Shock-induced bubble jetting into a viscous fluid with
application to tissue injury in shock-wave lithotripsy
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Shock waves in liquids are known to cause spherical gas bubbles to rapidly collapse and form strong
re-entrant jets in the direction of the propagating shock. The interaction of these jets with an
adjacent viscous liquid is investigated using finite-volume simulation methods. This configuration
serves as a model for tissue injury during shock-wave lithotripsy, a medical procedure to remove
kidney stones. In this case, the viscous fluid provides a crude model for the tissue. It is found that
for viscosities comparable to what might be expected in tissue, the jet that forms upon collapse of
a small bubble fails to penetrate deeply into the viscous fluid “tissue.” A simple model reproduces
the penetration distance versus viscosity observed in the simulations and leads to a
phenomenological model for the spreading of injury with multiple shocks. For a reasonable
selection of a single efficiency parameter, this model is able to reproduce in vivo observations of an
apparent 1000-shock threshold before wide-spread tissue injury occurs in targeted kidneys and the
approximate extent of this injury after a typical clinical dose of 2000 shock waves. © 2009

Acoustical Society of America. [DOI: 10.1121/1.3224830]

PACS number(s): 43.80.Jz, 43.35.Wa, 43.40.Ng [ROC]

I. INTRODUCTION

We consider a small gas-filled bubble being compressed
rapidly by a shock wave (see Fig. 1) and its subsequent jet-
ting toward a viscous material. This configuration is moti-
vated by medical procedures such as shock-wave lithotripsy,
during which shock waves are directed toward kidney stones
in the hope of fracturing them into “passable” pieces. At
clinical shock-wave doses, there appears to be significant
collateral injury to the kidney,l’2 which is implicated in cer-
tain short- and long-term complications.3 The action of cavi-
tation bubbles is implicated in this injury.4’5

Bubble expansion, caused by the negative-pressure
phase of the lithotripter wave,’ has been suggested as a po-
tential mechanism of the injury,7 but the bubble collapse is
also potentially damaging. It is known that a bubble can
collapse asymmetrically leading to the formation of a so-
called re-entrant jet,&9 which starts from where the shock
first encounters the bubble and is able to penetrate the bub-
ble’s far side with sufficient velocity to damage nearby ma-
terial. This is one of the mechanisms thought to cause cavi-
tational damage in engineered systems in cases where the
flow’s dynamic pressure causes the cavitation and subse-
quent collapse.8 The shock sensitivity of explosives also ap-
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pears to depend on this jetting mechanism. In this case, the
formation of local hot spots in the material by the dissipation
associated with this jetting seems to increase the overall ex-
plosive sensitivity of energetic materials to shock-like me-
chanical impacts.lo’”

In tissues, this jetting has been hypothesized to be the
mechanism of mechanical injury during lithotripsy (e.g., see
the recent discussion of Klaseboer ef al.”*), and it is poten-
tially the mechanism by which bubbles subjected to bursts of
high-intensity focused ultrasound (HIFU) can erode tissue
(e.g., Ref. 13). HIFU is also well known to cause thermal
injury to tissue, but our concern is with mechanical effects at
energy deposition rates that preclude significant heating.
Thermal injury is not expected in lithotripsy.14

Simulations of collapsing bubbles typically neglect
Viscosity,lz’ls’21 which is indeed justified based on the Rey-
nolds numbers of the jets expected under typical
conditions,* though for very small bubbles viscous effects
have been identified for non-shock-induced (so-called Ray-
leigh) collapse near a wall.”? The re-entrant jets for lithot-
ripter shocks appear to have speeds of around 1000 m/ s,'? s0
for a 1 mm diameter bubble in water the jet Reynolds num-
ber is about 10°%. Even if we assume that the re-entrant jet
diameter is only 1% of the bubble diameter, this Reynolds
number is still 10*. However, the significantly smaller
bubbles that might form in microvessels in the kidney (say,
20 pm diameter) and the significantly higher viscosities of

© 2009 Acoustical Society of America
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FIG. 1. (Color online) Configuration schematic (see text).

tissue (at least hundreds of times that of water) can lead to
re-entrant jets with Reynolds numbers of around unity. This
suggests that tissue viscosity might play a significant role in
suppressing the jetting and any injury it might cause. Recent
experiments involving laser-induced bubble growth and col-
lapse in viscous fluids suggest that higher viscosity fluids
both suppress the strength of the jetting and slow the time
scale of the collapse.23

Viscosity has also recently been proposed to be impor-
tant for the confinement of bubble expansion when subjected
to model lithotripter shock proﬁles.24 Assuming spherical
symmetry, we recently generalized the well-known
Rayleigh—Plesset bubble dynamics model to account for con-
finement by an elastic membrane and an extensive Voigt
visco-elastic material.** Results suggest that even the highest
estimates of tissue elasticity fail to suppress bubble growth
significantly, but because of the small scales and nature of
the expansion, even moderate estimates of tissue viscosity
were able to play a substantive role is suppressing bubble
expansion.

