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Tudor domains are protein modules that mediate protein–protein
interactions, potentially by binding to methylated ligands. A group of
germline specific single and multiTudor domain containing proteins
(TDRDs) represented by drosophila Tudor and its mammalian or-
thologs Tdrd1, Tdrd4/RNF17, and Tdrd6 play evolutionarily conserved
roles in germinal granule/nuage formation and germ cell specification
and differentiation. However, their physiological ligands, and the
biochemical and structural basis for ligand recognition, are largely
unclear. Here, by immunoprecipitation of endogenous murine Piwi
proteins (Miwi and Mili) and proteomic analysis of complexes related
to the piRNA pathway, we show that the TDRD group of Tudor
proteins are physiological binding partners of Piwi family proteins. In
addition, mass spectrometry indicates that arginine residues in RG
repeats at the N-termini of Miwi and Mili are methylated in vivo.
Notably, we found that Tdrkh/Tdrd2, a novel single Tudor domain
containing protein identified in the Miwi complex, is expressed in the
cytoplasm of male germ cells and directly associates with Miwi.
Mutagenesis studies mapped the Miwi–Tdrkh interaction to the very
N-terminal RG/RA repeats of Miwi and showed that the Tdrkh Tudor
domain is critical for binding. Furthermore, we have solved the crystal
structure of the Tdrkh Tudor domain, which revealed an aromatic
binding pocket and negatively charged binding surface appropriate
for accommodating methylated arginine. Our findings identify a
methylation-directed protein interaction mechanism in germ cells
mediated by germline Tudor domains and methylated Piwi family
proteins, and suggest a complex mode of regulating the organization
and function of Piwi proteins in piRNA silencing pathways.

Tudor domains, together with Chromo, MBT, PWWP, and
Agenet-like domains, comprise the ‘‘Tudor Royal Family’’ of

domains (1). The core structure of this protein domain superfamily
is characterized by an antiparallel �-barrel-like topology and me-
diates protein–protein interactions, in some cases by recognizing
methylated lysine/arginine-containing ligands with a binding site
composed of aromatic residues (2, 3). Their methylated target
proteins are implicated in diverse biological processes such as
chromatin remodeling and RNA splicing. For example, the Tudor
domain of Smn binds to methylated arginine-glycine (RG) motifs
on Sm proteins essential for spliceosome assembly (4), while the
Tudor domains of Jmjd2a bind to methylated lysines in histone
H4K20 (5).

Drosophila Tudor, the founding member of the Tudor domain
family, is a germ cell-specific protein with multiple Tudor domains
and is involved in germ plasm formation and germ cell specification
(6). By analyzing the expression pattern of mammalian genes
encoding Tudor domain proteins, we identified a group whose
expression is highly enriched in germ cells, which we therefore term
germline Tudor proteins (Tdrd1, Tdrkh/Tdrd2, RNF17/Tdrd4,
Tdrd5, Tdrd6, Tdrd7, Stk31/Tdrd8, Tdrd9, Tdrd10, Akap1) (sup-
porting information (SI) Fig. S1). While the physiological functions
of germline proteins with a single Tudor domain (Tdrkh, Tdrd5,
Stk31, and Tdrd9) are largely unknown, mouse knockout studies of
Tdrd1, Tdrd4, and Tdrd6 have revealed crucial roles for these
multiTudor domain proteins in nuage/chromatoid body formation,

spermatogenesis, and small RNA pathways (7–9). However, the
binding properties of these germline Tudor proteins are poorly
understood.

Piwi proteins are conserved germline-specific Argonaute fam-
ily members that are associated with Piwi-interacting RNAs
(piRNAs), and thereby function in piRNA-mediated posttranscrip-
tional silencing (10). Three murine Piwi paralogs, Miwi, Mili, and
Miwi2, play pivotal roles in germ cell development, transposon
silencing and spermatogenesis (11–13). The presence of multiple
arginine-glycine and arginine-alanine (RG/RA)-rich clusters at the
N-termini of these proteins prompted us to question whether these
RG/RA motifs can be methylated in vivo and thereby serve as
docking sites for the binding of various germline Tudor proteins.

