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ABSTRACT

Exact conditional tests are often required to evaluate statistically whether a sample of diploids comes
from a population with Hardy–Weinberg proportions or to confirm the accuracy of genotype assignments.
This requirement is especially common when the sample includes multiple alleles and sparse data, thus
rendering asymptotic methods, such as the common x2-test, unreliable. Such an exact test can be performed
using the likelihood ratio as its test statistic rather than the more commonly used probability test.
Conceptual advantages in using the likelihood ratio are discussed. A substantially improved algorithm is
described to permit the performance of a full-enumeration exact test on sample sizes that are too large for
previous methods. An improved Monte Carlo algorithm is also proposed for samples that preclude full
enumeration. These algorithms are about two orders of magnitude faster than those currently in use.
Finally, methods are derived to compute the number of possible samples with a given set of allele counts, a
useful quantity for evaluating the feasibility of the full enumeration procedure. Software implementing
these methods, ExactoHW, is provided.

WHEN studying the genetics of a population, one
of the first questions to be asked is whether the

genotype frequencies fit Hardy–Weinberg (HW) expec-
tations. They will fit HW if the population is behaving
like a single randomly mating unit without intense via-
bility selection acting on the sampled loci. In addition,
testing for HW proportions is often used for quality
control in genotyping, as the test is sensitive to mis-
classifications or undetected null alleles. Traditionally,
geneticists have relied on test statistics with asymptotic
x2-distributions to test for goodness-of-fit with respect
to HW proportions. However, as pointed out by several
authors (Elston and Forthofer 1977; Emigh 1980;
Louis and Dempster 1987; Hernandez and Weir

1989; Guo and Thompson 1992; Chakraborty and
Zhong 1994; Rousset and Raymond 1995; Aoki 2003;
Maiste and Weir 2004; Wigginton et al. 2005; Kang

2008; Rohlfs and Weir 2008), these asymptotic tests
quickly become unreliable when samples are small or
when rare alleles are involved. The latter situation is
increasingly common as techniques for detecting large
numbers of alleles become widely used. Moreover, loci
with large numbers of alleles are intentionally selected
for use in DNA identification techniques (e.g., Weir

1992). The result is often sparse-matrix data for which
the asymptotic methods cannot be trusted.

A solution to this problem is to use an exact test
(Levene 1949; Haldane 1954) analogous to Fisher’s
exact test for independence in a 2 3 2 contingency table
and its generalization to rectangular tables (Freeman

and Halton 1951). In this approach, one considers only
potential outcomes that have the same allele frequen-
cies as observed, thus greatly reducing the number of
outcomes that must be analyzed. One then identifies all
such outcomes that deviate from the HW null hypoth-
esis by at least as much the observed sample. The total
probability of this subset of outcomes, conditioned on
HW and the observed allele frequencies, is then the
P-value of the test. When it is not possible to enumerate
all outcomes, it is still feasible to approximate the P-value
by generating a large random sample of tables.

The exact HW test has been used extensively and
eliminates the uncertainty inherent in the asymptotic
methods (Emigh 1980; Hernandez and Weir 1989;
Guo and Thompson 1992; Rousset and Raymond

1995). However, there are two difficulties with the ap-
plication of this method and its interpretation, both of
which are addressed in this report.

The first issue is the question of how one decides
which of the potential outcomes are assigned to the
subset that deviates from HW proportions by as much as
or more than the observed sample. If the alternative
hypothesis is specifically an excess or a dearth of homo-
zygotes, then the tables can be ordered by Rousset and
Raymond’s (1995) U-score or, equivalently, by Robertson

and Hill’s (1984) minimum-variance estimator of the
inbreeding coefficient. However, when no specific di-
rection of deviation from HW is suspected, then there
are several possible test statistics that can be used (Emigh
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1980). These include the x2-statistic, the likelihood ratio
(LR), and the conditional probability itself. The last option
is by far the most widely used (Elston and Forthofer

1977; Louis and Dempster 1987; Chakraborty and
Zhong 1994; Weir 1996; Wigginton et al. 2005) and
implemented in the GENEPOP software package
(Rousset 2008). The idea of using the null-hypothesis
probability as the test statistic was originally suggested in
the context of rectangular contingency tables (Freeman

and Halton 1951), but this idea has been criticized for
its lack of discrimination between the null hypothesis
and alternatives (Gibbons and Pratt 1975; Radlow

and Alf 1975; Cressie and Read 1989). For example,
suppose a particular sample was found to have a very low
probability under the null hypothesis of HW. Such a
result would usually tend to argue against the popula-
tion being in HW equilibrium. However, if this partic-
ular outcome also has a very low probability under even
the best-fitting alternative hypothesis, then it merely
implies that a rare event has occurred regardless of
whether the population is in random-mating propor-
tions. The first part of this report compares the use of
probability vs. the likelihood ratio as the test statistic in
HW exact tests. Reasons for preferring the likelihood
ratio are presented.

