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Although remission rates for metastatic melanoma are generally
very poor, some patients can survive for prolonged periods fol-
lowing metastasis. We used gene expression profiling, mitotic
index (MI), and quantification of tumor infiltrating leukocytes
(TILs) and CD3� cells in metastatic lesions to search for a molecular
basis for this observation and to develop improved methods for
predicting patient survival. We identified a group of 266 genes
associated with postrecurrence survival. Genes positively associ-
ated with survival were predominantly immune response related
(e.g., ICOS, CD3d, ZAP70, TRAT1, TARP, GZMK, LCK, CD2, CXCL13,
CCL19, CCR7, VCAM1) while genes negatively associated with
survival were cell proliferation related (e.g., PDE4D, CDK2, GREF1,
NUSAP1, SPC24). Furthermore, any of the 4 parameters (prevali-
dated gene expression signature, TILs, CD3, and in particular MI)
improved the ability of Tumor, Node, Metastasis (TNM) staging to
predict postrecurrence survival; MI was the most significant con-
tributor (HR � 2.13, P � 0.0008). An immune response gene
expression signature and presence of TILs and CD3� cells signify
immune surveillance as a mechanism for prolonged survival in
these patients and indicate improved patient subcategorization
beyond current TNM staging.

gene expression analysis � immune response � TNM staging �
tumor infiltrating leukocytes

Melanoma is the deadliest form of skin cancer, and its
incidence is on the rise (1–3). Treatment options for

advanced melanoma are limited and rarely curative. While 5 year
survival for stage III melanoma patients can reach up to 69%
depending on the patient subcategory, the reported survival for
stage IV disease is rarely longer than a year (3). Although
long-term survival for patients with advanced melanoma is low
despite currently available therapies, some patients can survive
for prolonged periods with metastatic disease. The ability to
predict survival in metastatic melanoma with greater accuracy
could improve current treatment decisions and aid in the design
of new therapies that might be tailored to specific subgroups of
patients. The majority of innovative and improved prediction
models, however, are geared toward evaluating the metastatic
potential of primary tumors, as opposed to evaluating the
progression potential of metastatic disease. It would potentially
be useful to biologically subclassify melanoma that has already
metastasized, beyond the use of the conventional Tumor, Node,
Metastasis (TNM) staging, into categories that more accurately
predict patient survival (4).

The use of gene expression profiling has yielded an enormous
amount of information leading to the definition of molecular
signatures for a wide variety of tumor types (5–7). For breast
cancer, gene expression profiles are already in use to classify
tumors biologically in ways that impact decisions regarding the
most appropriate form of treatment (8, 9). For melanoma, gene

expression profiling has been used to establish molecular signa-
tures of disease progression. This has been done by comparing
normal skin to benign nevi and to primary and metastatic
melanomas (10, 11). Here, we use gene expression profiling to
define molecular signatures of different subsets of advanced
melanoma associated with differing survival potential. We ob-
serve that expression of genes associated with immune response
and cell division are related to survival, and explore the mea-
surement of mitotic index (MI), tumor infiltrating leukocytes
(TILs) and CD3� cells in histologic sections of metastatic
lesions as simple predictors of patient postrecurrence survival.

Results
Gene Expression Profiling of Metastatic Melanoma Lesions Identifies
Genes Associated with Survival. To evaluate the association be-
tween gene expression profiles and survival in patients with
metastatic melanoma, we evaluated 44 metastatic melanoma
tissue samples from 38 patients who were followed clinically for
a median of 20 months (2–38 months range) after excision of the
metastatic lesion. Thirty-nine of the tumor samples were taken
from patients with stage III disease, with 5 samples from patients
with stage IV disease (Table S1). We evaluated the association
of gene expression profiles of patient tumors and survival based
on time from excision of the metastatic lesion to last follow-up
or death. Using the Significant Analysis of Microarrays (SAM)
(12) with a false discovery rate (FDR) (13) of 5.34% and filtering
for at least a 1.5 fold change in expression between patients with
prolonged survival (�1.5 years) compared to those with shorter
survival, we identified a set of 266 genes (Dataset S1) that are
significantly associated with postrecurrence survival.