To test this hypothesis, we performed a comprehensive pro-
teomic analysis of Miwi and Mili complexes in adult male germ cells
and determined the methylation status of these Piwi proteins. We
show that several germline Tudor proteins are physiological binding
partners of the Piwi family. In particular, we identify Tdrkh as a
novel Miwi-interacting protein that binds Miwi through its single
Tudor domain, likely via arginine methylation, as suggested by a
combination of mass spectrometry, mutagenesis, and structural
analysis.

Results
Tudor Domain-Containing Proteins Are Major Physiological Binding
Partners of Piwi Family Proteins. To test whether Tudor domain
family proteins comprise the in vivo binding partners of the Piwi
proteins, we immunoprecipitated endogenous Miwi and Mili from
lysates of adult testes and purified the complexes by acid elution. To
obtain a comprehensive survey of the components of the Piwi
complexes, we used a gel-free liquid chromatography coupled
tandem mass spectrometry (LC-MS/MS) approach employing solid
phase tryptic digestion. This technique allowed us to unambigu-
ously identify an extensive list of candidate proteins that specifically
associated with Piwi proteins (Fig. 1). Hierarchical clustering of 2
independent repeats of Miwi and Mili immunoprecipitations (IP)
with their respective IgG control IPs reproducibly revealed distinct
protein complex profiles for Miwi and Mili (Fig. 1). We found
proteins that were specifically associated with either Miwi (Fig. 1A,
blue box and Fig. S2) or Mili (Fig. 1A, red box), and proteins shared
by both Miwi and Mili complexes (Fig. 1A, cyan box). All of these
proteins were absent from the IgG control IPs, which contain
nonspecific binding proteins (Fig. S2). In this analysis, we observed
several previously known Piwi-interacting proteins or piRNA path-
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way components such as Ddx4, Kif17, Fxr1, and Mov10l1 (12,
14–16).

Notably, several germline Tudor domain proteins (Tdrd1, Tdrkh,
Tdrd6, Tdrd7, and Stk31) were present in Miwi immunoprecipitates
(Fig. 1B). Among them, Tdrd1, Tdrkh, and Tdrd6 had high
sequence coverage, suggesting a relatively higher abundance in the
complex as compared with Tdrd7 and Stk31, which showed lower
peptide numbers. Although Tdrd1 and Tdrd6 have very recently
been implicated in binding Miwi (9), Tdrkh, Tdrd7, and Stk31 have
not been characterized in association with Miwi. Only one Tudor
protein, Tdrd1, was identified as one of the top hits in the Mili
complex (Fig. 1B), consistent with recent findings characterizing a
Mili-Tdrd1 interaction (17, 18). Due to the sensitivity and detection
limit of the method, we cannot exclude the possibility that other
germline Tudor proteins might also associate with Miwi or Mili
complexes. In this report, we focus primarily on the cellular,
biochemical, and structural characterization of the Tdrkh protein
and its interaction with Miwi.

Identification of in Vivo Arginine Methylation Sites on Piwi Proteins
by Mass Spectrometry. The interaction of Miwi and Mili with Tudor
domain proteins raised the possibility that they are methylated. To
determine whether the RG/RA-rich regions of Miwi and Mili are
methylated in vivo, we immunoprecipitated Miwi and Mili and used
acid elution and gel-free solid phase tryptic digestion followed by