Though kidney injury directly motivates this study, it
should also be clear that connection of the present study to
tissue and its injury is loose since we neglect its elastic char-
acter altogether and study the collapsing bubble’s interaction
with a viscous fluid. Our Newtonian viscosity can, of course,
provide only an approximate model for tissue viscosity under
small deformations and only the crudest possible model for
the dissipation associated with the mechanical disruption of
tissue. That understood, this type of interaction does not ap-
pear to have been studied and a linear viscosity model is
clearly a reasonable start for investigating phenomenology.
Extending the type of simulations employed herein to tissue-
like visco-elasto-plastic models would be a non-trivial task.
Furthermore, any such attempts to refine the tissue model
would remain only phenomenological because of the lack of
detailed constitutive models for the mechanics of tissue in-
jury.

Section II introduces the physical model for studying
jetting penetration of the viscous “tissue.” The numerical
scheme is summarized in Sec. III, and simulation results
along with a simple model reproducing the jet penetration
depth are presented in Sec. IV. In Sec. V, this simple model is
incorporated into a phenomenological model for the spread-
ing of tissue injury with the thousands of shocks of a typical
treatment. There it is shown to be successful at reproducing
some in vivo observations of kidney injury during lithotripsy.

Il. THE MODEL CONFIGURATION

We are interested primarily in the effect of a pre-existing
bubble as it collapses on an adjacent viscous fluid, particu-
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larly the penetration depth of the jet, which motivates the
configuration shown in Fig. 1. The shock propagates perpen-
dicular to the viscous fluid. The only length scales are the
bubble diameter D and its distance w from fluid 2 which has
viscosity u. Both the viscous and nearly inviscid (u;) liquids
have a density p that is 1000 times that of the gas in the
bubble. This density ratio is so large that the density of the
gas is expected to have negligible influence on the subse-
quent jetting dynamics. Simulations confirm that doubling it
does not change any of the results we discuss. There are thus
only two parameters we consider: s=w/D and Re
=\P,pD/u, the second of which is the Reynolds number
based on shock pressure jump P, and density p, which is
commonly used in studies of shock-induced pore collapse
(e.g., Ref. 25). For the nearly inviscid fluid, we take Re;
=\P,pD/u;=4000, so we do not expect significant viscous
effects in the collapse itself. Five Reynolds numbers are
simulated (Re=0.4, 4, 13.3, 40, and 400), which we antici-
pate should show highly dissipative to relatively inviscid be-
havior. We also consider s=0, 0.25, and 0.5, and shall see in
Sec. IV that the bubble collapse and peak jet velocity is
insensitive to s for this range.

The non-dimensional parameters s and Re guide our in-
vestigation of the relative effects of bubble proximity and
viscosity, but our simulations are also motivated by the spe-
cific bubble-in-tissue application. The parameters considered
correspond approximately to a 20 um diameter air bubble in
water at atmospheric pressure being compressed by a P
=40 MPa shock, as might be delivered by a typical
lithotripter.” The liquid densities are both 1000 kg/m?. The
lowest tissue viscosity we consider is u=0.01 Pas, which
corresponds roughly to tissue viscosity deduced via the small
fast deformations of dissipating ultrasonic shear waves.”" %
Our results (Sec. IV) show that indeed there is little viscous
dissipation in this case. The highest viscosity we consider is
pn=10 Pas, which corresponds to more standard, high am-
plitude but slower rate, deformations.>® This range of vis-
cosities is discussed in more detail elsewhere.”* Because of
the current activity in this specific area, we choose to present
mostly dimensional results for this particular system.