To gain insight into the functional classes of these 266 genes,
we analyzed them using the National Institute of Allergy and
Infectious Diseases/National Institutes of Health Database for
Annotation, Visualization and Integrated Discovery (DAVID)
Bioinformatics Resource 2008 (Table S2). In the group of
patients with prolonged survival, the top functional annotation
cluster for up-regulated transcripts was ‘‘immune system pro-
cess’’ (top enrichment score of 13.42, representing 40 tran-
scripts). The transcripts included those encoding MHC class II
molecules (HLA-DOB, HLA-DPB1), T cell-associated molecules
(ICOS, CD3d, ZAP70, TRAT1, TARP, GZMK, LCK, CD27),
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chemokines, chemokine receptors and adhesion molecules
(CD11A, CXCL13, CCL19, CCR7, VCAM1, AMICA1) and a
number of other innate and adaptive immune response mole-
cules (CD79A, LTB, CLEC4G, CLECL1, FCER1A, IKZF1,
TAP1, IRF1, IRF8, GBP2, IL4R, IL2RG, IKZF1, C3, MYADM,
TLR10, NLRC5, FCAMR, BTLA, NLRC3, CD48). The up-
regulation of immune system transcripts in metastatic lesions of
patients with longer survival suggests that the immune response
may keep tumor growth and metastasis in check in these
patients.

Genes that were down-regulated in patients with prolonged
survival belonged to multiple functional annotation clusters,
with the top 2 enrichment scores of 1.61 and 1.17 representing
about 10 transcripts involved in (but not limited to) ‘‘cell cycle
phase,’’ ‘‘M phase,’’ ‘‘cofactor binding,’’ ‘‘cell division,’’ ‘‘cy-
toskeleton,’’ and ‘‘aminotransferase’’ (Table S2). Genes in this
category —which could be more broadly characterized as ‘‘cell
proliferation’’—included ANLN, PDE4D, CDK2, CXCL1,
CGREF1, NUSAP1, and SPC24. The up-regulation of genes
associated with cell division in patients with high mortality risk,
suggests that higher rates of mitosis within metastatic lesions is
associated with more rapid tumor growth and spread of meta-
static disease.

Tumor Infiltrating Leukocytes and Tumor Cell Mitoses Are Predictive
of Patient Survival. To determine if a simple, independent method
could demonstrate an association of immune or proliferative
parameters with patient survival, we examined histological sec-
tions from the same pathology specimens used for gene expres-
sion analysis. We quantified 3 different parameters—TILs, MI
and CD3� T cell count (CD3), and assessed whether any or all
of these were independently associated with survival (Fig. 1 A–F).

We divided the patients into 3 groups based on the prevalence
of TILs within their tumor (�25% TILs, 25 to 50% TILs, and
�50% TILs as assessed by percentage of the lesion area repre-
sented by leukocytes, see methods). In addition, using the
median value as the cutoff point, we divided the patients into 2
groups each based on CD3 count (lower and higher than 80
CD3� cells per 10 High Power Fields (HPFs) and MI (lower and
higher than 0.75 Mitoses per HPF, Table S3). Median survival
estimates along with the 95% confidence intervals for these

groups are provided in Table S3. Shown in Fig. 1 G, H, I, and J
are Kaplan-Meier survival curves for the groups defined by MI,
TILs, CD3 counts and TNM stage at the time of surgery,
respectively. All 3 histological parameters were significantly
associated with survival: patients with lower MI survived signif-
icantly longer (P � 0.0001, log rank test) as did patients with
higher TIL indices (P � 0.0163) and CD3 counts (P � 0.0134).
Please note that due to some missing histological specimens,
certain figures and tables have differing specimen numbers (see
Methods).

TNM staging in our cohort was effective in separating patients
with stage IIIA (n � 4) and stage IV (n � 5) disease by survival
(P � 0.0006, log rank test). However, the vast majority (n � 29)
of patients in the cohort had stage IIIB or IIIC disease, and here
TNM staging showed no differential association with survival
(P � 0.59) (Figs. 1J, and 2 A).