mass spectrometry to search for methylation sites. Mascot searches
for monomethyl arginine (MMA) or dimethyl arginine (DMA) led
to the identification of multiple in vivo methylation sites on Miwi
and Mili with high confidence (Fig. 2 and Fig. S3). Overall, we
observed more methylation sites on Mili than on Miwi. Specifically,
R53 on Miwi was found in both monomethylated and dimethylated
states. In Mili, R74, R83, R95, and R100 appeared both monom-
ethylated and dimethylated and only dimethylation was found on
R45, R146, R156, and R163. Interestingly, we found that 2 different
arginines could be dimethylated simultaneously on a single peptide
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Fig. 1. Proteomic analysis of endogenous Piwi complexes identifies Tudor domain family proteins as physiological binding partners. (A) Hierarchical clustering
of proteins identified by 2 independent immunoprecipitations (IP) of Miwi, Mili, and corresponding IgG controls through tandem mass spectrometry. Proteins
for which 3 or more peptides were identified are shown. Proteins that interact specifically with Miwi or Mili are illustrated in blue and red boxes, respectively.
The cyan box indicates common proteins associated with both Miwi and Mili. (B) Identification of multiple germline Tudor domain proteins in Miwi and Mili
complexes. Miwi and Mili protein interaction networks are shown with baits in blue and Tudor domain proteins in orange. Proteins represented by 3 or more
peptides and not present in the IgG control IP, and proteins represented by peptides with a 5-fold increase over the IgG control IP are shown.
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from Mili (Fig. S3), indicating a potential for one Piwi family
protein to engage multiple docking partners, such as Tudor do-
mains, at the same time. To distinguish whether the DMA sites we
identified on the Piwi proteins were symmetric DMA (sDMA) or
asymmetric DMA (aDMA), we used a method developed by
Rappsilber et al. (19). By scanning the lower mass range of several
DMA peptide MS/MS fragments, we were able to detect a dim-
ethylcarbodiimidium ion (m/z � 71.06) but not an aDMA-specific
dimethylammonium ion (m/z � 46.06), suggesting that these mod-
ifications are most likely symmetrically dimethylated (Fig. S4).
Collectively, the identification of multiple methylation sites on Piwi
proteins raises the possibility that they provide a platform for
recruiting proteins with methyl arginine recognition modules, such
as Tudor domains, to the piRNA silencing complex.

Temporal and Spatial Expression of Tdrkh in the Testis. We set out to
further analyze the newly identified Tdrkh–Miwi interaction. The
Tdrkh protein contains one Tudor domain and 2 tandem KH
domains and has only been described in terms of gene cloning and
mRNA expression (20). Since the tissue distribution and subcellular
localization of the Tdrkh protein has not been studied, we used
affinity purified anti-Tdrkh antibody to examine these points (Fig.
3). Western blot analysis of a number of mouse tissue lysates showed
that Tdrkh (approximately 70 kDa) is highly expressed in the testis
and to a lesser extent in the brain but was not detected, or is weakly
expressed, in other tissues (Fig. 3A). Analysis of the temporal
expression of Tdrkh in male gonads indicated a low expression level
on postnatal day 7 (P7), but an elevated expression in P14, P21, and

adult testes, correlating with the onset of meiosis (Fig. 3B). Tdrkh
is not expressed in murine embryonic stem cells (Fig. 3B). To
analyze the cell-type specific expression and subcellular localization
of Tdrkh, we immunostained frozen testicular sections from P1, P7,
P14, and adult testes. At P1 and P7, Tdrkh staining was enriched in
the cytoplasm of spermatogonia in a granular pattern (Fig. 3 C and
D). In contrast, no specific signal was detected in Sertoli cells or
interstitial Leydig cells, supporting a germ cell-specific expression of
Tdrkh. At P14, Tdrkh became strongly expressed in meiotic primary
spermatocytes (Fig. 3E), and its high cytoplasmic expression was
maintained in spermatocytes and round spermatids throughout
adulthood (Fig. 3F). The expression dynamics of Tdrkh are similar
to those of Tdrd1 (21, 22) but distinct from Tdrd6 (9, 22), since
Tdrd6 is not expressed until P14, implicating a role for Tdrkh in
both embryonic/neonatal prospermatogonia differentiation and
adult meiosis. We observed coimmunostaining of Tdrkh and Mvh/
Ddx4, an evolutionarily conserved RNA helicase and nuage com-
ponent that shares a similar subcellular localization with Miwi (23),
indicating that they are colocalized in the cytoplasm of spermato-
cytes and round spermatids in adult testis (Fig. 3 G–I) and sug-
gesting the potential for physical and functional interactions be-
tween Tdrkh, Mvh, and Miwi.

