and much of the information of
speech appears to be carried in these changes rather than in
the relatively stationary aspects of speech (Shannon et al.,
1995). Recent psychophysical models of AM perception as-
sume that a population of modulation-selective filters pro-
vides information about a signal’s temporal envelope to
higher processing centers (e.g., Dau er al., 1997; Ewert et al.,
2002). As the PLA model can reliably produce the MTFs of
AN fibers, the output of this model can be used as front-end
to models for higher auditory centers to test realistic neural-
encoding hypotheses that may be used by the auditory sys-
tem to encode envelope modulations.

F. Limitations

Despite its success in explaining a number of AN re-
sponse features, there are a number of limitations in the PLA
model that require further study. It was assumed that there is
no adaptation in the voltage responses of the IHC, but recent
studies suggest that there is indeed some adaptation at this
level (Kros and Crawford, 1990; Zeddies and Siegel, 2004,
Jia et al., 2007, Beurg et al., 2008). It would be important to
explore the contribution of IHC adaptation to AN responses,
especially at the onset and offset of tone bursts and in re-
sponse to AM stimuli.
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The PLA model does not capture the relationship be-
tween maximum synchrony to AM stimuli and SR, particu-
larly for high-SR fibers. Physiological data show an inverse
relationship between these metrics, whereas the model re-
sponses are nearly constant as a function of SR at a high
value of synchrony. As mentioned in Sec. III, the fast power-
law adaptation component of the model yields highly syn-
chronized responses to AM signals irrespective of SR, which
explains the high maximum synchrony to modulation fre-
quency. The ability of the model to relate SRs to different
response properties is thus limited, and further exploration is
needed in this regard.

The actual power-law adaptation is computationally
very expensive. Although an approximation to the power-law
was implemented by an IIR filter, the actual implementation
was required to replicate the very long-term response prop-
erties (Fig. 6) with this model.

Although the PLA model captures a wide range of AN
response properties, physiological correlates of the model ar-
chitecture are not evident from existing studies. More experi-
mental data are needed to build a more biophysically based
model or to justify the proposed phenomenological model.

V. CONCLUSION

This paper presents a phenomenological model of the
auditory periphery with a new IHC-AN synapse model that
has adaptation at different time scales. Several important ad-
aptation measures other than the onset response, such as re-
covery after offset (Harris and Dallos, 1979), responses to
increments and decrements (Smith et al., 1985), and conser-
vation (Westerman and Smith, 1987), were satisfactorily cap-
tured by this model. The PLA model is thus capable of ac-
curately predicting several sets of AN data such as the
amplitude-modulation transfer function and forward mask-
ing, which the exponential adaptation model clearly fails to
address. The success of the power-law adaptation in describ-
ing a wide range of AN responses indicates a possible
mechanism of adaptation, other than the classically described
exponential adaptation, in the IHC-AN synapse and/or in the
AN membrane.
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"The time required for the PLA model with the actual power-law imple-
mentation to simulate ten repetitions of a 1-s duration stimulus (i.e., a total
duration of 10 s) is ~50 times greater than the time taken by the previous
model (Zilany and Bruce, 2007). However, the computational times for the
previous model and for the PLA model with the approximate power-law
implementation are nearly the same.

Both approximate and actual implementations are available in the code.
3Synchronization coefficient, or vector strength, (R) is a dimensionless
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