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When a periodic waveform with a discrete-harmonic spectrum is temporally windowed to make a

signal, its spectrum becomes

a continuous function of frequency.

However, there are

discrete-frequency representations for windowed signals such as the Fourier series representation of
a periodically extended signal. This article introduces the concept of matching between the temporal
window and the periodic waveform. Matching leads to a discrete-frequency representation in which
the Fourier transform of the windowed signal preserves the amplitudes and phases of the waveform
on the set of original waveform frequencies. Generating signals with matched window and

waveform leads to important control of experiments.
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I. INTRODUCTION

Auditory scientists generate experimental stimuli, sig-
nals, or noise, for presentation to humans and other animals.
Often those stimuli are specified in terms of their spectral
properties. Psychoacoustician A might specify a broadband
complex tone having harmonics with equal amplitudes and
Schroeder phases. Physiologist B might specify a narrow-
band noise with Rayleigh-distributed amplitudes and alter-
nating phases. Hearing scientist C might specify a five-
component signal with constant phases. In all these cases, the
experimenter expects that the specified spectral properties
will be preserved, at least to a good approximation, in the
stimulus presented to the listener.

A. Spectral properties

When a stimulus is initially defined in terms of exact
discrete spectral properties, it can be represented as a sum of
cosines with component amplitudes C,,,

N
x(t) = 2, C, cos(w,t + ¢,), (1
n=0

where component angular frequencies w, and phases ¢, are
arbitrary. In what follows, this wave will be called the
“unlimited-duration waveform” or the “waveform.” Because
its duration is unlimited, it has a bandlimited Fourier trans-
form given by

X(w) = J‘” dt e7'x(1) ()

or
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N
X() =72 X,00-w,), (3)

n=-N

where X,=C, exp(i¢,), w_,=-w,, C_,=C,, and ¢_,=—g,.
With these conditions, X_, is equal to the complex conjugate,
X:, and x(z) is a real function (see, for instance, Hartmann,
1998).

B. Finite-duration signals

The infinitely sharp spectrum of Eq. (3) applies only to
an unlimited-duration waveform. In practice, a signal is pre-
sented to a listener with a finite total duration, 7). The finite-
duration signal is created by multiplying waveform x(¢) by a
temporal window function, w(z), to create the final signal

y(1),
y(1) =w(t)x(r). (4)

The finite duration leads to the well-known “‘spectral splat-
ter” wherein the power spectrum acquires power outside the
frequency band of the original waveform. The spectrum be-
comes a continuum with all frequencies, inside and outside
the waveform band, represented more or less.

We consider the case in which signal y(¢) can be repre-
sented on the finite interval by a Fourier series,

NV
y'(t)= >, ClcosQmtiTp+ ¢l) (0<1=Tp),

n=1

(5)

where the designation y’(z) distinguishes the finite-duration
signal from y(¢), which is defined for all time. The funda-
mental angular frequency of the series is 27/ T, a function
of the window duration. All the other frequencies in the se-
ries are harmonics, n(27/Tp). The finite-duration signal can
be periodically extended forward and backward in time to fill
the entire time axis, creating the periodically-extended sig-
nal,
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v
y(0) = > C, cosQQmnt/Tp+ ¢p)) (-0 <t <), (6)

n=1

At this point in the development, we introduce the con-
cept of matching the temporal window and the waveform. In
the simplest case, the temporal window that defines the finite
interval in Eq. (5) is rectangular. If the original unlimited-
duration waveform x(f) contains power only on a set of har-
monic frequencies {w,=nw,} where the fundamental angular
frequency w, happens to be related to the duration T} by
w,=27/Tp, then the terms in the Fourier series y’(7) are the
same as the terms in the sum for the waveform x(z). Specifi-
cally, C,=C,, ¢,=¢,, and N=N'. The window and the
waveform are matched. Because the duration T}, is equal to
the period of the waveform, x(z), the periodically-extended
signal y(z) is the same as x(z).

Eq_uation (5), in terms of the duration T}, is not the only
possible Fourier series. It is possible to represent y on the
finite interval T}, in terms of any long time, 77,

N/
yL(t) = 2 CL,n COS(27Tnt/TL + ¢L,n) > (7)

n=1

so long as 7; > Tp. However, to do that, the amplitudes and
phases, C;, and ¢; ,, must be chosen to force y;(¢) to be
zero within the part of the 7 interval that is not included in
the T interval. The frequencies, amplitudes, and phases in
this representation do not agree with those in the original
periodic waveform, x(z).