Tdrkh Interacts with Miwi in Vivo and in Vitro. To validate the in vivo
association of Tdrkh with Miwi, we immunoprecipitated Tdrkh
from adult testis and analyzed its associated proteins by mass
spectrometry (Figs. 4A and S5–S6). Consistent with our previous
data, Miwi was one of the top hits in the Tdrkh pull-down. To test
whether this interaction is RNA-dependent, we treated cell lysates
with RNaseA before immunoprecipitation. Western blot analysis
showed that RNaseA treatment did not affect the interaction
between Miwi and Tdrkh, which is thereby RNA-independent (Fig.
4B). To further characterize and validate the interaction of Miwi
and Tdrkh, we used HEK293T cells to coexpress GFP-tagged
Tdrkh with either Flag-tagged wild-type Miwi or Miwi mutants with
various arginine to lysine mutations, followed by immunoprecipi-
tation with anti-Flag antibody and Western blotting with anti-GFP.
There are 3 clusters of RG/RA repeats on the N terminus of Miwi.
Our strategy for generating different Miwi mutants involved mu-
tating all of the arginines, in all 3 clusters or any 2 clusters in
combination, to lysine, as illustrated in Fig. 4C Bottom. While Tdrkh
coprecipitated effectively with wild-type Miwi, this interaction was
strongly attenuated by arginine to lysine mutations, especially the
Miwi mutant in which all 3 clusters of arginines were mutated (Fig.
4C). We subsequently mapped the principal Tdrkh binding sites to
the first cluster of RG/RA repeats, as mutations in clusters 1 � 2
or clusters 1 � 3 diminished binding. In contrast, a Miwi protein
with cluster 2 � 3 mutations, but which possesses an intact cluster
1, still maintained Tdrkh association at a level equivalent to that of
wild-type Miwi (Fig. 4C). These results suggested that the interac-
tion between Miwi and Tdrkh is arginine-dependent, raising the
possibility that Tdrkh binds Miwi through its Tudor domain,
primarily through recognition of methylated RG/RA repeats in
Miwi cluster 1. To address whether the Miwi–Tdrkh interaction is
indeed arginine methylation dependent, we treated cells with MTA,
a competitive inhibitor of methyltransferases, upon Flag-Miwi and
GFP-Tdrkh cotransfection and analyzed the association of Tdrkh in
Flag-Miwi immunoprecipitates (Fig. S7). MTA treatment reduced
the overall cellular arginine methylation levels by approximately
50%, as evaluated by the antibody Sym10 (Anti-dimethyl-arginine,
symmetric) immunoblotting, in accordance with a previous report
(4), and there was a corresponding attenuation of Tdrkh binding to
Miwi. To confirm that the Miwi–Tdrkh interaction is mediated
through direct binding of the Tdrkh Tudor domain, we mutated 2
Tudor domain residues predicted to be important for ligand-
binding. In this double mutant, D390, which is conserved across the
TDRD family of Tudor domains, and F391, a component of the
aromatic cage (see below), were substituted for alanine. These
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mutations of the Tudor domain completely abolished the binding
of Tdrkh to Miwi, consistent with the model that the Tudor domain
is the protein-binding module involved in recognition of arginine
methylated Miwi (Fig. 4C). Together, the endogenous coimmuno-
precipitation results and in vitro cotransfection and immunopre-
cipitation data clearly indicate that a single Tudor domain can direct
the binding of Tdrkh to Miwi and therefore may influence and
regulate Miwi and piRNA function.