The second difficulty in performing HW exact tests
is the extensive computation needed for large samples
when multiple alleles are involved. In this report I pres-
ent a new algorithm for carrying out these calculations.
This method adapts some of the techniques originally
developed for rectangular contingency tables in which
each possible outcome is represented as a path through
a lattice-like network (Mehta and Patel 1983). Unlike
the loop-based method currently in use (Louis and
Dempster 1987), the new algorithm uses recursion and
can be applied to any number of alleles without modi-
fication. In addition, it improves the efficiency by about
two orders of magnitude, thus allowing the full enu-
meration procedure to be applied to larger samples and
with greater numbers of alleles.

The recursion algorithm has been tested successfully
on samples with as many as 20 alleles when most of those
alleles are rare. However, there are still some samples for
which a complete enumeration is not practical. For
example, the data from the human Rh locus in Figure
1D would require examining 2 3 1056 tables (see below).
For such cases a Monte Carlo approach must be used
(Guo and Thompson 1992). Several improvements to
the method of independent random tables are sug-
gested here to make that approach practical for even the
largest of realistic samples, thus eliminating the need
for the less-accurate Markov chain approach.

Finally, I address the problem of determining the
number of tables of genotype counts corresponding to a
given set of allele counts. This number is needed for
determining whether the exact test can be performed by
full enumeration. Previously, this number could not be

obtained except by actually carrying out the complete
enumeration.

The methods described are implemented in a soft-
ware package, ExactoHW, for MacOS X10.5 or later. It is
available in compiled form (supporting information,
File S1) or as source code for academic use on request
from the author.

MATERIALS AND METHODS

All calculations were performed on a MacPro3.1 computer
from Apple with two Quad-Core Intel Xeon processors running
at 2.8 GHz. The operating system was MacOS X10.5. Pro-
gramming for power calculations as well as the ExactoHW
software was done with Apple’s Xcode development system
and Cocoa application programming interface. A version of
GENEPOP 4.0.10 was compiled on the same equipment for
use in comparisons with ExactoHW. Both GENEPOP and
ExactoHW are written in dialects of C. Random permutations
for the Monte Carlo procedure were obtained by the Fisher–
Yates shuffle (Fisher and Yates 1943) truncated after the first
n swaps in a table of 2n elements. Random numbers were
generated by the multiply-with-carry method (Marsaglia 2003).

COMPARISON OF TEST STATISTICS

Formulation: A sample of diploid genotypes at a k-
allele locus can be represented by a triangular matrix
such as

Figure 1.—Sample data sets: examples that have been used
in previous discussions of exact tests for HW proportions. For
each data set, a triangular matrix of genotype counts is shown
next to the vector of allele counts. (A) From Table 2, bottom
row, of Louis and Dempster (1987). (B) From Figure 2 of
Guo and Thompson (1992). (C) From the documentation in-
cluded with the GENEPOP software package (Rousset 2008).
(D) From Figure 5 of Guo and Thompson (1992).
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where aij is the observed number of genotypes with
alleles i and j. The number of alleles of type i is mi ¼
2aii 1

P
i . j aij , and let n be the total sample size (n ¼P

i $ j aij ) and
P

mi ¼ 2n. If we assume this sample was
obtained by multinomial sampling from a population in
HW proportions with the observed allele frequencies
ðmi=2nÞ, then the conditional probability of the sample
given the observed allele counts is

Pða jmÞ ¼ 2n�dn!
Q

mi !

ð2nÞ!
Q

i $ j aij !
ð1Þ

(Levene 1949; Haldane 1954), where d is the number
of homozygotes (d ¼

P
aii). Equation 1 can be derived

as the ratio of two multinomial probabilities. The nu-
merator is the probability of the observed sample if
the genotype frequencies fit HW expectations, and the
denominator is the probability of obtaining the ob-
served allele frequencies.

The likelihood ratio is given by

LRðaÞ ¼
Q

i mmi
i

2n1dnn
Q

i$j a
aij

ij

ð2Þ

(e.g., Weir 1996, p. 106) and can also be derived as the
ratio of two multinomial probabilities. The numerator is
the same as for Equation 1, and the denominator is the
probability of obtaining the observed outcome under
the best-fitting alternative hypothesis. This best-fitting
hypothesis is that of sampling from a population whose
genotype frequencies are identical to those of the ob-
served sample: aij=n. These equations can also be derived
from the assumption of Poisson sampling. Interestingly,
as pointed out by a reviewer, Equations 1 and 2 become
interchangeable following the application of Stirling’s
approximation: ln x! � x ln x � x.

Comparison of probability vs. likelihood-ratio test
statistics: To visualize the relationship between these
two types of test, consider a sample of 10 diploids con-
taining five alleles. The allele counts are 9, 6, 3, 1, and 1.
That is: m ¼ 9 6 3 1 1½ �. There are 139 possible
samples of this kind, and their probabilities and likeli-
hood ratios are plotted in Figure 2. It is clear that the two
quantities are strongly correlated, with a nearly linear
relationship when plotted on a log-log scale.