C. Temporal windows

The section above, unifying the waveform, the Fourier
series, and the periodically-extended signal when the wave-
form and window are matched assumes a rectangular tempo-
ral window. Although the rectangular window leads to
simple mathematics, it is not often used in practice. A rect-
angular window produces discontinuities in the signal and/or
its derivatives at the onset and offset; these cause audible
clicks that may be distracting to human or animal listeners.
The clicks by themselves may be spurious stimuli, detracting
from the intended purpose of the band-limited amplitude and
phase cues of the desired stimulus. In order to reduce onset
and offset clicks, it is usual to apply a temporal window
which turns the stimulus on and off more gradually.

When a window other than a rectangular window is ap-
plied to the waveform, interesting possibilities arise. It is
possible to retain the periodically-extended signal, which in-
cludes information about the temporal window. Alternatively,
and this is the point of the present article, it is possible to
maintain the matching concept so that the Fourier transform
of the windowed signal preserves the spectral amplitudes and
phases of the waveform on the set of waveform frequencies.
If the window and waveform are not matched, the spectrum
is not preserved on any set of frequencies. Then the spectrum
of the signal presented to the listener becomes out of control,
more or less depending on details. It seems likely that ex-
perimenters often use temporal windows and waveforms that
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FIG. 1. Rectangular temporal window. (a) The window as a function of
time. (b) The Fourier transform of the rectangular window apart from the
phase factor. The Fourier transform is zero for integer values of fT),.

are not matched because the matching conditions are not
immediately obvious, as described below.

Il. SPECTRAL CONSEQUENCES OF TEMPORAL
WINDOWING

The spectral consequences of temporal windowing ap-
pear in the Fourier transform of y(r), namely, Y(w). Because
y(t)=w(r)x(z) is a product, Y(w) is given by the convolution

Y(w) = %TJ do'W(w-o")X(w'). (8)

Because X(w) is a sum of delta functions from Eq. (3), the
integral is easy to do, and

Vo) =3 S X W0, ©)

According to Eq. (9) the spectrum of the final windowed
signal can be found from the spectrum of the infinite-
duration waveform if we know the Fourier transform of the
temporal window, W(w).

A. Rectangular window

The rectangular window extends from =0 to t=Tp, as
shown in Fig. 1(a). The Fourier transform is Wy, given by

Wree(®) = Rect(w)e 02, (10)
where “Rect(w)” is

2 sin(wTp/2
Rect(w) = M.

(11)
This Fourier transform is the product of two factors. Func-
tion Rect is the Fourier transform of the rectangular window
translated backward in time by half its duration so that it is
symmetrical about the origin. Because of this symmetry,
Rect is entirely real. The other factor is a phase factor,
exp(—iwTp/2), and its role is to translate the rectangle for-
ward again, back to where it belongs.
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Function Rect(2mf)/T, is plotted in Fig. 1(b).
Rect(2mf)/ Ty is a sinc function. The figure shows that the
sinc function is zero for integer values of f7,. The duration
of time that appears in the argument of the sinc function (T},
for the rectangular window) will be called the “significant
duration, Ts.”

Knowing the Fourier transform of the window, we now
know the Fourier transform Y,

sin[(w — w,)Tp/2]
((1) - w,,)TD/2

Y(w) = %2 X,

Xexp[— i(w— w,)Tp/2]. (12)

Transform Y(w) includes all the details of the temporally
windowed signal y(7). If the waveform and the rectangular
window are matched, as described in Sec. I, then waveform
frequencies w, are given by w,=nw,, where w,Tp=2.
When Y(w) is evaluated at those frequency values, we find a
revealing equation,

sin w(m —n)

Y(mw,) = %E X, exp[—im(m—-n)]. (13)

7(m —n)

The sinc function in the sum is zero for all values of n except
when n=m. When n=m then the sinc function equals 1. Thus
the sinc function has become a Kronecker delta function, and
Eq. (13) simplifies to

Y(mwo)=%Xm. (14)
Because Eq. (14) holds for both positive and negative values
of m, both the amplitude and the phase of the original,
unlimited-duration signal are correctly represented in the
Fourier transform Y(w) when evaluated at the special fre-
quencies w=mw,. In this sense, the spectrum is preserved.
The values of the Fourier transform at these special frequen-
cies Y(mw,) are related to the Fourier series coefficients in
Eq. (5) by a constant factor,

Vimo,) =2 ¢, explid). (15)