Crystal Structure of the Tudor Domain of Human Tdrkh. To pursue the
structural basis for Tudor domain binding, the recombinant Tudor
domain of Tdrkh was produced in Escherichia coli and its structure
solved by x-ray crystallography (Table S1). Sparse matrix screening

yielded crystals that diffracted to 1.75 Å and contained a single
molecule in the asymmetric unit corresponding to residues 331 to
418 of the full-length human Tdrkh protein (PDB 3fdr). The
crystallized protein consists of a single Tudor barrel flanked by
�-helices at both termini. Overall, the Tdrkh Tudor domain exhibits
excellent structural similarity to the Tudor domain of Snd1 (PDB
2hqx), with a root mean standard deviation of only 1.6 Å for the
main-chain atoms despite the 30% sequence identity between the
aligned regions (Fig. 5 A and B).

As with other Tudor domains, Tdrkh also appears to possess an
intact aromatic cage that may be used for ligand recognition. The
cage comprises residues L364, T366, N367, Y371, F388, F391, and
D393 (Fig. 5A). In contrast, the aromatic cage of the Snd1 Tudor
domain comprises residues F715, V716, D717, Y721, Y738, Y741,
and N743 (Fig. 5B). Calculation of the vacuum electrostatic po-
tential of the protein surface surrounding the putative ligand-
binding cavity also suggests that the nature of the protein targets for
these Tudor domains differs substantially. The Snd1 pocket is
rather hydrophobic and is surrounded by regions of both positive
and negative charge (Fig. 5C). That of Tdrkh, however, carries
significant negative charges both within the pocket and over the
entire surface of corresponding protein interface (Fig. 5D). This is
in agreement with the possible interaction of the Tdrkh Tudor
domain with the highly positively charged Miwi and Mili termini. As
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Fig. 4. Tdrkh directly interacts with Miwi in vivo and in vitro through its Tudor
domain. (A) Miwi is among the top specific interaction partners complexed with
Tdrkh. Immunoprecipitation of Tdrkh from adult testis lysate and gel-free mass
spectrometry were performed. Specific binding proteins are ranked based on the
total peptide number identified. The top 5 Tdrkh interacting proteins with total
peptide numbers and percentage of sequence coverage are shown for 2 inde-
pendent immunoprecipitation experiments. (B) The interaction between Tdrkh
and Miwi is RNA independent. Endogenous Tdrkh and Miwi were immunopre-
cipitated from adult testis lysates treated with or without RNaseA using anti-
Tdrkh and anti-Miwi antibodies, respectively and immunoblotted with anti-
Tdrkh antibody. (C) Tdrkh binds to the first cluster of RG/RA repeats on Miwi via
its Tudor domain. HEK293T cells were cotransfected with Flag-Miwi or Flag-Miwi
(R-K) mutants and GFP-Tdrkh or GFP-Tdrkh Tudor domain mutant (D390A,
F391A). Flag-tagged protein complexes immunoprecipitated from cell extracts
and whole cell lysates (WCL) were probed with anti-GFP and anti-Flag antibodies.
The scheme of Miwi arginine mutations is shown in the bottom panel, with a red
cross indicating an R-K mutant.
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Fig. 5. Crystal structure of the Tudor domain of Tdrkh. (A) Ribbon repre-
sentation of the Tdrkh Tudor domain crystal structure. The residues compris-
ing the aromatic binding pocket are shown in yellow. (B) Ribbon representa-
tion of the Snd1 Tudor domain crystal structure. (C) Surface representation of
the Tdrkh Tudor domain crystal structure. (D) Surface representation of the
Snd1 Tudor domain crystal structure. (E) Molecular docking of a GRG peptide
with sDMA into the aromatic cage of the Tdrkh Tudor domain.
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the Snd1 Tudor domain may target different cellular substrates
from Tdrkh, such as snRNP-U in the RNA splicing pathway (24),
variations in the chemical nature of their protein-binding surfaces
are anticipated to confer distinct ligand specificity between the
Tudor domains of Tdrkh and Snd1.