One of the 139 tables,

a ¼

2
4 1
1 0 1
0 0 0 0
0 0 0 1 0

2
66664

3
77775;

is indicated by the intersection of the two dashed lines.
This plot provides a graphical demonstration of the

difference between the two kinds of exact test: The
probability test for HW consists of summing the prob-
abilities of all the samples that lie on or to the left of
the vertical dashed line, whereas the likelihood-ratio
test selects those on or below the horizontal line. The
positive correlation ensures that the subsets selected
by these procedures contain many of the same points.
However, these subsets are not identical. They differ by
the points lying in the top left and bottom right quad-
rants. In this case, the points in these quadrants are
enough to cause a threefold difference in the computed
P-values.

Visualizing the tests in this way helps to clarify why the
likelihood ratio may be seen to provide a better fit to our
intuitive notion of what is being tested. The points in the
top left quadrant are included in the probability test
because they have a slightly lower probability than the
observed sample. However, it can be argued that they
are not more deviant from the HW hypothesis, since
their probability is relatively low even under the best-
fitting alternative hypothesis. They are simply rare out-
comes regardless of the true state of the population. On
the other hand, those in the bottom right quadrant do
seem to deviate from HW more than the observed case
when compared with the best-fitting alternative. By this
reasoning, the likelihood-ratio P-value of 0.034 is to be
preferred over the probability-based value of 0.010 as it
better reflects the strength of evidence against the HW
hypothesis relative to the alternatives.

Figure 2.—Distribution of test statistics. The likelihood
ratio and probability were computed for each of the 139 pos-
sible tables with allele counts m ¼ 9 6 3 1 1½ �. Overlap-
ping symbols are indicated by darker shading. Dashed lines
intersect at the specific table (see text) whose P-value is being
evaluated by the two exact tests. Both axes are logarithmically
scaled.
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It is interesting to note that samples showing a
homozygote excess relative to HW tend to lie above the
diagonal in Figure 2 while many of those with a dearth of
homozygotes lie below it. This tendency appears to be a
general characteristic, as it was equally clear in each of
several other examples plotted in this way (see Figure
S1). It implies that when there is a homozygote excess, as
might be caused by inbreeding or hidden subdivisions of
the population, the probability-based test will tend to give
a lower P-value as compared to the likelihood-ratio test.
The reverse is true when there is a heterozygote excess.
This trend is reflected in the power comparisons con-
ducted in several studies (Emigh 1980; Rousset and
Raymond 1995) as well as those described below.

Different alternative hypotheses: Another useful way
to compare the probability test with the likelihood-ratio
test is to think of them as similar test statistics—i.e.,
likelihood-ratio based—but directed against different
alternative hypotheses. Note that the probability test
could be thought of as a likelihood-ratio test if the
alternative hypothesis is that all possible conditional
samples have an equal probability. That way the denom-
inator of the likelihood ratio will be the same for all
samples, and the resulting ordering of the possible sam-
ples will be identical to that produced by the probability
test. However, it is not clear that any sampling procedure
or realistic population characteristics would lead to all
possible tables being equally likely. By contrast, multino-
mial sampling from a population with a fixed set of

genotype frequencies is probably a good approximation
to what is typically done. Therefore, this way of compar-
ing the two tests also argues against the use of probability
itself as a test statistic, as it is equivalent to performing
a likelihood-ratio test against an unrealistic alternative
hypothesis. It suggests that the use of LR as a test statistic
may be a better choice in terms of matching a realistic set
of alternative hypotheses.

Power comparisons: Finally, we can compare these
two kinds of test in terms of their power. That is, we can
compute the probability of the P-value falling below a
given threshold, a, when the population deviates from
HW to various extents. The contour plots in Figure 3
compare the powers of the likelihood-ratio test (numer-
ator) with the probability test (denominator) for sample
sizes of 50 and 500 and two alleles. File S2 shows other
sample sizes between 10 and 600. Power comparisons of
this kind have been reported previously (Emigh 1980;
Hernandez and Weir 1989; Chakraborty and Zhong

1994; Rousset and Raymond 1995; Maiste and Weir

2004; Kang 2008) but not with full coverage of the
parameter space. Each plot was constructed by comput-
ing the power of each test under multinomial sampling
at 2687 points distributed evenly within the parameter
space. The frequency, q, of the less-frequent allele can
range from 0 to 1

2 , and the inbreeding coefficient, F, lies
between �q=ð1� qÞ and 1.

There are many areas within the parameter space where
the two tests have approximately the same power, as

Figure 3.—Power comparisons. Contour plots of the ratio of the power of the exact likelihood-ratio test (numerator) and the
probability test (denominator) for the case of two alleles. Sample sizes and a-levels are as shown. Each plot was constructed from a
grid of 2687 points distributed uniformly throughout the parameter space of allele frequency and inbreeding coefficient. For each
such point, the power was determined by generating all possible multinomial samples and summing the probabilities of those
whose P-value is less than or equal to a. Mathematica (Wolfram Research) was used to draw contour curves from the computed
power ratios. File S2 contains similar contour plots covering more sample sizes.
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indicated by the white spaces in Figure 3. However, there
are also substantial areas where the probability test (shades
of red) or the LR test (shades of blue) has significantly
greater power. Even when the sample size is 500, the red
and blue regions are still prominent, indicating that the
two tests converge only slowly as sample size increases.