It is known that the shock might couple with on-going
oscillations of the bubble, affecting both collapse time and
apparent jet strength,31 which has been studied in some detail
via boundary integral simulation methods.'> However, to
simplify our investigation we consider the bubble to be of
fixed volume before the interaction with the shock. We an-
ticipate that the jet formation will occur almost indepen-
dently of its subsequent interaction with the viscous half-
space, which is indeed confirmed in Sec. IV. So, assuming
the oscillations are relatively weak, the current jet penetra-
tion results should apply to a transient or oscillating bubble
so long as the jet strength is properly accounted for.

The equations governing the system are

dp
—+V. =0, 1
P (pu) (1)
dpu
?+V-(puu)+Vp=V-T, (2)
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%+V'[H(E+p)]=V'(T‘ll), (3)

where p is the density, p is the pressure, u is the velocity, £
is the total energy (kinetic plus internal), and 7 are the
Newtonian-fluid viscous stresses. These equations are writ-
ten compactly here in three-dimensions, but the simulation
model is constrained to be axisymmetric. The liquid thermo-
dynamics are modeled via a stiffened equation of state,

p=p(y=1)e = ype, 4)

where e is the mass-specific internal energy. The model pa-
rameters in Eq. (4) are selected to be p,.=3X10® Pa and y
=7, which provides an approximate model for water.”” The
bubble contents are modeled by the ideal gas equation of
state: Eq. (4) with p,.=0 and y=14.

Here we consider only the collapse and jetting process
for a pre-existing spherical bubble. In lithotripsy, these are
expected to be due to gas being pulled out of solution by the
negative portion of the lithotripter wave, which follows the
shock.*® The numbers of such bubbles are also expected to
increase with subsequent shocks and the intensity of shock-
induced collapse has motivated a close examination of their
potential role in stone breaking. " The jetting in this case also
seems to be somewhat stronger than in corresponding Ray-
leigh collapse.20 While dissolution and diffusion are expected
to be important for the formation of the gas bubbles, the
collapse and jetting are expected to occur too quickly for any
significant phase change or thermal transfer between the
bubble and the surrounding fluid to affect the subsequent jet
formation. Inclusion of such factors is important for calcu-
lating peak temperatures for asymmetric collapses,33 and pre-
sumably for behavior of the collapsed bubble upon re-
expansion, but the jet formation is expected to be governed
by mass and momentum conservation considerations that are
independent of the microscopic details of the final collapsed
condition. Simulation models that do not attempt to resolve
the heat transfer, diffusion, and high-temperature effects in
the equation of state behavior have indeed shown collapse
dynamics that seem to match corresponding experimental
data (e.g., Ref. 16). We follow this approach and neglect
these factors, though our simulation does include liquid com-
pressibility and viscosity, which are also often omitted from
simulations. We also neglect surface tension. Weber numbers
We=pU?D/ o based on bubble diameter, peak calculated jet
velocities (see Sec. IV), and the surface tension of blood
[0=0.06 N/m (Ref. 34)] are around 5 X 10°> and would be
roughly the same for water. Thus, inertia is clearly expected
to dominate surface tension for jet formation, justifying its
neglect here.

For the small bubbles of interest, we shall see that the
entire collapse and jetting penetration of the viscous fluid
takes place in =0.25 us, with conclusions about suppressed
penetration available after around 0.05 ws. For these times, a
lithotripter shock can be assumed to have a sharp rise and
then constant pressure. In water, where the pressure profiles
are typically measured, the shock-wave pressure has an un-
resolvably fast rise time [theoretically around 0.15 ns (Ref.
35)] before it drops approximately linearly over about

2748 J. Acoust. Soc. Am., Vol. 126, No. 5, November 2009

1 ,u,s.26 So by the time there would any significant decrease
in the wave pressure, the bubble in our simulations will have
collapsed to such a small size that its dynamics will not
affect the subsequent jetting.

lll. NUMERICAL SOLVER

The basic simulation approach is similar to that of
Johnsen and Colonius,18 who also considered bubble col-
lapse by lithotripter shocks, though our objectives and the
details of our algorithm are different. Our finite-volume
solver for Egs. (1)—(4) uses a TVD reconstruction with a
minmod limiter’® and a HLLC (Ref. 37) approximate Rie-
mann solver. These are standard techniques for single-phase
gas dynamics calculations involving shocks. To track the
three fluids in our system (the gas, fluid 1, and fluid 2), we
also transport two phase variables, which are used to demark
the different regions that the different fluids occupy: ¢,=1 in
the bubble and is O elsewhere, and ¢,=1 in fluid 2 and is
zero elsewhere. A wide class of level-set or phase-field
schemes models the interfaces, which in reality are molecu-
larly thin, with a mesh-resolved though narrow continuous
variation of ¢ between its extreme values on either side.
With such a “smeared” interface model, the transport of the
different ¢’s is governed by