Complementary to the biochemical and cell biology studies for
the Tdrkh protein, molecular docking simulations also suggest that
the aromatic cage of the Tudor is capable of accepting peptides
carrying methylarginine modifications, although optimal docking
requires simulation of flexibility of the residues lining this pocket.
Docking simulations with a Gly-Arg-Gly (GRG) peptide carrying
an sDMA suggest that the gamma carbons of L364, N367, Y371,
and F391 would be displaced between 1.5–2.8 Å relative to the
crystal structure conformation (Fig. 5E). Similar experiments car-
ried out with MMA or aDMA variants of the GRG peptide resulted
in less preferred energies, as compared to the sDMA peptide, with
the lowest energy conformations excluding the arginine side chain
from the binding pocket. This is consistent with the identified sites
of sDMA on the N-termini of Miwi and Mili.

Discussion
A principal function of posttranslational modifications (PTM) is to
create binding sites for specific protein interaction domains and
thus to regulate the dynamic assembly of multiprotein complexes.
Although originally established in the context of phosphorylation-
dependent protein–protein interactions, it is apparent that a range
of PTMs, including acetylation, methylation, hydroxylation, and
ubiquitination, amongst others, can serve a similar purpose (25).
Here, we have investigated the selective interactions of germline
Tudor domain proteins with arginine methylated Piwi family pro-
teins in the mouse testis. These interactions appear relatively
specialized for germline Piwi proteins, as the related Argonaute
proteins lack N-terminal RG/RA repeats, and are therefore un-
likely to be regulated by Tudor domain interactions.

By undertaking a comprehensive proteomic survey of Miwi and
Mili complexes in adult germ cells, we identified a group of
germline Tudor proteins among the major physiological binding
partners of the mouse Piwi proteins. We also found multiple in vivo
sites of arginine methylation on the N-termini of Miwi and Mili,
particularly symmetrically dimethylated arginines. These could
therefore provide multiple modified motifs for binding the Tudor
domains of the various proteins associated with the murine Piwi
family. Consistent with this view, mutation of the aromatic cage
observed in the structure of Tdrkh Tudor domain, which likely
serves as the binding site for methylated arginines in Miwi, abol-
ished the Tdrkh-Miwi interaction. In this regard, gel-free mass
spectrometry of immunoprecipitated germline proteins has proven
to be an efficient tool for analyzing the in vivo protein interaction
network assembled around Piwi and Tudor domain proteins, which
contains multiple components that are not naturally expressed in
typical cultured cells.

The RG/RA clusters at the N-termini of Miwi and Mili are
potentially methylated by specific protein arginine methyltrans-
ferases (PRMTs), especially PRMT5, which has a Drosophila
counterpart (dPRMT5) with crucial roles in germ cell specification
and maintenance, and gives a similar mutant phenotype to Dro-
sophila tudor (26, 27). Kirino et al. (28) have demonstrated that
dPRMT5 is required for arginine methylation of Drosophila Piwi
proteins and their stability, reinforcing the functional significance of
arginine methylation in germ cell biology. Our finding that multiple
arginine methylation sites can be found on a single Mili peptide
suggests that individual Mili and Miwi protein chains contain
multiple methylation sites, reminiscent of multisite phosphoryla-
tion. Indeed, Miwi has 11 N-terminal RG/RA repeats, suggesting
that it could accumulate a high density of methylated arginine sites,
and undergo different modes of interaction with Tudor domain
proteins. In one scenario, proteins with multiple Tudor domains
could undergo multivalent interactions with methylated Piwi pro-

teins. For example, a single multiTudor protein, such as Tdrd1 or
Tdrd6, could simultaneously engage multiple sites on the same Piwi
protein through its individual Tudor domains, or could cross-link
distinct Piwi proteins; conversely, each Piwi protein with multiple
methylated arginines could recruit Tudor domains from different
Tudor proteins. Proteins with tandem Tudor domains may there-
fore serve as scaffolds that form multipoint contacts with Piwi
proteins, and thereby coordinate the formation and operation of
the nuage/chromatoid body important for germ cell differentiation
and development (7, 9, 29).