To assess if any of the 3 histologic parameters, CD3 count, MI,
or TILs, could significantly improve upon the ability of TNM
staging in predicting postrecurrence survival, we fitted 3 multi-
variable Cox regression models. Each model involved one of
these predictors (CD3 count or MI or TILs) and TNM stage as
independent variables and postrecurrence survival as the de-
pendent variable (Table 1 A–C). Adding any of the 3 histologic
parameters significantly improved upon the ability of TNM stage
to predict survival: MI was the strongest contributor (HR � 2.13,
P � 0.0008) followed by CD3 count (HR � 0.80, P � 0.0022) and
TILs (HR � 0.26, P � 0.0067). Using these models, we divided
the patients into ‘‘low’’ and ‘‘high’’ risk groups using the median
hazard ratio as a cut-off point. Kaplan-Meier survival curves of
low and high risk groups among stage IIIB/IIIC patients based
on each of these 3 models are shown in Fig. 2 B–D. For
comparison, Kaplan-Meier survival curves for stage IIIB/IIIC
patients based on TNM stage alone are provided in Fig. 2 A.
Adding any of the 3 parameters to TNM stage resulted in the
ability to segregate stage IIIB and IIIC patients into high and low
risk groups with significantly different survival probabilities. The
median survival times were 1073 days in the low-risk group (95%
confidence interval, 1073 to ‘‘not reached’’) and 496 days in the
high-risk group (95% confidence interval, 237 to ‘‘not reached’’)
based on the model with TNM and MI as predictors. Out of 15
patients in stage IIIb, 11 segregated into low risk and 4 into high

Fig. 1. Metastatic melanoma patient survival differ based on MI, TILs, and CD3 cell count. All available tissue specimens used for gene chip hybridization were
also examined for the presence of mitoses; (A) reflects low and (B) reflects high levels of mitosis with bottom left corner showing a magnified section of the slide.
They were also examined and scored for presence of TILs. (C) shows a representative view of low and (D) shows a high level of TILs. Paraffin embedded samples
were also stained for CD3; (E) shows low levels and (F) shows high levels of CD3� cells present in the melanoma sample. Kaplan-Meier survival curves for groups
based on MI (G, P � 0.0001), TILs (H, P � 0.0163), CD3 cell count (I, P � 0.0134), and stage at recurrence/metastasis (J, overall P � 0.0006, but the separation of
IIIb and IIIc is not significant P � 0.59).
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risk. In the case of 9 IIIc patients, 3 segregated into low risk and
6 into high risk (Table 2). The clinical characteristics of the low
and high risk groups predicted by the model with TNM and MI
as predictors are provided in Table 2.

We then used an independent cohort of patients to see if these
observations could be validated. We analyzed 52 additional
metastatic melanoma samples taken from 25 stage IIIb and 27
stage IIIc patients. MI of the patients in the validation cohort was
significantly lower than that of the patients in the original cohort
studied (P � 0.0176, Fig. S1a) while postrecurrence survival was
longer, although not statistically significant (P � 0.10, Fig. S1b).
TNM stage was a significant predictor of survival in the valida-
tion cohort (P � 0.003). MI alone was not significant in
additionally separating survival in the validation cohort. To
examine this further, we then combined the 2 cohorts into an
expanded cohort of 90 patient samples; using the original MI
cutoff of 0.75, we were able to separate the patients into high and

low risk groups with significantly different survival (Fig. S1c, P �
0.0001). For stage IIIb/c patients in the combined cohort,
multivariate Cox proportional hazards model showed that MI
was a more important predictor of survival [HR � 3.08, 95% CI:
(1.38, 6.90), P � 0.0062] than TNM stage [HR � 2.13, 95% CI:
(1.02, 4.47), P � 0.05]. Furthermore, TIL frequency was a
significant predictor of survival in IIIc patients in the validation
cohort (Fig. S1d, P � 0.0197) but not for stage IIIb patients.

Prevalidated Gene Expression Predictor of Survival in Metastatic
Melanoma. To test if gene expression signatures bear predictive
prognostic potential in metastatic melanoma, we derived a gene
expression predictor of survival using principal component
analysis (PCA) (14) applied to the genes selected by SAM as
described in the methods section. We used the method of
prevalidation (PV) to derive the gene expression predictor and
to compare its prediction accuracy to that of MI, TILs, CD3 cell
count and TNM stage (15, 16). Kaplan-Meier survival curves
of low-risk and high-risk groups predicted by the PV gene
expression predictor are shown in Fig. 3A. The survival in the 2
groups was significantly different (log rank P � 0.027) indicating
that gene expression profiles can predict survival in metastatic
melanoma.