¢
—HuV,=0. (5)
’?iuu-vqsszo. (6)

Numerical diffusion in general will further smear these inter-
faces in time, which greatly degrades the quality of long-
time solutions. However, we have designed special terms
based on initialization of the phase field using a tanh profile
diffused over a few grid cells and keeping this profile fixed
as it advects during the simulation.”®* When coupled into
the overall numerical scheme, this preserves the sharpness of
the ¢ representation of the material boundaries. These and
all the details of the inviscid portion of the scheme are pre-
sented in full elsewhere.*’ Viscous terms appearing in Eqgs.
(2) and (3) are discretized using a standard second-order
finite-volume scheme in a way that keeps the overall method
conservative. A four-stage third-order accurate semi-implicit
Runge—Kutta method*! is used to treat viscous terms implic-
itly and effectively avoids the strong stability restriction en-
countered by explicit time integration methods for the higher
viscosities. The resulting coupled system of linear equations
for momentum in the x and r directions is solved using the
BICGSTAB (Ref. 42) algorithm.

Solutions with finite-volume solvers are not potentially
as fast as with boundary-element me:thods,16 but the inclu-
sion of viscosity seems to preclude boundary-only discreti-
zations since Green’s functions are only available in the in-
viscid and strictly viscous limits. Boundary integrals would
also be inconsistent with our current simulations in which we
wish to track the fluid jet even after the bubble has collapsed
to very small (negligible in our model) size. Perhaps not
essential, but potentially important, a finite-volume solver
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FIG. 2. (Color online) Velocity vectors at times during the collapse and jetting for the u=0.1 Pas case with w=D/4=5 um. Note that the scale is different
in (a) to show the full bubble at the beginning of its collapse. The lines show the p=0.5pjiq,is and ¢,=0.5 isopleths. The vector associated with only every
eighth mesh point in each coordinate direction is plotted. For reference, in (a), the shock front is just leaving the region shown.

also allows explicit two-way coupling of the shock propaga-
tion and the bubble response. The simulations presented
herein required 1-3 processor-days to complete, which is
still very fast given the availability of parallel systems. The
longest of times were required for the most viscous cases
because of longer convergence times for the implicit time
advancement.

The axisymmetric computational domain extends
100 wm in x and out to 50 um in r and was discretized by
800X 400 mesh points in these two directions, respectively.
For all the penetration distances calculated, less than a 10%
change was observed for a 400 X 200 mesh calculation. The
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fluid 1/fluid 2 boundary was at x=45 um and the shock was
initialized using the shock-jump conditions for Eq. (4) at x
=10 wm. Simulations were run with time step At adjusted to
fix the CFL number: Af(c+|u|) e/ Ax=0.3, where Ax is the
mesh spacing.

IV. RESULTS

Figures 2—4 visualize the collapse and re-entrant jetting.
For the higher viscosity cases (Fig. 3 and especially Fig. 4),
the penetration of the jet into fluid 2 appears to be sup-
pressed. But it is also clear from frame (c) of all three figures
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FIG. 3. (Color online) Same as Fig. 2 for the u=1 Pas case.

that the initial asymmetric collapse and jet formation is in-
sensitive to the viscosity of fluid 2. Quantitative comparisons
of velocities confirm this. Peak x-direction velocities through
the entire collapse and jet formation are nearly the same for
all cases, as can be seen in Table I, though the viscous resis-
tance of fluid 2 does increase jet velocities a bit. (The peak
jet velocity of 1.2 km/s is similar to that found for similar
shocks by others.'”*?) The influence of the viscous fluid 2 is
strongest when the bubble is directly in contact with fluid 2
(the w=0 case) up through u=1 Pas, though this trend re-
verses for the highest viscosity. Except perhaps for the w
=0 case, we can conclude that the collapse and initial jet
formation are insensitive to the viscosity of fluid 2. A more
significant increase in jetting velocity is seen for the case of
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a bubble adjacent a solid wall,"”* which is presumably

mostly due to the reflection of the shock. Our results, in
which there is no acoustic impedance mismatch, suggest that
there might also be a relatively small hydrodynamic influ-
ence from the wall. In all cases, the bubble collapses as it
should to a size that is too small to be resolved by the nu-
merical scheme, but because of this small size and mass it
will also not affect the subsequent jetting dynamics.