Although multiTudor proteins potentially have scaffolding func-
tion in mammalian germinal granule formation, as discussed above,
the means by which single Tudor domain proteins participate in
germ cell development is still unexplored. In this study, we have
identified and characterized a single Tudor domain containing
protein, Tdrkh, and have shown that it interacts with Miwi in vivo
and in vitro. Mutagenesis data indicate that this interaction involves
the Tdrkh Tudor domain and the first cluster of Miwi N-terminal
RG/RA repeats. Although our mass spectrometry analysis failed to
detect arginine methylation sites on this first cluster of RG/RA
repeats due to poor sequence coverage of the very N-terminal
region of Miwi, the last residue of the first cluster (R14) is
reportedly methylated (30), consistent with the possibility that the
Tdrkh Tudor domain directly interacts with methylated Miwi
through R14 or other unidentified arginine methylation sites. In
addition, we have obtained a crystal structure of the Tdrkh Tudor
domain, which provides the first insight into the structural basis for
ligand recognition by the germline Tudor domain family. Given that
the single Tdrkh Tudor domain interacts with a region of Miwi
containing numerous RG/RA motifs, representing actual or po-
tential sites for methylation, it is possible that the Tdrkh domain
binds in a dynamic equilibrium to multiple methylated sites in Miwi,
as we have previously shown for the Cdc4 F-box protein binding to
multiply phosphorylated motifs in the Sic1 protein during the yeast
cell cycle (31, 32). It will be of considerable interest to investigate
whether this dynamic binding of a polyvalent ligand to a single site
receptor applies to Tdrkh-Miwi interactions.

The observation of a direct association between Tdrkh and Miwi
complexes could add another layer of regulation to Piwi/piRNA
complex formation and assembly by the recruitment of associated
functional protein domains. For example, Tdrkh has 2 KH domains,
which are frequently associated with RNA recognition (33). Al-
though it is not known whether the Tdrkh KH domains bind RNA,
it is possible that there is an interplay between KH-mediated RNA
interactions and Piwi protein-associated piRNAs, which therefore
could influence piRNA biogenesis and functionality. It will be
interesting to examine whether the loss of Tdrkh impacts the
piRNA pathway through genetic and functional analysis.

Very recently, several groups have characterized the association
of specific germline multiTudor proteins with the Piwi family
proteins and have confirmed Mili–Tdrd1 and Miwi–Tdrd6 inter-
actions, which coincides with our proteomic data (9, 17, 18). During
the preparation of our manuscript, an elegant study has shown a
comprehensive analysis of mouse Piwi complexes and demon-
strated that germline Tudor proteins direct critical protein–protein
interactions with Piwi proteins that are important for small RNA
production and proper operation of the piRNA pathway (30). The
profiles of Tudor domain proteins that associate with individual
mouse Piwi proteins in this study are largely in accordance with our
results, illustrating the biochemical and functional link between the
Piwi family and the germline Tudor proteins. Here, we have focused
on the single Tudor domain protein Tdrkh as a member of the
repertoire of Piwi-binding proteins and have defined the potential
biochemical and structural basis for this interaction as a prototype
for germline Tudor-Piwi complexes.

In summary, our findings that various germline Tudor proteins
are in complex with Piwi proteins, and our detection of in vivo Piwi
methylation sites and biochemical and structural analysis of Tdrkh
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Tudor domain binding indicates that arginine methylation underlies
a critical protein interaction network in germ cell development.
Future studies on germline Tudor domain binding properties and
specificity, as well as the interaction dynamics of Tudor protein–
Piwi complexes, will provide new insight into the construction and
organization of mammalian piRNA silencing pathways.

Materials and Methods
Full details of material and methods are discussed in the SI Text.

Antibodies. Miwi (Abcam), Mili/Piwil2 (MBL), Tdrkh (Protein Tech), Ddx4 (Ab-
cam), �Tubulin (clone DM 1A, Sigma), Flag M2 agarose (Sigma), GFP (A290,
Abcam), Sym10 (Millipore).