To confirm this observation using a different learning method,
we tested the metastatic melanoma expression data using the
Support Vector Machine algorithm (17, 18), with and without
PCA. We obtained the best performance using the top 50 genes
determined using the signal-to-noise ratio gene selection
method, with measurements decorrelated using PCA: 78.57%
sensitivity, 71.43% specificity, and 81.38% area under the ROC
curve (AUC) (Table S4).

As an additional confirmatory method, we then tested our
gene signature (Dataset S1) on recently published test samples
(n � 29) that were completely independent of our study (19).
This data set was very similar to ours as it contained relative
mRNA levels of metastatic melanoma lesions from patients with
mostly stage IIIb and IIIc disease, with time to recurrence as one
of the study variables. We observed 61.54% sensitivity, 62.50%
specificity, and 70.67% AUC when we applied our list of 266
genes (only 137 of which were present on their chips) to their
data set. For comparison purposes, we performed the same
signal-to-noise-ratio method described above but this time using
their data set for both training and testing, reporting the best
results using the top 20 genes: 69.23% sensitivity, 68.75%
specificity, and 70.67% AUC. Comparing these 2 sets of results
indicates that close to the maximal predictability power was
achieved using the initial selection of genes from our data set
despite extremely different platforms that the 2 datasets were
generated on. This confirms the potential of metastatic mela-
noma gene expression profiles to predict patient outcome.

Metastatic Melanoma Risk Predictor. To see if PV gene expression
predictor could add to the predictive power of TNM staging, we
performed a multivariate Cox proportional hazards model with
survival since surgery as a dependent variable, and TNM stage
and PV gene expression predictor as independent variables. The
PV gene expression predictor was significant (HR � 2.71, P �
0.03), and TNM stage was borderline significant (HR � 2.06, P �
0.08). Shown in Fig. 3 B and C are Kaplan-Meier survival curves
for low and high risk groups predicted using models with stage
at R/M only and with PV gene expression predictor and TNM
stage together. This model segregated 11 stage IIIb and 6 stage
IIIc tissue samples into high risk group, while putting 12 IIIb and
6 IIIc tissue samples into low risk group. Using gene expression
analysis of metastatic melanoma patient samples, we are able to
add to the predictive power of TNM stage as TNM stage alone
was not able to separate patients with stage IIIB and IIIC
(Table S5A).

Fig. 2. MI, CD3 counts, and TILs aid staging of IIIb and IIIc patients in
predicting their survival. Patients with staging of IIIb and IIIc are represented
in (A). Their survival capabilities cannot be distinguished using only staging
(P � 0.59). By incorporating MI, CD3, and TILs (B–D) in the model, it is possible
to improve the ability to separate stage IIIb/IIIc patients based on their survival
(P � 0.0009, P � 0.0139, and P � 0.0178, respectively).

Table 1. Hazard ratios (HRs) and 95% Confidence Intervals (CIs)
for TNM stage, MI, CD3 count, and TIL based on 3 multivariable
Cox proportional hazards models of postrecurrence survival

A HR (95% CI) p value

TNM stage* IIIA/IIIB vs. IIIC/IV 2.05 (0.76, 5.54) 0.16
Mitotic Index 2.13 (1.38, 3.32) 0.0008

B
TNM stage* IIIA/IIIB vs. IIIC/IV 1.82 (0.70, 4.74) 0.22
TILs 0.26 (0.10, 0.69) 0.0067

C
TNM stage* IIIA/IIIB vs. IIIC/IV 1.27 (0.46, 3.56) 0.64
CD3 count 0.80 (0.70, 0.92) 0.0022

All three histologic parameters, MI, CD3, and TILs, add to the ability of TNM
stage in predicting postrecurrence survival. A, HRs and 95% CIs for TNM stage
and MI based on a Cox regression model involving these variables. B, HRs and
95% CIs for TNM stage and TIL based on a Cox regression model involving
these variables. C, HRs and 95% CIs for TNM stage and CD3 count based on a
Cox regression model involving these variables.