The minimum value for the ratio is �0.6 (Figure 3,
red region), but the maximum exceeds 4.0 (purple). In
other words, the decrease in relative power associated
with using the LR test in the red areas is not great, but a
fourfold decrease in power can result when the proba-
bility test is used for populations in the purple areas. This
comparison suggest an advantage to using the LR test
when there is no expectation concerning the sign of F.

The blue and purple regions in Figure 3 lie within the
area where F is negative, and the red sectors occur
mainly in areas where F is positive, echoing the pre-
vious observation (Emigh 1980) that the probability
test can have greater power when there is an excess of
homozygotes whereas the LR test’s power is greater
when there is a heterozygote excess. The basis for this
tendency can be seen in Figure 2, where tables with a
homozygote excess lie more often above the diagonal.

The red areas in Figure 3 need not be interpreted as
advantageous for the probability test. On the contrary, if
one accepts the arguments above, these regions of the
parameter space represent situations where using the
probability tests entails an increased risk of overestimat-
ing the evidence for homozygote excess. The reason is
that the probability test is actually aimed at a subtly
different alternative hypothesis that does not reflect
realistic sampling procedures. On the other hand, the
blue areas can be considered situations where the LR
test has a power advantage in detecting heterozygote
excess. Homozygote excess tends to be more common as it
can arise from inbreeding, population subdivision, or
undetected null alleles. Of course, if one type of excess
is suspected initially, then the maximum power can be
obtained from using a one-sided criterion such as the U-
score (Rousset and Raymond 1995). A Bayesian
approach can also be used to take account of prior
expectations (Montoya-Delgado et al. 2001).

Contour plots similar to those in Figure 3 were also
constructed to compare the LR test with x2 as the test
statistic for ordering the tables (see Figure S2). The
results were very similar to Figure 3, suggesting that the
x2-statistic results in an ordering that is closer to that of
the probability than to the LR. This similarity might be
expected, as x2 does not take explicit account of the
probability of each table under the alternative hypoth-
esis of multinomial sampling.

ALGORITHMS

Full enumeration algorithm: A significant advance in
the exact analysis of rectangular contingency tables was

obtained by Mehta and Patel (1983), who found that
the set of tables with fixed marginal totals could be
represented by a network of nodes connected by arcs.
Each pathway from the initial node to the final one
corresponds to one of the tables. The total lengths of the
arcs in each pathway can also be used to calculate the
probability and test statistic associated with each table.
This representation suggested an efficient recursion-
based algorithm for enumerating the tables and com-
puting the associated P-value.

The approach taken here is analogous, but adapted to
the triangular tables of genotype data with fixed allele
counts. For example, consider a sample of four diploids,
each homozygous for a different allele. Thus,

a ¼

1
0 1
0 0 1
0 0 0 1

2
664

3
775

and m ¼ 2 2 2 2½ �. There are 17 possible tables
with this set of allele counts. Figure 4A shows the net-
work representation of this case. Each path from the
initial node (2222) to the final one (0000) represents
one of the 17 tables, and the observed table is indicated
by the dashed line. The four digits identifying each
node are the residual allele counts, and each column
of nodes represents the genotype assignments for one
of the rows of the table, starting with the bottom. These
columns are referred to as levels in the contingency
table literature (Mehta and Patel 1983; Agresti 1992).
When tracing paths, arcs are followed only in the right-
ward direction. The five-allele example with 139 tables
used in Figure 2 is shown in Figure 4B. Each table cor-
responds to one of the paths from (96311) to (00000).

To traverse the network of tables while computing the
desired probabilities and test statistics, I propose an
algorithm in which a pair of functions, Homozygote and
Heterozygote, operate in a recursive fashion by calling them-
selves and each other. Each call to Homozygote corresponds
to one of the nodes, whereas each arc corresponds to one
or more calls to the Heterozygote function.

Calculation of the probability and statistics associated
with each completed table is distributed through the
lattice so that each new table requires minimal cal-
culations. These calculations are greatly facilitated by
noting from Equations 1 and 2 that the logs of the
probability and LR can be written as

ln PðaÞ ¼ Kp �
X
i$j

f ðaijÞ � d ln 2

ln LRðaÞ ¼ Kg �
X
i$j

g ðaijÞ � d ln 2; ð3Þ

where Kp and Kg are constants that need be computed
only once for the entire set of tables, and the functions,
f ið Þ and g ið Þ, defined as ln i!ð Þ and i ln ið Þ, respectively,
are also computed only once for the integers up to the
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largest allele count, mk and retrieved when needed.
Note that the log of the probability is calculated initially
to avoid underflow errors.