Our principal interest is the distance d(¢) to which the jet
penetrates the viscous material, because this is presumably
related to disruption of tissue and the spreading of injury. To
account for the small uniform advection due to the post-
shock velocity, d(z) is taken to be the x distance between the

Freund et al.: Shock-induced bubble jetting into viscous fluid
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FIG. 4. (Color online) Same as Fig. 2 for the u=10 Pas case.

fluid 1/fluid 2 interface at the r=50 um, where the post-
shock x velocity is steady and uniform, and the interface
location at r=0. This penetration depth is plotted in Fig. 5(a).
In all cases, our metric shows that the interface-bubble sepa-

TABLE I. Peak jet velocities in km/s for all cases.

w
(Pas) w=0 w=D/4 w=D/2
0.01 1.27 1.28 1.29
0.10 1.37 1.30 1.29
1.30 1.46 1.31 1.30
1.00 1.60 1.30 1.29
10.0 1.39 1.44 1.34

J. Acoust. Soc. Am., Vol. 126, No. 5, November 2009

ration first decreases, an effect which is particularly pro-
nounced for the w=0 cases. It is pulled this way by the initial
collapse, which is relatively symmetric at first, and because
the bubble shields the interface at r=0 from the shock’s ac-
celeration, which has been noted previously in the context of
interaction with kidney stones.'? This can be seen in the (b)
frames of Figs. 2—4. After the initial attraction of the inter-
face toward the collapsing bubble, Fig. 5(a) shows that in-
creasing viscosity substantially slows the jet and suppresses
its penetration into fluid 2. The minor changes in peak jet
velocity seen in Table I do not lead to significant differences
in penetration depth, nor do the different distances between
the bubble and the wall. The penetration increases linearly in
time for the lowest viscosity cases, which shows that it is
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penetration model (7) with 7,=0.7 us to facilitate comparison.

indeed nearly inviscid as anticipated based on the Reynolds
number estimates in Sec. II.

For the cases with substantial penetration, visualizations
such as in Fig. 6 show that the leading portion of the jet has
a vortex-ring character. Recognizing that it is roughly spheri-
cal and that the jet’s fluid is inviscid, we can estimate the
drag on the penetrating fluid by the value for an inviscid fluid
sphere in a viscous fluid flowing without significant inertia:
4mVua, where a is its radius and V is its speed. We rely on
the geometric insensitivity of flow in the Stokes limit in
making this estimate. The penetration depth history for ¢
=1, can then be estimated via a solution of the equation of
motion as

d(t) = Vop_az|:1 - eXp(‘ 3_/2(t_ l0)>:|7
pa

- )

where V,, is the initial velocity. This velocity is estimated by
identifying the speed of a moving frame of reference that has
a stagnation point on the r=0 interface between fluid 1 and
fluid 2 at the beginning of penetration. For the ©=0.3 Pas,
w=D/4 case, this velocity is V,=410 m/s. Given the simi-
larity of the collapses (Figs. 2-4) and of the peak velocities
(Table 1), we take this V,, for all cases. The sphere radius is
taken to be 3.5 um, based on visualizations. This is, of
course, an approximation since it is not exactly the same for
all the test cases and can also vary in time for a single case.
We also neglect the fact that the vortex-ring “sphere” has a
trailing tail of low viscosity fluid and that a significant por-
tion of its trajectory for the higher viscosity cases involves
its entry into the viscous fluid, where it should have less
drag. Both of these factors would tend to cause Eq. (7) to

r (pm)
- N W »

FIG. 6. Streamlines of penetrating jet in frame of reference translating to the
right at U=0.6\p0/p0=190 m/s for the ©=0.3 Pas case. The thick line is
the ¢,=0.5 isopleth.
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) w=D/2=10 um. The different sets of curves are for different viscosities as labeled. The straight gray line is for reference. (b) The

underpredict penetration depth. We also do not expect perfect
numerical agreement since Reynolds numbers are only
around unity, and so not in the strictly viscous limit where
the 47V, ua applies exactly. Despite all these approxima-
tions, the predictions from Eq. (7) are remarkably good, as
seen in Fig. 5(b). They are within a factor of 2 with those
from the simulations in Fig. 5(a), which is as good a com-
parison as can be expected given the crudeness of this model.
Given the translational velocity and diameters of a jet formed
by a collapsed bubble, it seems that this model can provide
an estimate of penetration depth, trajectory, and perhaps most
useful whether or not significant penetration can be expected.
It predicts the behavior of both the most viscous and most
inviscid cases almost perfectly, though the latter is merely a
consequence of the Stokes drag also being near zero for this
low value of p. We could not expect to predict the eventually
slowing of this vortex-ring jet given that the drag is not
expected to be Stokesian in this case.