*Due to small sample size, TNM stage was dichotomized (IIIA/B vs. IIIC/IV). The
other three variables were dichotomized for convenience using medians as
cut-off points.
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We then performed a multivariate Cox proportional hazards
model with survival since surgery as a dependent variable and
stage, MI and PV gene expression predictor as independent
variables (CD3 and TILs were not used as they were less
predictive than MI). MI was the most significant predictor
(HR � 2.54, P � 0.0002), but the PV gene expression predictor
was also significant (HR � 3.64, P � 0.019) while stage was not
(HR � 1.64, P � 0.30). When we removed the stage from the
model, both MI (HR � 2.53, P � 0.0001) and PV gene expression
predictor (HR � 3.91, P � 0.013) were still significant. Kaplan-
Meier estimated survival curves for low-risk and high-risk groups
predicted using this final model are shown in Fig. 3D. Table S5B

shows the clinical characteristics of the patients according to the
risk groups obtained using this best model. The rates of postre-
currence survival at 2 years (i.e., 730 days) in the low-risk and
high-risk groups were 70% [95% CI is (49%, 100%)] and 14%
[95% CI is (4.8%, 57%)], respectively. The median survival times
were 1,073 days in the low-risk group (95% CI, 805 to ‘‘not
reached’’) and 440 days in the high-risk group (95% CI, 237 to
‘‘not reached’’). The survival in the 2 groups was significantly
different (log rank P � 0.0003).

Using gene expression analysis of metastatic melanoma pa-
tient samples, we are able to add to the predictive power of TNM
staging, since stage alone was not able to separate patients with
stage IIIB and IIIC disease. However, in our hands the best way
to enhance survival prediction was by quantifying the MI, which
has the added benefit of being much easier to perform than gene
expression analysis. Thus MI provides a relatively simple and
effective way to further differentiate a patient’s ability to fight
metastatic melanoma, either used alone or in combination with
gene expression analysis.

Discussion
A number of studies analyzing human cancers have shown the
importance of the immune response in the equilibrium state of
primary neoplasia, but the importance of the immune system in
keeping metastatic disease in check is less well understood
(20–22). In melanoma, these types of studies have been heavily
weighted toward stage I and stage II disease (20, 23). One study,
however, has shown a correlation between TILs in resected
lymph node metastases and patient survival (24). Similarly,
studies of metastatic colorectal cancer, ovarian cancer, and
follicular lymphoma have all demonstrated a better prognosis
linked to the presence of infiltrating immune cells within tumor
lesions (21, 22, 25). Only one other study has examined stage III
melanoma by gene expression profiling and that study also linked
up-regulation of certain genes associated with the immune
system (e.g., HLA-E, PILRA, GTPBP2, IGKC) to time to tumor
progression (19) and patient survival. However, that study did

Table 2. Clinical characteristics of low and high risk groups predicted based on a Cox multivariable regression
model of survival since recurrence/metastasis (R/M) with MI, and TNM stage as predictors (N � 30)

Low risk (N � 16) High risk (N � 14) Statistical test

Sex Female 5 (31%) 6 (43%) Fisher’s P value � 0.71
Male 11 (69%) 8 (57%)

Age at recurrence Mean � 65 (SD � 18) Mean � 59 (SD � 21) Wilcoxon rank sum P � 0.38
CD3 cell count �80 4 (25%) 10 (83%) Fisher’s P value � 0.0063

� 80 12 (75%) 2 (17%)
missing 0 2

Mitotic index �0.75 15 (94%) 1 (7%) Fisher’s P value � 0.0001
� 0.75 1 (6%) 13 (93%)

TILs index 0–25% 4 (25%) 8 (57%) Fisher’s P value � 0.22
25–50% 6 (37.5%) 4 (29%)
50–100% 6 (37.5%) 2 (14%)

Stage at recurrence/metastasis IIIA 2 (12.5%) 0 Fisher’s P value � 0.0137
IIIB 11 (69%) 4 (29%)
IIIC 3 (19%) 6 (43%)
IV 0 4 (29%)

Radiation Yes 4 (25%) 2 Fisher’s P value � 0.67
No 12 (75%) 10
Missing 0 2

Immunotherapy Yes 0 2 (17%) Fisher’s P value � 0.17
No 16 (100%) 10 (83%)
Missing 0 2