The functions Homozygote and Heterozygote take
the following parameters, which must be passed by
value rather than by reference, as required by the
recursion process: r and c represent the current row
and column, with c being unnecessary in Homozygote; fp
and gp represent partial sums of

P
f aij

� �
1 d ln 2 andP

g aij

� �
1 d ln 2; and R is an array R1;R2; . . . ;Rkð Þ

containing the residual allele counts. Note that the
quantity fp or gp can be thought of as the sum of the arc
lengths in each path of the network diagram (Figure 4).

After the constants, Kp and Kg, and lookup tables, f ið Þ
and g ið Þ, have been computed, the main calculation is
initiated with a call to Homozygote with r set to k, R set to
the allele counts, m1, m2, . . . , mk, sorted in ascending
order, and the remaining parameters set to zero. Pre-
sorting of the allele counts greatly increases the effi-
ciency but does not affect the numerical outcome. The
procedure below applies when there are three or more
alleles. The two recursive functions are defined as follows.

Homozygote (r, fp, gp, R): The first step is to compute
the lower and upper bounds for arr given the current
residual allele counts. These are

lower ¼ Rr �
Xr�1

i¼1

Ri

 !
=2

upper ¼ Rr=2

with lower set to zero if the above expression is negative
(Louis and Dempster 1987). Integer arithmetic is as-
sumed where appropriate so that fractions are rounded
down, thus making it unnecessary to specify whether
quantities are even or odd. Now, for each value of arr

between lower and upper, call Heterozygote with pa-
rameters ½r ; r � 1; fp 1 f arrð Þ1 arr ln 2; gp 1 g arrð Þ1
arr ln 2; R9� in which R9 is modified from R by subtracting
2arr from Rr.

Heterozygote (r, c, fp, gp, R): As before, we start by find-
ing the upper and lower bounds for genotype arc,

lower ¼ Rr �
Xc�1

i¼1

Ri

upper ¼ minðRr ; RcÞ;

with any negative value for lower replaced by zero. The
next step depends on the values of r and c. If c . 2, then
for each value of arc from lower to upper, call Heterozygote
with parameters ½r ; c � 1; fp 1 f arcð Þ; gp 1 g arcð Þ; R9� in

Figure 4.—Network diagrams. The tables with
a given set of allele counts can be represented by
the paths through a network of nodes connected
by arcs. Each path begins with the leftmost node
and proceeds rightward. Each node is labeled
with a string of digits indicating the residual al-
lele counts at that point. (A) Network for the case
of two copies of each of four alleles. There are 17
paths from (2222) to (0000). The dashed line
represents the sample in which each homozygote
is observed once. (B) Network showing the 139
paths for the case of m ¼ 9 6 3 1 1½ �. The
dashed lines specify the table that is indicated
by the intersection of dashed lines in Figure 2.
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which R9 is constructed by subtracting arc from each of Rr

and Rc.
If c¼ 2 and r . 3, then for each value of ar2 from lower

to upper, let

ar1 ¼ minðRr � ar2; R1Þ

and call Homozygote with parameters ½r � 1; fp 1

f ar2ð Þ1 f ar1ð Þ; gp 1 g ar2ð Þ1 g ar1ð Þ; R9�, where R9 is con-
structed by subtracting ar2 from Rr and R2 and ar1 from
Rr and R1.

Finally, if c ¼ 2 and r ¼ 3, then for each value of a32

from lower to upper, let

a31 ¼ minðR3 � a32;R1Þ
f 9 ¼ fp 1 f ða31Þ1 f ða32Þ
g 9 ¼ gp 1 g ða31Þ1 g ða32Þ:

At this point, we are left with the equivalent of a two-
allele case in which the allele counts are m91 ¼ R1 � a31

and m92 ¼ R2 � a32. If m91 # m92, then for each value of a11

from zero to m91=2 we set

a21 ¼ m91 � 2a11

a22 ¼ ðm92 � a21Þ=2:

If m91 . m92, then for each value of a22 from zero to m92=2
we set

a21 ¼ m92 � 2a22

a11 ¼ ðm91 � a21Þ=2:

Either way, for each value we can process a completed
table whose log probability and lnLR test statistic are

ln P ¼ Kp � f 9� f ða11Þ � f ða21Þ � f ða22Þ
� ða11 1 a22Þln 2

ln LR ¼ Kg � g 9� g ða11Þ � g ða21Þ � g ða22Þ
� ða11 1 a22Þln 2:

If the table is deemed to deviate from HW expectations
at least as much as the observed table on the basis of the
LR or another criterion, then the actual probability is
found by taking the antilog, and the P-value is incre-
mented by this amount.

When the initial call to Homozygote finally returns,
the entire tree of tables has been traversed, all proba-
bilities and test statistics have been computed and
processed, and the exact P-values have been computed.