The development of this last equation gives insight as to
why the spectrum is preserved on the set of frequencies
{w,,=mw,}. The reason is that the unlimited-duration wave-
form is matched to the rectangular window because its fun-
damental frequency w, is equal to 277/ T causing the sinc
function to be a Kronecker delta function. Matching has ef-
fectively made the window disappear for these special fre-
quencies. For the rectangular window, the total duration 7},
is also the significant duration. As an example, if we would
like to use a 100-ms, rectangularly-windowed signal, we
would choose the frequencies to be integer multiples of
10 Hz, i.e., wy=2m- 10, to obtain a complete set of expansion
functions. In Secs. II B and II C, it will be shown that the
same principle can be used to match the waveform (charac-
terized by a fundamental w,) and the time window (charac-
terized by a significant duration, T) for other forms of time
window. An interesting alternative window is the raised co-
sine.
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FIG. 2. Raised-cosine temporal window for 7,=7}/6. (a) The window as a
function of time. The full-on duration is T, —27,. (b) The Fourier transform
of the raised-cosine window apart from the phase factor. The Fourier trans-
form is zero when fT}, is somewhat larger than integer values.

B. Raised-cosine window

The raised-cosine window (derived from the Hanning or
Hann window) is shown in Fig. 2(a). It has a onset edge
given by [1—cos(mt/7,)]/2, where 7, is the edge duration.
The overall duration is Tp, and the offset edge is the reverse
of the onset edge making the window symmetrical.

As for the rectangular window, the Fourier transform of
the raised-cosine window can be written in terms of a real
function multiplied by a time-delay phase factor. A half
dozen pages of algebra suffice to show that the Fourier trans-
form is

WHann(w) = Hann(w) e‘i‘”TD/Z, (16)

where Hann is the transform of the symmetrical window,
again involving the sinc function,

2 cos(wT,/2) sin[w(TH - 7,)/2]

1 —(w7,/m)? . 1)

Hann(w) = (17)

Function Hann(27f)/(Tp—17,) is plotted in Fig. 2(b).

For windows other than rectangular, such as the raised-
cosine window, the significant duration is not equal to the
total duration Tp. For the raised-cosine window, Eq. (17)
shows that the significant duration is T¢=Tp—7,. Therefore,
the fundamental angular frequency of the unlimited-duration
waveform needs to be w,=27/(Tp—7,) in order for the win-
dow and the waveform to be matched. That result was not
immediately obvious.

C. Trapezoid window

The trapezoid window is shown in Fig. 3(a). It has
straight-line onset and offset edges, both with duration 7,.
The Fourier transform of the trapezoid (less than half a dozen
pages of algebra) is given by Eq. (18) and is shown in Fig.
3(b).
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FIG. 3. Trapezoid temporal window for 7,=7,/6. (a) The window as a
function of time. The full-on duration is T;,—27,. (b) The Fourier transform
of the trapezoid window apart from the phase factor. The Fourier transform
is zero when fT}, is somewhat larger than integer values.

Wirap(@) = Trap(w) e 'Tp/2, (18)
where “Trap” is the transform of the symmetrical trapezoid
window,

4 sin(wr,/2) sin[w(Tp - 7,)/2]

wT,

Trap(w) = (19)

)
It is evident that the significant duration for the trapezoid
window is again Ts=Tp—17,.

The different temporal windows described above lead to
different amounts of spectral splatter. A good predictor for
splatter is the high-frequency asymptotic behavior of the
Fourier transforms. As shown in Egs. (11), (19), and (17),
respectively, the rectangular window spectrum decreases as
™!, the trapezoid window spectrum decreases as w2, and
the raised-cosine window spectrum decreases as w™>. These
asymptotic behaviors cannot be seen well on the spectral
plots in Figs. 1-3 because the horizontal axis does not extend
to high frequencies.

lll. MATCHING AND MISMATCHING
A. Alternative representations

Sections I and II can be interpreted as follows: When a
signal is created by windowing an unlimited-duration wave-
form, the spectrum becomes a continuous function of fre-
quency. However, there are several possible discrete-
frequency representations of this spectrum. One repre-
sentation begins with a long analysis interval, T;, longer,
perhaps much longer, than 7p. This long time interval is
padded with zeros outside the signal interval. The spectrum
will consist of lines at frequencies n/7T;. It will include the
window information and will also force the signal to be zero
outside the signal interval. This representation contains the
most information, and it incorporates the fact that the signal
does not live forever. However, it does not resemble the
spectrum of the waveform. In this representation, much of
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the spectral power for major components of the waveform
can reside in frequencies very different from the frequencies
in the waveform.

A second representation periodically extends the signal
as windowed. If the window has overall duration Tp, the
Fourier transform of the periodically-extended signal exists
only on harmonics of a fundamental frequency 27/ Tp,. This
Fourier transform includes information about the window
shape as an integral part of the signal. To the extent that
window W(w) decreases with increasing w, this Fourier rep-
resentation is band limited. However, the spectrum of the
periodically-extended signal does not agree with the spec-
trum of the original unlimited-duration waveform because
the window is not matched to the waveform. Also, because
the periodically-extended signal is an artifice, which enables
the discrete-frequency representation but does not force the
waveform to zero outside the signal interval, this Fourier
representation is incomplete.