Chemotherapy Yes 8 (50%) 3 (25%) Fisher’s P value � 0.25
No 8 (50%) 9 (75%)
Missing 0 2

Fig. 3. Gene signature (PV) and MI are capable of improving current
outcome prediction model through machine learning. Predicted high-risk and
low-risk groups obtained using (A) prevalidated gene expression predictor
(P � 0.027), (B) Stage alone (P � 0.086), (C) combination of Stage and
prevalidated gene predictor (P � 0.015) and (D) combination of MI and
prevalidated gene predictor (P � 0.0003).
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not directly address the influence of MI, TILs, or gene signatures
on the improvement of TNM staging.

Despite these findings, the evaluation of the presence of
leukocytes within metastatic lesions as a potentially easy and
predictive tool of patient prognosis has not been sufficiently
explored. This is possibly due to the conflicting studies that have
shown both beneficial and detrimental effects of their presence
(20–22). Here we show that, based on evaluation of TILs, CD3,
and mRNA expression levels in the tumor, there is a compre-
hensive immune response in the tumors of stage III patients who
survive for longer periods of time. We find an array of immune
parameters among which are chemokines and adhesion mole-
cules like CXCL13, CCL19, CCR7, VCAM1, and AMICA1 whose
presence suggests active recruitment of the immune system into
tumor sites. Establishing mechanisms underlying immune cell
recruitment and activation at the molecular and cellular levels in
metastatic lesions could be an important step toward advance-
ment of immunotherapies in melanoma. For example, we de-
tected higher levels of ICOS mRNA levels in the samples of
patients who live longer, and the elevation of CD4�ICOShi IFN
� secreting T cells has been recently documented in the lesions
of prostate cancer patients treated with anti-CTLA-4 antibody
(26). Importantly, we were able to validate our gene signatures
on an independent dataset from a study with a similar patient
population that was published independently (19). Our data
suggest that the immune response is in fact important in con-
trolling advanced melanoma and indicate that its signature or
quantification through TIL and CD3 counts can further subcat-
egorize the staging system of recurrent tumors.

Another often forgotten and clinically underutilized param-
eter is MI. Its association with worse prognosis in melanoma has
been examined (27), but in the current 6th edition of American
Joint Committee on Cancer (AJCC) staging system it does not
play a role (28), as a majority of the studies pertained to primary
lesions. These studies have shown that MI in primary lesions is
significantly associated with tumor thickness and ulceration that
are the core determinants of the current staging system. How-
ever, MI will be included in the 7th edition of the AJCC staging
system to address the classification of stage I melanoma (29). In
our study of metastatic lesions, MI was the strongest indicator of
patient survival and was the best single factor that improved
current staging, significantly improving the separation between
stage IIIB and IIIC patients, that we further validated by
expanding patient samples with an additional 52 specimens. Our
data support the use of MI in staging more advanced melanoma
as well, following epidemiologic validation of this finding.

We postulate that the progression of metastatic melanoma is
manifested by the balance of uncontrolled proliferation (MI)
and the comprehensive presence of the immune system (TILs,
CD3, and the wide array of immune network molecules detected
at the mRNA level). Whether the low proliferative capacity in
certain patients allows them to develop an immune response or
whether the immune system functions to control proliferation is
not clear. Our data indicate that metastatic melanoma is bio-
logically diverse and that there is a need to tailor clinical trials
toward the molecular and cellular profile of each patient.
Potentially, patients with an existent immune presence in the
tumor lesions are more prone to further stimulation of T cells to
fight the tumor burden. On the other hand, the biggest benefit
from chemotherapy may be seen in the patients whose tumors
have high mitotic rates. If so, then subcategorizing patients based
on metastatic lesion immune cell infiltration and MI before
clinical trial recruitment might yield much more profound results
than seen so far.