An enhancement to the above algorithm is the
addition of the U-score test for homozygote or hetero-
zygote excess (Rousset and Raymond 1995), which can
be thought as a ‘‘one-sided’’ procedure for narrowing
the alternative hypotheses. For the purpose of ordering
the tables, the only quantity needed for each table isP

aii=mi . By adding one more parameter to each func-
tion, this sum can be computed distributively through-
out the recursion in a way similar to the other two

quantities (see Equation 3). With precomputed lookup
tables for aii=mi (i ¼ 1, 2), inclusion of this test statistic
does not significantly increase the computation time.
ExactoHW reports either P U $ observedð Þ or P U #ð
observedÞ depending on whether the observed U-score
is positive or negative.

To confirm that this procedure yields the same P-values
as the algorithm of Louis and Dempster (1987) im-
plemented in GENEPOP (Rousset 2008), the P-values
were computed by both methods for the samples in
Figure 1, A–C, and listed in Table S1. To compare the
relative speeds of the algorithms, both programs were
compiled from their C dialects and run on the same
computer. The comparison used 4-allele samples with
the same allele frequencies and sample sizes ranging
from n ¼ 500 to n ¼ 2000. The present algorithm was
found to be about two orders of magnitude faster (Table
S2). The speed advantage is especially apparent in the
largest sample size, where the analysis by GENEPOP
required .8 hr of computation compared to ,3 min for
ExactoHW, even though the latter operation performed
all three tests (probability, LR, and U-score) compared
to probability alone.

Monte Carlo method: Guo and Thompson (1992)
suggested generating random tables of genotypes with
the observed allele counts by first obtaining a random
permutation of an array containing the 2n haplotypes in
the observed sample. Then each pair of adjacent haplo-
types in the permuted array is taken as one of the n
genotypes. The probability and test statistic are then
computed for each such random table, resulting in an
estimate of the P-value after sufficiently many random
tables have been generated. The authors concluded
that this method might be useful in some cases but is not
efficient enough to handle large tables owing to the
necessity to compute the probability and test statistic
for each table. Instead, they proposed a Markov chain
alternative despite the inherent disadvantage of that
method in terms of controlling the precision of the
resulting P-value.

On reexamining Guo and Thompson’s (1992) ran-
dom sampling method, it is found that a dramatic
improvement in efficiency can be obtained with a few
minor modifications. The most important of these is
the use of Equations 3 and the precomputed values
for Kp, Kg , f, and g for finding the probability and test
statistic. With this technique, the time needed for
computing P and LR is small compared to that of
generating the random table. An additional factor of
2 improvement can be achieved by noting that the
random permutation process can be stopped after the
first n elements of the randomly permuted haplotype
array and then pairing haplotype i with haplotype n 1 i
to produce each diploid genotype (see materials and

methods). Finally, one can take advantage of present-
day multicore computers to generate multiple random
tables simultaneously.
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All of these techniques are incorporated in Exac-
toHW. The result is that samples such as those in Figure
1, A–C, can be analyzed by the Monte Carlo method at
the rate of�400,000 tables per second while computing
all three test statistics for each. Even the much larger
sample in Figure 1D is amenable to this approach, with a
rate of 38,000 tables per second (Table S3). The P-values
in Table S1 confirm the accuracy of this algorithm.

COUNTING TABLES

For a given data set, the choice between the full
enumeration test vs. a Monte Carlo alternative depends
on the number of tables needed for the full enumera-
tion. If this number is small enough, the full enumer-
ation is always preferable. For rectangular contingency
tables, the number of possible tables with a fixed set of
marginal totals has been examined by Gail and Mantel

(1977) and subsequent authors (reviewed in Greselin

2004). Several exact and approximate approaches have
been described with the latter being less computation-
ally intensive. However, no similar analysis has been
reported for the triangular tables associated with geno-
type data with fixed allele counts. The following analysis
provides three alternatives to address the table-counting
problem for genotypic data.

Generating function method: The first approach is to
make use of a generating function, G(x1, x2, . . . , xk), on a
set of dummy variables corresponding to the alleles. The
contribution to this function from genotype ij is

X‘

z¼0

ðxixjÞz ¼
1

1� xixj
:

Therefore, the generating function is

GðxÞ ¼
Y
i$j

1

1� xixj

� �
ð4Þ

and the number of tables is the coefficient of
xm1

1 xm2

2 xm3

3 . . . xmk

k in the expansion of this function.
Finding this coefficient still requires computation, but
with existing algorithms it can be more efficient than
enumerating the entire set. In particular, the Series-
Coefficient function, which is part of the Mathematica
software (Wolfram Research), works well. A Mathema-
tica function for this task can be defined as follows:

count½m � :¼ SeriesCoefficient @@

Flatten½fProduct½1=ð1� Subscript½x; i�Subscript½x; j �Þ;
fi; 1; Length½m�g; f j; 1; ig�; Table½fSubscript½x; i�;

0; Sort½m�½½i��g; fi; 1; Length½m�g�g; 1�:

The set of allele counts is presorted in this definition to
facilitate the process, but such sorting is not needed to
obtain the correct answer. With this definition, the total
number of tables in the example in Figure 2 is obtained
with the command count[{9, 6, 3, 1, 1}] to yield 139

tables. For the example in Figure 1A, the command
count[{11, 30, 30, 19}] yields 162,365 tables; for Figure
1B count[{15, 14, 11, 12, 2, 2, 1, 3}] yields 250,552,020
tables; and for Figure 1C count[{68, 115, 192, 83}] yields
1,289,931,294 tables. These numbers are identical to
those found by enumerating the entire sets.