A third representation of the signal is the matching ap-
proach suggested in this article. The Fourier transform of the
window indicates the significant duration 7. If the
unlimited-duration waveform consists of harmonics of fun-
damental frequency w,=2m/Tg, then the waveform is
matched to the window. Then the spectrum of the signal
evaluated on these harmonics is the same as the spectrum of
the unlimited-duration waveform. Matching the window and
the waveform causes the window to disappear in this repre-
sentation, and the spectrum is said to be under control. As an
example of this control, the spectrum of a filtered windowed
waveform becomes the same as for a windowed filtered
waveform, as shown in the Appendix. The order of window-
ing and filtering operations does not matter if window and
waveform are matched.

The rectangular window is a special case. When a
rectangularly-windowed signal is periodically extended, it
becomes equivalent to the waveform that matches the win-
dow. For the rectangular window, one can have both a con-
tinuous periodic extension and waveform matching. How-
ever, the continuous spectrum may not be sufficiently band
limited to avoid distracting transients.

B. An example with three steps

Spectral effects of temporal windows that are matched
or mismatched to the waveform can be illustrated by a
simple example with five spectral components. We suppose
that the unlimited-duration waveform is a narrow noise band,
40 Hz wide centered at 500 Hz, with amplitudes and phases
(expressed in degrees) chosen haphazardly:

x(#) = 0.3 cos(360 - 480¢ — 45) + 1.0 cos(360 - 490z — 5)
+0.2 cos(360 - 500¢ + 17) + 0.5 cos(360 - 510 + 143)
+0.8 cos(360 - 520t — 17). (20)

The spectrum of the unlimited-duration waveform is shown
in Table I, row (a).

The fundamental frequency of the unlimited-duration
waveform in Eq. (20) is 10 Hz because we want to make a
noise that is approximately 100 ms long. In a first step, we
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TABLE 1. Spectra for matched and mismatched windowed signals are given in the form level (dB) | phase
(degrees). (a) Spectrum of the standard unlimited-duration signal from Eq. (20). The experimenter wants to
preserve this spectrum. The amplitudes from the second line are converted to levels in decibels for better
comparison with other parts of the table. Step 1: Row (a) is also the spectrum of the rectangularly-windowed
signal. Step 2: Row (b) is the spectrum of the windowed signal with mismatched window and waveform. Step
3: Row (c) is the spectrum of the windowed signal with matched window and waveform. Row (d) is the
spectrum of the windowed signal with the 500-Hz component shifted by 180° using mismatched window and
waveform. The levels are computed with respect to the largest component in row (b) to make the binaural
comparison correct. Row (e) is the spectrum of the windowed signal with the 500-Hz component shifted by

180° using a matched window and waveform.

Frequency (Hz) 480 490
Amplitude 0.3 1.0
(a) Standard: -10.5 | -45
(b) Mismatched: -122|-73
(c) Matched: -10.5] -45
(d) 180 - Mismatched: -12.1| -63
(e) 180 - Matched: -10.5 | -45

00] -5
00] -5
00] -5
+0.4 | -4
00] -5

500 510 520

0.2 0.5 0.8
-14.0| 17 -6.0] 143 -1.9] -17
-20.7 170 23| 151 -2.1]-20
-14.0 17 -6.0| 143 -19]-17
-8.3| -174 2.7 148 -2.1|-18
-14.0| -163 -6.0| 143 -19]| -17

use a rectangular window with a duration 7p,=100 ms. Be-
cause the window and the waveform are matched, the spec-
trum of the 100-ms noise preserves the amplitudes and
phases of the unlimited-duration waveform. The Fourier se-
ries spectrum, equivalent to the spectrum of the periodically-
extended signal, is equal to the spectrum of the unlimited-
duration waveform and is again given by Table I, row (a).

In a second step, we apply a 10-ms raised-cosine edge
to the beginning and end of the 100-ms noise, as shown in
Fig. 4(a). The total duration remains 7=100 ms, the full-on
duration becomes 80 ms, and the significant duration in Eq.
(17) becomes Tp—7,=90 ms. This value of significant dura-
tion would match a waveform having a fundamental fre-
quency of 1000/90 Hz, but it does not match our chosen
fundamental frequency of 10 Hz. The Fourier series spec-
trum for harmonics of 10 Hz is shown in Table I, row (b). It
does not look good. Both the amplitude spectrum and the
phase spectrum are distorted because these spectra are trying
to capture some elements of the window. In addition, there is
spectral splatter for harmonics of 10 Hz outside the original
40-Hz band not shown in the table. Further, the spectrum
Y(w) looks no better on a different set of frequencies because
the waveform, with its fundamental of 10 Hz, is fundamen-
tally incompatible with this raised-cosine window. By mis-
matching window and waveform, we have lost precise con-
trol of the final spectrum.