When the viscosity is high, the jet obviously does not
penetrate the viscous fluid substantially. However, it does
cause apparently large shear stresses on it. These simulations
were not designed to resolve the thin boundary layers in fluid
1, so we are unable to calculate this stress precisely. The
several-mesh-point thickness of the material interfaces in our
numerical solution also makes this more challenging. It
seems that over an order of magnitude more mesh points in
the wall normal direction would be needed to resolve the
boundary layers. However, we can estimate the wall rate of
strain, which can be seen to be high in Fig. 7. The peak y
velocity adjacent fluid 2 is v,,,=866 m/s. Assuming a lin-
early decreasing velocity between this peak and the ¢,=0.5
contour with ©;=0.001 Pas gives a shear stress estimate
7,,=2.3 MPa. This high level is transient but well over what
is needed to cause large deformations and potential injury to
cells, which typically have an ~1 kPa Young modulus (e.g.,
Ref. 44). This “scrubbing” action of the jet when penetration
is resisted might explain the apparent damage of the endot-
helium observed in blood vessels containing cavitation nu-
clei and subjected to HIFU.* The velocity in fluid 2 in this
case remains low. Any elasticity would, of course, further
resist deformation.

Freund et al.: Shock-induced bubble jetting into viscous fluid
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V. A MODEL FOR INJURY SPREAD
A. Injury background

Images of the microstructure of injured kidneys, such as
that reproduced in Fig. 8, suggest that injury spreads in sharp
fronts behind which the tissue appears utterly disrupted.46
The tissue in this image was fixed by vascular perfusion
immediately following the delivery of 1000 shock waves.
This rapid fixing and relatively short treatment time was
done so that the primary mechanical shock-wave injury

FIG. 8. Image of renal injury similar to that of Shao et al. (Ref. 46) with line
added demarking the apparently sharp boundary between regions of utterly
disrupted (top, right) and intact tubules. The intact tubules immediately ad-
jacent the line drawn show signs of ischemic injury, but within 3 or so
tubules distances, they appear completely normal (bottom, left). The scale
bar is approximately 50 um wide.
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could be distinguished from any subsequent injury due to
hypoxia or other mechanisms. The Donier HM-3 used in this
study is expected to have a peak shock pressure of about
40 MPa,26 which matches our shock model. The area of
complete disruption in Fig. 8 is bounded approximately with
the line added to the image. The tubules on the other side of
this line and a few isolated in the disrupted region appear
intact, but when examined in greater detail the cells there
show blebbing and enlarged electron-clear vacuoles sugges-
tive of localized ischemic injury.46 The cells and tubules near
this borderline also seem to show more injury on sides adja-
cent to the disrupted area,46 which is consistent with the
apparent spreading character of the injury. Within about three
tubules from the disrupted region, the tissue appears com-
pletely normal.

Our principal concern is the primary mechanical disrup-
tion and its spread. We assume that jet penetration causes the
disruption and that the mechanical effect of this disruption is
to significantly reduce the dissipative resistance of the tissue.
Simplistically, the viscosity of any material depends on how
it irreversibly transports momentum when transversely
sheared. When disrupted at a microscopic level, as we see in
Fig. 8, this should be strongly suppressed. In our model this
is represented by a drop in viscosity down to a level that
offers little resistance to bubble-collapse induced jetting,
such as that of fluid 1. For the 20 um diameter bubbles of
the simulations, this would need to be <0.1 Pas, which is
over a factor of 20 higher than the viscosity of whole blood.
For larger bubbles, the viscosity of the damaged tissue would
need to be proportionally less. Bleeding into this lesion will
also reduce the local viscosity toward that of blood, which is
not expected to significantly suppress bubble jetting. The nu-
merous small specks in the obviously injured region in Fig. 8
are red blood cells.