Algorithmic approach: The recursive algorithm de-
scribed above can be modified to provide a relatively
efficient count of the number of tables. Note from
Figure 4 that the number of tables downstream from any
node is independent of how that node was reached.
Therefore, if we are interested only in the number of
tables rather than their probability and test statistics, it
should be necessary to traverse each node only once.
When the number of tables downstream from the node
has been determined, this number is placed into a hash
table keyed to the identifier of the node. This identifier
consists of the residuals and the node’s level (see Figure
4). When this node is reached again, its downstream
table count is retrieved and added to the total, elimi-
nating the need to traverse any of the downstream
nodes. This method is typically 50 times faster than
complete enumeration. ExactoHW uses this algorithm
to compute the needed number of tables in a separate
thread to provide a quick estimate of the time needed
while the full enumeration calculation is in progress.

Normal approximation: The large sample in Figure
1D overwhelms the two exact methods described above
and calls for an approximate approach. Following the
strategy of Gail and Mantel (1977) for rectangular
contingency tables, we start by considering a larger set of
tables with fewer restrictions. Let S be the set of all
possible samples of n diploids without regard to the
allele counts but allowing genotypes involving any of the
k alleles. The cardinality of S is known, as it represents
the n-multisets of the set of k k 1 1ð Þ=2 genotypes. Thus

jS j ¼

n 1 kðk 1 1Þ
2

� 1

kðk 1 1Þ
2

� 1

0
BB@

1
CCA: ð5Þ

We wish to count the members of the subset Sm, which
includes only those tables with allele counts m, by mul-
tiplying jS j by the probability that a randomly selected
member of S has allele counts m.

When considering a random sample from S, it is not
appropriate to use the multinomial distribution, which
does not assign equal probability to each distinguish-
able table. Instead, we make use of the one-to-one cor-
respondence between the elements of S and the linear
arrangements of n ‘‘stars’’ and b ¼ kðk 1 1Þ=2� 1 ‘‘bars.’’
Each genotype count corresponds to the number of stars
between adjacent bars (Feller 1968, p. 38). If a random
permutation of these n 1 b elements is performed, then
each genotype count will have expectation n=ðb 1 1Þ and
probability distribution
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PðaÞ ¼ b

n 1 b � a

� �Ya�1

i¼0

n � i

n 1 b � i

� �
: ð6Þ

The variance of each genotype count is found using
Equation 6 to be

Va ¼
nbðn 1 b 1 1Þ
ðb 1 1Þ2ðb 1 2Þ : ð7Þ

Also, the covariance between any two genotype counts is

CVða; a9Þ ¼ �Va

b
: ð8Þ

Using Equations 7 and 8 plus the definition of the allele
count, mi ¼ 2aii 1

P
i . j aij , we can compute the vari-

ance of each allele count

Vm ¼ ðk 1 3ÞVa 1 ðk2 1 k � 2ÞCVða; a9Þ
¼ ðk 1 1ÞVa ð9Þ

and the covariance between any pair of allele counts

CVðm; m9Þ ¼ Va 1 ðk2 1 2kÞCVða; a9Þ

¼ �Vm

k � 1
: ð10Þ

With the variance–covariance matrix for m deter-
mined by Equations 9 and 10 and its mean given by
�mi ¼ n=k, it is possible to approximate the probability of
m by the multivariate normal density. To avoid singu-
larity in the variance–covariance matrix, we can reduce
the dimension to k – 1 by excluding one of the m’s. This
change does not affect the probability, as the sum of
the allele counts is fixed. At this point, the situation
becomes equivalent to Equation 3.5 of Gail and
Mantel (1977), and analogous simplifications to the
multivariate normal density function can be used. These
simplifications arise because the mi are equicorrelated
and have a common variance. Thus

PðmÞ �
ffiffiffi
k
p k � 1

2pkVm

� �ðk�1Þ=2

e�Q=2; ð11Þ

where

Q ¼ k � 1

Vmk

� � X
m2

i �
ð2nÞ2

k

� �
:

We can now estimate the desired number of tables from
Equations 5 and 11 as jSm j ¼ jS jP mð Þ.