Methods
Sample Population. Under an Institutional Review Board approved protocol
we enrolled the first 38 patients and collected 44 melanoma samples, since

some patients had 2 or 3 recurrences. Patient median age at 1st recurrence was
62.5 with a range from 30 to 92. Sixty-three percent of patients were males and
37% were females. All of the patients underwent surgery, 32% received
chemotherapy, 24% underwent radiation therapy, and 13% underwent im-
munotherapy. Eighteen percent of patients presented at stage I, 29% at stage
II, 47% at stage III, and 3% at stage IV. For validation, we used data on an
independent cohort of 29 patients available online at ArrayExpress database
(www.ebi.ac.uk/arrayexpress) under accession number E-TABM-403. Another
independent cohort to validate our findings using MI, TILs, and CD3 consisted
of 52 randomly selected samples from patients with stage IIIb and IIIc
melanoma.

MI, CD3 Cell Count, and TILs. We assessed TILs and MI in hematoxylin and eosin
(H&E)-stained tissue sections and performed immunohistochemistry staining
to assess tumor infiltrating CD3 positive cells. Since many of the tissue samples
were from lymph node metastases, any lymphocytes in the vicinity of tumor
borders were excluded. Tumor slides were examined by 2 pathologists who
were both blinded to the patients’ clinical data. MI was established by count-
ing mitoses in 10 high power fields (HPF) per tumor section and then averaging
the number by HPF (1.96 mm2). CD3 positive cells were counted only within the
tumor at least 2 HFPs away from the tumors’ interface with the normal lymph
node parenchyma. CD3� cells in 10 high power fields per tumor section were
counted and that number is reported. On H&E stains we established presence
of TILs and indexed to 4 categories (0 � 0–5%, 1 � 5–25%, 2 � 25–50% and
3 � 50%�) each showing the percentage of tumor section that was repre-
sented by TILs. As with CD3� T cells, we looked only at the portion of tumor
at least 2 HPFs away from the tumors’ interface with the normal lymph node
parenchyma. We hybridized 44 tissue samples from 38 patients to Genechips.
However, MI, TILs, and CD3 were only available for 30, 31, and 29 of the 38
patients, respectively, with complete data on all 3 parameters available for a
total of 28 patients. This explains the differing numbers in the tables. For
example, n � 30 in Table 2 that describes a model based on MI. Table S5A
describes the 44 samples (not patients) and Table S5B describes 32 samples (not
patients).

Statistical Methods—Clinical Data Analysis. The clinical data were summarized
numerically and graphically to verify the normality assumption and for outlier
detection. Box-Cox transformations were used to transform variables with
deviations from normality, such as MI and CD3 cell count (30). The variable TILs
were treated as ordered in the analysis. TNM stage was dichotomized in the
analysis due to small sample size. For clinical data analysis, the unit of analysis
was patient and not recurrence/metastasis. However, all reported results hold
for per recurrence analysis. For each patient with multiple samples, the sample
corresponding to the earliest recurrence/metastasis was used in the analysis.
Cox proportional hazards model was used for prediction. The median esti-
mated hazard ratio was used to divide the patients into low and high risk
groups. All analyses were performed using the R language for statistical
computing (31).

Gene Chip Processing. Post surgery collected tissue was placed in RNAlater
(Qiagen) at 4 °C overnight, then stored at �80 °C. Before whole RNA extrac-
tion (RNeasy Mini Kit, Qiagen), touch preparations were performed to ensure
that the specimen obtained was mostly tumor tissue. RNA quality was assessed
using an Agilent 2100 Bioanalyzer (Agilent Technologies). Double stranded
cDNA synthesis was performed using a SuperScript double-stranded cDNA
synthesis kit from Invitrogen. In vitro transcription of biotin-labeled cRNA
probes was done using an IVT labeling kit (Affymetrix). Fragmented biotin-
labeled cRNA was hybridized on Affymetrix Human Genome U 133 Plus 2.0
chips, in the Rockefeller University Genomics Core laboratory.

Gene Chip Data Preprocessing. The raw gene expression values were normal-
ized using probe logarithmic error intensity estimate. Probes were grouped by
their Unigene symbols and the median of expression levels of all probes in a
group was taken to be the expression level of the transcript (32). This step
resulted in the reduction of number of features from 54,675 to 23,940. The
signals were then further quantile normalized (33).