From Fig. 8, it appears that the spreading occurs along a
front that roughly tracks the tissue microstructure. However,
to attempt to relate the general features of the spreading to
our jetting model, we assume that the region of injury is
spherical with radius R(z). This R(z), of course, should only
be regarded as the scale of the injured zone. Many factors are
expected to affect its actual shape, including the local micro-
structure of the kidney and the direction of the shock waves;
spherical injury per se is not expected and not observed.
Indeed, if shock-induced collapse is the root mechanism, we
might expect spreading to predominantly occur in the direc-
tion of shocks, perhaps leading to roughly a cone shape le-
sion. Unfortunately, lesion shapes have not yet be quantified
sufficiently to make any such assessment of lesion geometry,
though this would be interesting and potentially important.
The jetting instability of collapsing bubbles is also poten-
tially important, and by its nature might be expected to be
more isotropic in its action, perhaps leading to lesions that
are roughly spherical. Johnsen and Colonius® showed that
jet velocities formed by such Rayleigh collapses are not too
different from shock-induced collapse, and so should also be
governed approximately by Eq. (8). It would be overly am-
bitious given current understanding to propose a model for
the detailed structure of injury. What we hope to see with our
single-length-scale model is that Eq. (7) leads to a spreading
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that is consistent with the observations in lithotripsy. It
should take around 1000 shocks before widespread injury is
observed,*° yet upon reaching a typical clinical dose of
2000 shocks the injury should have an ~1 cm scale, 047
whatever its actual shape. Lesion geometric effects will be
grouped into an undetermined efficiency parameter g.

B. The model

The apparent success of Eq. (7) for penetration depth
plus some additional assumptions yields a crude but interest-
ing and potentially relevant description of injury spread
through a tissue whose resistance to injury is primarily dis-
sipative. From Eq. (7) we take the depth of injury of a single
jet to be

_ PV fD?

1 3M 4 b (8)

where f is the diameter of the penetration relative to the
bubble diameter. This expression follows from Eq. (7) with
t—o and a=fD/2. Based on our simulations, /'~ 0.35. This
jet may be shock induced, as in the simulations in this paper,
but it also might occur as a bubble is first expanded by the
negative-pressure portion of a lithotripter wave and then col-
lapses. We recognize that this penetration distance is ap-
proximately independent of bubble stand-off distance [e.g.,
Fig. 5(a)].

We assume that injury starts in a small region of radius
R(f)=R, and that there are few such regions in the kidney.
Adding cavitation nuclei to the systemic circulation is seen
to significantly increase injury all over the kidney,48 which
suggests that its initiation under normal conditions is indeed
a rare event. The nature of this initial injury under normal
circumstances remains unclear, but it has been speculated
about for some time. It has been suggested that it might start
in some small, slow-flowing vessel in which cavitation nu-
clei can grow because they are not advected away between
shock waves. The expansion of these might initiate injury.4’7
It might also start at a site of shock-shear induced
bleeding.4’46’49’50 A shear-formed lesion with pooled blood
would presumably be more receptive to cavitation injury.
Here, we simply assume that this initial region has a radius
R,=~5 pm, corresponding to a small blood vessel.

The size of the injured region R(r) is assumed to restrict
the maximum size of a bubble that may exist there, thus
permitting larger bubbles to exist as injury spreads. For large
injury zones, however, we assume that finite surface tension
or other factors such as the debris left behind by the tissue
disruption take over to limit the maximum size of the bubble
to some D,,. Pictures of bubbles in water at the target focal
point of a lithotripter suggest an upper limit on bubble size of
0.5-1 mm.*”! Respecting these two limiting behaviors, we
choose to model the bubble diameter by the continuous func-
tion

2R
D=D,, tanh(—), 9)
D

m

and take D, =0.5 mm. An implicit assumption is that after
the compression phase of the lithotripter wave passes there is
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an expansion, which causes the bubbles to re-grow. This is
potentially destructive, but based on resistance to expansion
estimates,”* we assume that this action does not extend R(1)
when the bubbles are still small. It is also presumed that the
violent action of the collapsing and re-expanding bubbles
spread bubbles and effectively spawn new nuclei throughout
the region of injury. It should be clear that D and D,, in Eq.
(9) refer to their size when the next shock comes. Here the
bubble is thought to be primarily composed of gas which has
come out of solution.® At atmospheric pressure, the lifetimes
of these bubbles for typical lithotripter shocks is thought to
be around 60 s.*