FIG. 4. Mismatched and matched windows. (a) The rectangular window
(dashed) matches a waveform with fundamental frequency 1/T). The
raised-cosine window does not match. (b) Both the rectangular window and
the raised-cosine window match a waveform with fundamental frequency
1/Tg, where Ty is the significant duration.
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In a third step, we retain the 10-ms raised-cosine edge at
the beginning and end, but we let the total duration be T}
=110 ms, as shown in Fig. 4(b). Then the significant dura-
tion is 100 ms, and that matches a fundamental frequency of
10 Hz. The amplitude and phase spectra, computed at mul-
tiples of 10 Hz, are shown in Table I, row (c). Table I, row
(c) is identical to Table I, row (a), and there is no spectral
splatter for harmonics of 10 Hz outside the original 40-Hz
band. What we have given up in exchange for a controlled
spectrum is the periodically-extended signal. The 10-Hz fun-
damental frequency is incompatible with periodic extension
of the 110-ms signal.

C. Binaural consequences

Because research in binaural hearing requires signals
with precise interaural amplitude and phase properties, it is
interesting to investigate the binaural consequences of win-
dowing waveforms. In this investigation, we imagine that we
intend to synthesize signals for the left and right ears where
the interaural differences are specified in the spectra of the
unlimited-duration waveforms. We would like to know about
the effects on these interaural differences if we apply a tem-
poral window to the waveforms. The following facts apply.

o If the period of the waveforms is equal to the signifi-
cant duration of the temporal window, or an integral submul-
tiple of it, then the amplitudes and phases on waveform fre-
quencies in both the left and right channels are unchanged by
windowing. Consequently, the interaural properties, interau-
ral phase difference (IPD), and interaural level difference
(ILD), after the window is applied, are the same as the inter-
aural properties of the waveforms on those frequencies. Life
is good binaurally.

« If the only interaural differences are an IPD (A¢) and
an ILD (g) applied identically to all components in the spec-
trum of the unlimited-duration signal, then the interaural
spectral properties of the signal after the window is applied
are the same as for the unlimited-duration signal whatever
the temporal window. It takes only a few lines of mathemat-
ics to prove this fact, starting with Eq. (8). If the waveform

W. M. Hartmann and E. M. Wolf: Windows and waveforms



in the left ear is x;(f), then the windowed-signal spectrum in
the left ear is

1
Y, (w)=— f do'W(o- )X (0), (21)
2m
and the windowed-signal spectrum in the right ear is

1 ; /
Yilw)=—— J do'W(w - o')[g(w")e* "X (o),
(22)

where g is the gain leading to the ILD and A¢ is the inter-
aural phase shift.

By hypothesis, the gain and interaural phase shift are
independent of frequency w’, and they can be extracted from
the integral. Consequently,

Yi(w) = (ge* )Y (o), (23)

which says that the signals after windowing have the same
interaural relationships as the unlimited-duration waveforms.
This binaural invariance always holds good, whether or not
the waveform and window are matched. Again, life is good
binaurally.

e If the ILD or the IPD is not the same for all frequen-
cies, then a mismatch between the waveform and the win-
dow leads to a distorted interaural spectrum. The effects may
or may not be important. For instance, if an interaural time
difference (ITD) is applied, the IPD is different for different
frequencies, but it may not be very different, especially for a
narrow-band noise. Given an applied ITD in the range of a
typical experiment (<1 ms) and a critical-band noise, the
spectral distortion may not be severe. It depends partly on
the number of components in the waveform and partly on
luck.

By contrast, a dramatic phase change can lead to dra-
matic distortion. For instance, one might try to create an
NoS stimulus by synthesizing two channels that are identi-
cal except that the phase of one component is reversed by
180°. Then a mismatch between waveform and window [Fig.
4(a)] leads to serious distortion, where the interaural ampli-
tudes and phases of the windowed signal do not resemble the
desired stimulus.

For example, beginning with the five-component wave-
form of Eq. (20), and reversing the phase of the center com-
ponent (500 Hz) leads to the interaural differences shown in
Table I, row (d). The IPDs for the five components are ex-
pected to be 0°, 0°, 180°, 0°, and 0°. The actual IPDs for the
mismatched condition can be obtained by subtracting Table I,
row (b) from Table I, row (d). They are 10°, 1°, 116°, —=3°,
and 2°. The expected phase shift of 180° has been turned into
116°. Further, reversing the phase of the central component
has changed the amplitudes of the components. The level of
the central component has changed by more than 12 dB.
That was not at all intended.