Tissue Immunoprecipitation and Western Blot Analysis. Adult testes were ho-
mogenized in 1% Triton lysis buffer (10 mM Tris-HCl pH7.5, 150 mM NaCl, 1%
Triton X-100, 1 mM PMSF, 10 �g/ml Leupeptin, 10 �g/ml Aprotinin, 10 �g/ml
Pepstatin) using Dounce homogenizer. After centrifugation, the supernatant
was filtered through 0.45 �m filter, precleared with Protein A Sepharose for 2 h,
and incubatedwith3 �gofantibodiesovernightat4 °C.The immunoprecipitates
were recovered by incubation with 80 �l 10% Protein A slurry for 3 h. After
extensive washing with the lysis buffer, the samples were eluted using 50 mM
H3PO4 for mass spectrometry sample preparation or eluted using 1% SDS sample
buffer for Western blotting (34). For tissue extract used for Western blotting,
mouse tissues and testes from different aged animals were lysed in RIPA buffer
using Polytron tissue homogenizer.

Immunofluorescence. Testes from different aged animals were fixed in natural
buffered 10% formalin for 24 h and embedded in CYRO-OCT compound (Sakura
Finetek). Frozen sections (6 �m) were cut, air dried, fixed, rehydrated with PBS,
and blocked with 5% goat serum in PBS for 1 h. Primary antibody incubation
(anti-Tdrkh, 1:200) was performed at room temperature for 2 h followed by 3 �
10 min wash with PBS and 1 h secondary antibody incubation. After extensive
washing with PBS, sections were stained with DAPI and mounted. For double
staining of Tdrkh and Ddx4, Zenon Rabbit IgG Labeling Kit (Invitrogen) was used
according to manufacturer’s instruction. Images were acquired with Leica DM
IRE2 Microscope and processed with OpenLab software.

Plasmid Constructs. Miwi cDNA (BC129857) was cloned into pcDNA3 vector in
framewithaN-terminalFlag-tag.MouseTdrkhcDNA(BC049363)wascloned into
AscI and PacI sites of a modified pDNR-Dual donor vector and shuttled to an
acceptor vector with N-terminal GFP-tag. Tudor domain mutation (D390A,
F391A) was generated by site directed mutagenesis. For Miwi R-K mutagenesis,
various N-terminal Miwi mutant cDNA fragments encoding the first 101 aa of
Miwi were generated by DNA synthesis (Genscript) and cloned into XhoI and Blp1
sites of parental pcDNA3-Flag-Miwi plasmid.

Cell Transfection and Immunoprecipitation. HEK293T cells were cultured in
DMEM supplemented with 10% FBS and transfected with Flag-Miwi, Flag-Miwi
mutants, and GFP-Tdrkh or GFP-Tdrkh mutant using polyethyleneimine; 24–36 h
after transfection, cells were harvested and lysed using 1% Triton buffer as
mentioned above. Flag-Miwi complex was immunoprecipitated by incubating
with anti-Flag M2 agarose (Sigma) for 4 h at 4 °C and extensive washing. Proteins
eluted by SDS/PAGE sample buffer were subject to Western blotting. For meth-
ylation inhibition experiment, cells cotransfected with Flag-Miwi and GFP-Tdrkh
were treated with 5�-deoxy-5�-(methyl-thio) adenosine (MTA) (Sigma) at final
concentrations of 250 �M, 750 �M, and 1 mM for 24 h before lysis.

Mass Spectrometry. Immunoprecipitated endogenous Miwi and Mili complexes
were analyzed by gel-free LC-MS/MS. All experiments were performed on a
QSTAR Elite QqTOF mass spectrometer equipped with a nanospray III ion source
(AppliedBiosystems/MDSSciex).Thedetailsonsamplepreparation,experimental
setup and data analysis are described in the SI Text.

Crystallization and Structure Determination. Amino acids 327 to 420 of human
Tdrkh was expressed and purified for crystallization. For details on protein
purification, crystallization, structure determination and docking simulation, see
SI Text.
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