Significance Analysis of Microarrays. SAM (12) was used to identify genes that
are significantly associated with postrecurrence survival using time from
recurrence to death (or censored) as the outcome variable. One thousand
permutations of the data were used to estimate the FDR (13) and to select
differentially expressed genes. Additionally, the patients were dichotomized
into 2 groups: those with prolonged survival (�1.5 years) and those with
‘‘shorter survival’’ (�1.5 years). A 2-sample nonparametric comparison was
used in SAM to identify genes that are differentially expressed between these
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2 groups. The significant gene lists resulting from the 2 types of analyses
(survival and 2-sample comparison) were then compared.

Prevalidated Gene Expression Predictor. To derive a gene expression signature
of postrecurrence survival, we used the method of PV (15, 16). PV outputs a
prediction for each patient based on the model that is estimated without
using that patient’s data. We used per recurrence analysis because PV allowed
us to reduce bias that might arise due to the dependence among multiple
recurrences of the same patient. An 11-fold PV was used to construct a gene
expression predictor of postrecurrence survival. The 44 samples were divided
into 11 groups of 4 samples randomly, but in such a way that samples from the
same patient were always grouped together to reduce bias. At each PV fold,
one of the 11 groups of 4 samples was set aside as a test set and the remaining
40 samples were used as a training set. The training set was analyzed using
SAM to select the top 3 up-regulated and top 3 down-regulated genes,
resulting in an output of 6 top genes. We calculated the first principal
component of the 6 genes in the training data. We fit the Cox proportional
hazards model with the first principal component of the 6 genes in the
training set as a predictor, and survival since metastatic excision as a depen-
dent variable. Based on this model, we estimated hazard ratios for the training
set and divided the test set cases into low risk and high risk, using the median
training set hazard ratio as a cutoff point. This procedure was repeated 11
times, each time reserving a different set of 4 samples for the test set. Note that
for each patient, the above PV procedure outputs a prediction based on the
model that was estimated without using that patient’s data and, therefore, no
overfitting occurs. Varying the number of genes selected by SAM between 4
and 20 produced similar PV predictors. The resulting PV gene expression
predictor was compared to the other clinical predictors in a multivariable Cox
regression model.

Gene Selection via Signal-to-Noise Ratio. To select the informative genes which
should be included in the model, we used the signal-to-noise ratio (SNR), a
feature selection method found to perform well in gene expression experi-
ments (5, 18). The signal-to-noise ratio favors genes that have nonoverlapping
distributions with far apart means. We experimented with the top 10, 30, 50,
100, 300, 500, and 1,000 genes, and used 1.5- and 2-fold change to further
narrow down the set of candidate genes. We found that the best performance

measures do not improve with the inclusion of more than the top 50 genes
(Table S4). Although different methods were applied, the overlap between
SAM genes and top 50 SNR genes is remarkably high.

Prediction, Performance Evaluation, and Estimation of Statistical Significance.
Due to their ability to handle datasets with a small number of highly dimen-
sional examples with correlated features, support vector machines (SVM) are
a popular supervised learning method to analyze gene expression data (17,
18). To estimate the prediction accuracy, we used leave-one-out cross-
validation. Here one example is systematically held out and the model is built
on all of the remaining examples and tested on the example which was hidden
while the model was learned. We report the following performance measure-
ments: prediction accuracy, sensitivity, specificity and AUC. In each leave-one-
out iteration, values of Unigene features were normalized to have zero mean
and unit variance using z-score normalization. In our experiments we report
the results with and without the use of PCA. We set the amount of retained
variance after performing PCA to 0.95.

Immunohistochemistry. Immunohistochemistry was performed on formalin
fixed, paraffin embedded tissues using mouse anti-human CD3, clone PS-1
(Ventana Medical Systems). In brief, sections were deparaffinized in xylene,
rehydrated through graded alcohols and rinsed in distilled water. Heat in-
duced epitope retrieval was performed in 10 mM citrate buffer pH 6.0 for 10
min in a 1200-Watt microwave oven at 90% power. CD3 was applied undiluted
and incubated for 30 min. Primary antibody was detected with Ventana’s
biotinylated goat anti-mouse secondary followed by application of strepta-
vidin-horseradish-peroxidase conjugate. The complex was visualized with 3,3
diaminobenzidene and enhanced with copper sulfate. Slides where washed in
distilled water, counterstained with hematoxylin, dehydrated, and mounted
with permanent media.
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