By contrast, if the matched window shown in Fig. 4(b)
is used then reversing the phase of the central component
leads to the spectrum shown in Table I, row (e). Comparison
with Table I, row (c) shows that the only interaural difference
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is the 180° phase shift of the central component as expected.
To create a controllable stimulus like this, it is essential that
the waveform and window be matched.

D. Size of the distortion

The discrepancies between the spectrum of the mis-
matched windowed signal and the spectrum of the unlimited-
duration waveform on the set of waveform frequencies were
examined for the particular waveform given in Eq. (20). That
waveform had a relatively small amplitude for the central
component, and it is partly for this reason that the desired
IPD of 180° was so badly violated in the windowed binaural
signal. It became 116°. That kind of result is expected. When
the waveform and window are not matched, the amplitude of
any particular component in the windowed signal becomes a
linear combination of the amplitudes of all the other compo-
nents, more or less, depending on all the phases. A compo-
nent of the original unlimited-duration signal that is small is
particularly vulnerable to distortion by other components
with larger amplitudes. Although the distortion seen for this
particular waveform is large, it is not atypical for this case of
mismatched waveform and window. Other choices of origi-
nal amplitudes and phases lead to distortions that are as large
or larger.

In the example above, the waveform and window are
only somewhat mismatched. Because the window has a total
duration Tp=100 ms and a raised-cosine edge of 7,=10 ms,
the edges of the window account for only 20% of the total
window. The window is not greatly different from a rectan-
gular window, which would preserve the spectrum.

If the calculations leading to Table I are repeated except
that the edge duration is increased to 7,=20 ms, then the
spectral distortion is correspondingly more dramatic. For in-
stance, in the windowed binaural signal the IPD of the cen-
tral component becomes —43° degrees instead of 180°. Gen-
erally, as the edge duration becomes a greater fraction of the
total duration, the effect of mismatch becomes larger.

Because the distortion of the spectrum for a given com-
ponent in a mismatched case is a linear combination of am-
plitudes for all the other components, one expects the distor-
tion to be larger when there are more components. Thus, the
distortion observed in the above example with only five com-
ponents may underestimate the typical distortion. However,
the form of W(w) shows that the coefficients in the linear
combination decrease as the component contributing to dis-
tortion is farther away from the particular component of in-
terest. For the raised-cosine window, it decreases as the cube
of the distance in frequency, which is better than the trap-
ezoid window.

IV. PRACTICAL CONSIDERATIONS

A. Tones

Section III above, including the five-component ex-
ample, dealt with a dense spectrum, where the spacing be-
tween adjacent components in the signal was as small as was
allowed by the window, namely, 27/ Ts. It is, of course, pos-
sible to use only a subset of the allowed set of frequencies to
create a tone. A complex tone with fundamental angular fre-
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quency M(2/Ts), second harmonic 2M(27/Ts), and so on
with integer M is also matched to the window with signifi-
cant duration T.

B. Discrete Fourier transform

Thus far, the matching principle has been developed in
terms of signals that are continuous functions of time. The
principle also applies to discrete time (sampled) signals as
well and to the discrete Fourier transform (DFT). As noted in
the Introduction, an experimenter normally creates a signal
beginning with an intended spectrum. In a digital implemen-
tation, the experimenter chooses a sample rate and a signal
duration so that the intended spectrum can be represented as
a spectral array (Proakis and Manolakis, 1992). Applying an
inverse DFT, or inverse fast Fourier transform, produces a
function of time, which is then given a temporal window to
make the signal. This approach to signal generation does not
match the waveform and the window.

In order to match the waveform and the window, the
spectral array should be represented assuming that the signal
duration will be the significant duration T, not the signal
duration T'p. As a result, the inverse DFT will lead to a func-
tion that has duration 7. That duration is not long enough
because the duration of the intended signal, Tp, is always
longer than T. For instance, for the raised-cosine window,
the duration is Tp=Tg+ 7,. However, by its nature, the in-
verse DFT produces a function of time that is periodically
extended. Consequently, it is only necessary to repeat a por-
tion of that function in order to produce a function with
duration Tp. That function can then be multiplied by the
temporal window, and the final signal will correspond to a
matched waveform and window.