Assuming that the volume of the injury increases by the
volume of the jet penetration and using Eq. (8), the predicted
growth rate of the region of injury is thus

dR V.pf 2R(t
R _g Yol L py tanh2<£>. (10)

dt 3ud "

m

We take V,=410 m/s based on the jet penetration data from
Sec. IV and the shock-wave delivery rate S,=1/s. The vis-
cosity associated with the disruption of tissue at this scale is
quite uncertain; following on the discussion in Sec. II we
take it to be =1 Pas. Finally, the parameter g is included in
Eq. (10) as a model of damage efficiency. It accounts for the
finite diameter of the jet in eroding the tissue, anisotropy of
the spreading of a non-spherical lesion, and any other factors
(e.g., out of phase bubbles with the shock) that mediate the
spreading rate. It has long been known with regard to the
cavitation damage of surfaces in high-speed liquid flows that
only a small fraction (e.g., g=~107*) of collapsing bubbles
manage to actually damage the surface.® Anisotropy of
spreading, such as spreading predominantly in the shock di-
rection, will reduce g accordingly. Without the possibility of
firmer estimates, we can consider g, or perhaps g/ u together,
as a single adjustable parameter to see if we can match any
of the phenomenology observed in actual tests with kidney
tissue, with the expectation that g will be well less than unity
though well more than the ~10~* value for flow driven cavi-
tation because the bubbles are confined by the tissue.

To craft Eq. (10), we assume that the injured region
expands spherically due to shock induced jetting. In Sec.
V A, we recognized that R(r) can only in truth be considered
a scale of the region of injury. We should also recognize that
shock-induced jetting is not the only potential for spreading
injury as the bubbles become larger. Bubble expansion is
potentially injurious for larger bubbles and so is the jetting
associated with any Rayleigh (non-shock-induced) collapse
of expanded bubbles. The basic model we construct here can
include the details of the micromechanisms of injury as they
are better understood; for now, the principal objective with
this model is to show that its basic precepts lead to an ap-
parent injury threshold and injury extent comparable to ob-
servation.

An R(?) solution for g=0.01 is shown in Fig. 9. The
most interesting aspect of this solution is the clear threshold
behavior: R(#) remains small for +=<1000 s, which corre-
sponds well with observations from pig kidneys.2 This
switch-over point is particularly sensitive to g. After that
point, there is a change to rapidly increasing injury. For these
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FIG. 9. Model for injury size: a solution of Eq. (10) for parameters dis-
cussed in the text.

model parameters, R(¢) reaches nearly 1 cm, which is indeed
comparable with the lesion size observed in kidney
tissue.***” The long-time spreading rate and therefore the
lesion size is sensitive to D,,, but it is noteworthy that with a
reasonable estimate of D,, from in vito lithotriptor bubbles
sized, a single g seems to capture both the threshold and
extent of injury.

While this crude model does indeed predict behavior
that is consistent with observations concerning the threshold
behavior and lesion sizes observed, it does not explain the
apparent increase of injury with increasing shock-wave de-
livery rate.”>*® This rate dependence might be associated
with the formation of the initial injury. Increased time be-
tween shocks to advect cavitation nuclei in the blood stream
away from the focal region or the need for an initial insult
via a non-cavitational mechanism might both introduce a rate
dependence by delaying the onset of the above spreading
mechanism.>® The bubble diameter D, modeled as time inde-
pendent in Eq. (9), also has the potential to introduce a rate
dependence. It is expected that with sufficient time the
bubbles will effectively vanish, though this is expected to be
slow at typical conditions.* Thus, the expected shock-rate
dependence of D or D,, might also introduce rate dependence
into the model. Such a dependence could be included by
modeling bubble diffusion,*® but the model is probably in
need of further testing before building upon it would be fruit-
ful. Tests with erodible materials with known material prop-
erties and observable bubble dynamics would be invaluable
for assessing this in greater detail.

VI. SUMMARY

In summary, we have shown that viscous resistance of
the kind expected in tissue can significantly suppress pen-
etration of bubble-collapse induced jetting. A simple model,
which matches these data, was built into a phenomenological
model for spreading injury via this mechanism. With one
adjustable parameter (g), which we can only anticipate to be
well less than unity, this model reproduces the apparent
~1000-shock threshold behavior seen in shock-wave injury
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of kidneys. For reasonable estimates of the maximum in vivo
bubble size, the extent of predicted contiguous injury is com-
parable to that observed.
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