V. DISCUSSION

Experimenters initially specify their signals in terms of a
desired spectrum. Precise spectral requirements in terms of
discrete frequencies imply a waveform of unlimited duration.
For instance, an experimenter might specify a 500-Hz sine
tone or a noise with a rectangular bandwidth of 40 Hz. These
are statements about infinitely long waveforms, but a signal
as actually used in real life has a finite duration, imposed by
a temporal window. Making the duration finite inevitably has
spectral consequences. The windowed signal, as presented to
a listener, does not have the spectrum as specified.

Summary of matching. This article has considered tem-
poral windowing procedures that are spectrum preserving
and windowing procedures that are not spectrum preserving.
The spectrum to be preserved (or not) is that of a periodic
waveform, where the spectrum exists only on a set of har-
monically related frequencies {f,,=nf,}. The rectangular win-
dow with duration T}, preserves the spectrum if f,7,=1. On
the set of harmonic frequencies {nf,}, the rectangularly-
windowed signal has no power outside the band of desired
spectral components; i.e., there is no spectral splatter on har-
monics. Further, within the band of desired components
the spectrum of the windowed signal has exactly the ampli-
tudes and phases of a periodically-extended signal. The rect-
angular window is conceptually simple because the matched
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unlimited-duration waveform is the same as the periodically-
extended signal.

The purpose of this article was to point out that spectral
preservation arises from properties of the Fourier transform
of the temporal window. It was shown that if the window and
waveform are matched, then the spectrum is preserved. The
rectangular window with duration 7)p is matched to the
waveform made from spectral components with frequencies
that are harmonics of 1/7p. If some other form of temporal
window, having overall duration of Tp, is used, then the
window is not matched by a waveform made from harmonics
of 1/Tp. Instead, the match between window and waveform
must be made in view of the significant duration T that
appears in the Fourier transform of the window. For ex-
ample, the raised-cosine window shown in Fig. 2 having a
total duration of 7}, and a Hanning edge with duration 7, at
each end is matched by a waveform with period T¢=Tp—7,.
A waveform that is matched to a window that is not rectan-
gular is not equal to the periodically-extended signal with
period Tp. Given that the periodically-extended signal is
only a fiction, extrapolated from the Fourier series, giving it
up entails little cost.

Value of matching. Because matching the waveform and
the window only preserves the spectrum on a specific set of
frequencies, one may well ask whether there is a value to
matching. One value is that the frequencies of this set are the
most important frequencies in the windowed signal. They are
almost certain to be the frequencies with the largest ampli-
tudes and the most power. Also, they are the frequencies that
are initially specified by the experimenter.

However, sometimes experimenters make no attempt to
match. For instance, an experimenter may compute a noise
waveform using a band of spectral components spaced by
only 1 Hz, give it a duration (e.g., 100 ms) using a nonrect-
angular window of some form, and present it to a listener. If
the window is smooth, the spectral splatter outside the band
may be held to some designated limits. Although the phases
and amplitudes within the band of the windowed noise are
not preserved, nor are they equal to those of the periodically-
extended waveform with a period of 1 s, that may not be of
much concern to the experimenter. It may be that one set of
amplitudes and phases is as good as any other.

Creating waveforms in this way, with no regard for
matching, leads to the widest possible variety of signals in
the experiment. However, the spectrum is not well con-
trolled. Generating noise stimuli in this way is like using a
thermal noise generator and bandpass filter for the waveform
and an analog multiplier for the window. Stimuli like these
would not be appropriate for reproducible noise experiments
where the stimulus spectrum needs to be known exactly. An
alternative procedure for reproducible noise is to begin with
a desired spectrum, create a windowed stimulus violating all
the matching rules, and then test the windowed stimuli for
approximate agreement with the desired spectral properties.
That approach has been taken by a number of experimenters,
e.g., Goupell and Hartmann, 2007. It is normally necessary
to reject a large number of candidate stimuli.

Generalization. The mathematical development in this
article considered three temporal windows, rectangular,
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raised cosine, and trapezoidal. Conditions for matching to a
waveform were found for all three of those windows. Is it
possible to generalize this development? Can one say that for
every form of temporal window there is some way to obtain
a matching condition? Apparently not. The matching condi-
tions for the three windows depended on Fourier transforms
that contained a sinc-function factor. On a set of matching
harmonics, the sinc function became a Kronecker delta.
Other windows do not have a sinc-function factor, a Gauss-
ian window, for example. The matching conditions as de-
rived in this article would not work for such a window.

Signal detection theory. In the theory of signal detection,
the number of degrees of freedom in a signal is given by
2W, Tp, where W,, is the bandwidth (Green and Swets, 1966).
This result implicitly assumes a rectangular temporal win-
dow. That can be seen as follows: For a rectangular window,
the frequency spacing in the spectrum of the periodically-
extended signal is 1/Tp. The number of independent spectral
components is then simply the bandwidth divided by the
frequency spacing. The factor of 2 arises because specifying
each component requires two variables, an amplitude and a
phase. According to the theory of this article, if the window
is not rectangular, the number of degrees of freedom is
smaller. For instance, for a raised-cosine window, the num-
ber of degrees of freedom is 2W,(Tp—17,).

The ongoing signal. This article has been concerned
with the Fourier transform of a windowed signal. The signal
originates in a waveform of unlimited duration, but in the
end, the window, of whatever form, is considered to be an
integral part of the signal being Fourier transformed. That
point of view is not necessarily perceptually relevant. It may
be that the listener’s decisions are affected only by the on-
going portion of the signal. For instance, if the listener’s task
is to evaluate the pitch of a one-second periodic complex
tone, it is unlikely to matter whether the stimulus is turned
on with one kind of temporal window or another. Then the
most relevant spectral representation would be the spectrum
of the unlimited-duration waveform. Spectral distortions
caused by a mismatched raised-cosine window would be un-
important because that window plays a role that is merely
cosmetic. Its smooth edges eliminate unaesthetic clicks.

Relevance of the spectrum. For some stimuli, particu-
larly those that are very short, the temporal window contrib-
utes importantly to the power spectrum of the signal pre-
sented to a listener. Sometimes considering the entire power
spectrum leads to a insights into perception (e.g., Green,
1968; Hartmann and Sartor, 1991). However, the power
spectrum may not always provide the most relevant physi-
ological or psychological representation of the stimulus. That
is particularly true for the simple spectrum obtained by
matching the waveform and window as described in this ar-
ticle. What is one to make of the fact that on one set of
frequencies there is spectral splatter but on another set of
frequencies there is none? Alternatives to the spectral repre-
sentation are available, e.g., the wavelet or Wigner distribu-
tion, but they have had negligible impact on auditory science
compared to the Fourier spectral representation, which maps
to place in the auditory system.
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Another alternative to a spectral representation is to
build a mathematical model of the system of interest—
anything from outer ear to cortex—and to use the time-
dependent windowed signal y(¢) as the input to the model.
Whether the essential stimulus attributes lie in the onset, off-
set, window, or ongoing signal then becomes a characteristic
of the model. The spectrum itself plays no role.

Final word. When it is important to control the spectrum
of a windowed stimulus, there is a value to matching the
waveform and the window. To match the window and wave-
form it is necessary to know the Fourier transform of the
windowing function. Control may be particularly important
in some binaural experiments where differences in the sig-
nals to the two ears become important.
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APPENDIX: FILTERED FUNCTIONS

If waveform and window are matched, the spectrum of a
windowed filtered signal is the same as the spectrum of a
filtered windowed signal, where the spectrum is defined on
the discrete set of frequencies that are harmonics in the
waveform. The order of operations does not matter. This ap-
pendix proves that fact. It begins with the windowed filtered
signal.

If the waveform x(¢) is filtered with transfer function
H(w), the Fourier transform of the filtered waveform is
H(w)X(w). If the filtered waveform is then windowed with
temporal window w(z), the Fourier transform is given by the
convolution from Eq. (8),

©

do'W(w-ow')H(o)X(w').

—00

y,(@:i (A1)

Because Eq. (3) expresses X(w) as a sum of delta functions,
the integral is easy to do, and

M= S Wo-o)Ho,)X, (A2)

If x(7) is periodic with fundamental frequency w,, and if Y,
is evaluated on harmonics of w,, then

Vimo)=3 3 Witn-noJHow)X, (A3

n=—o0o

Reversing the order of the operations above produces a
filtered windowed signal. Beginning with Eq. (8) for the win-
dowed waveform and then filtering with transfer function H
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leads to the Fourier transformed signal

©

Yy(w) = QLH(w) do'W(w-w)X(w'). (A4)

™ —o0

Using Eq. (3) to write X(w') in terms of discrete harmonic
frequencies and again evaluating at those frequencies lead to

©

YZ(mwo) = %H(mwo) 2 W[(m - n)wo]Xn'

n=—0

(AS)

According to the development in this appendix, w, is the
fundamental frequency of the waveform. If the window is
matched to the waveform, then W[ (m-n)w,]=W,3,, ., where
W, is a constant. Then Eq. (A3) for Y, and Eq. (A5) for Y,
are the same, and
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Ya(mw,) = Y (mw,) = sHmw,)W,X,,. (A6)

The filtered windowed signal is equal to the windowed fil-
tered signal. If the waveform and the window are not
matched, W[(m—-n)w,] is not diagonal on m and n and the
filtered windowed signal is different from the windowed fil-
tered signal.
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