Figure 5 compares the normal approximation to the
exact numbers for all possible sets of allele counts when
n ¼ 100 diploids and k ¼ 3 alleles. The approximation
is most reliable in the central region. It tends to un-
derestimate the number of tables in the corners of the
simplex and overestimate the number near the mid-
point of each edge. Applying this approximation to
the example in Figure 1A yields 166,195 tables, which is
reasonably close to the true value of 162,365. For Figure
1B the approximation is 210,540,416 compared to the
exact count of 250,552,020. For the large sample in
Figure 1D, this method estimates the number of tables
as 2 3 1056, thus confirming that this sample cannot be
analyzed by full enumeration.

DISCUSSION

This report aims to facilitate the use of exact tests for
Hardy–Weinberg proportions. Exact tests, as opposed to
large-sample asymptotic approximations, are increas-
ingly needed as data from multiallelic loci accumulate.
Performing the exact tests consists of examining all—or
a sampling of—the potential results having the same
sample size and allele frequencies as the observed data
and then finding the probability that such a sample
would deviate from HW expectations by at least as much
as the observed data. Although straightforward in con-
cept, the execution can involve extensive computations.
Furthermore, complications arise when one realizes

Figure 5.—Numbers of
tables. Contour plots show
the numbers of tables for
each possible set of allele
counts when n ¼ 100 dip-
loids and k ¼ 3 alleles. (A)
The exact number of tables
was computed by the gen-
erating function method
of Equation 4. (B) The
approximate numbers of
tables were found by multi-
plying the multivariate nor-
mal density (Equation 11)
by the total cardinality
(Equation 5). Note that
the counts of the first two al-
leles are indicated while the
third allele is implicit, as
m3 ¼ 2n � m1 � m2.
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that there are different ways to define the degree of
deviation from HW proportions, leading to very differ-
ent results.

The general question of whether probability itself
should be used as a test statistic for ordering the po-
tential outcomes of a discrete-valued experiment as
opposed to using the likelihood ratio, x2, or other mea-
sures including Bayesian approaches has been examined
by several authors (Gibbons and Pratt 1975; Radlow

and Alf 1975; Horn 1977; Davis 1986; Cressie and
Read 1989; Montoya-Delgado et al. 2001 ; Maiste and
Weir 2004; Wakefield 2009), and it is unlikely that the
discussion will end here. However, it is hoped that the
visualization provided in Figure 2 and the accompany-
ing discussions will at least help to clarify some of the
differences and raise the possibility that the likelihood
ratio may be a closer fit to what most population ge-
neticists aim to do when testing for goodness of fit to
HW proportions.

All can agree, however, that the full exact test is pref-
erable to a Monte Carlo simulation when the former is
computationally feasible. To that end, there have been
two previous attempts (Aoki 2003; Maurer et al. 2007)
to improve on Louis and Dempster’s (1987) original
algorithm for full enumeration of all tables with a given
set of genotype counts. In both of those efforts, the
strategy consisted of ‘‘trimming’’ the tree of potential
tables by skipping branches that cannot contribute to
the P-value or by identifying branches where the con-
tribution can be found without traversing the entire
branch. Aoki (2003) was particularly successful in find-
ing expressions for boundaries on the minimum and
maximum probabilities of tables lying downstream of a
given node in the network diagram. One drawback of
trimming is that only a single test can be conducted at a
time, as some tables that can be skipped for one test
statistic must still be evaluated for another. Both of these
trimming algorithms enhanced the computational effi-
ciency compared to the original algorithm of Louis and
Dempster (1987), but they are still considerably slower
than the algorithm proposed here. For example, Aoki’s
method was applied to the eight-allele data set in Figure
4B to perform the probability test in 625 sec, whereas
ExactoHW performed all three tests (probability, likeli-
hood ratio, and U-score) in 44 sec. This comparison is
indirect, as different machines were used for the tests.
However, the difference is large enough that even after
considering the threefold difference in processor
clock speeds used for the tests (930 MHz vs. 2.8 GHz),
there is still a significant speed advantage to the present
algorithm.

It might seem surprising that the algorithm proposed
here and used in ExactoHW is so much more efficient
than other methods despite examining many more tables
compared to the trimming methods and while perform-
ing three tests rather than one. The explanation lies in
the efficiency gained by distributing the calculations for

the probability and test statistics throughout the recursive
process. That is, each time a recursive call is made to
Homozygote or Heterozygote, partial calculations are passed
along so that only minimal computation is needed at
each step. When this technique is combined with the
precomputed tables implied by Equation 3, the compu-
tational time needed for the probability, LR, and U-score
is small compared to the time needed just for generating
the tables.

Despite this efficiency, it is still easy to find data sets
that would require generation of too many tables to
allow full enumeration by any method. The data set in
Figure 1D, for example, would require�2 3 1056 tables.
For such cases, it is necessary to resort to a Monte Carlo
simulation, for which two kinds of strategy have been
proposed (Guo and Thompson 1992). The first ap-
proach is to generate a large number of independent
random members of the set of tables with the same allele
counts as the observed sample and use as the P-value the
proportion of these tables that deviates from HW
expectations as much as or more than the observed
sample. Guo and Thompson (1992) proposed one
method for generating such tables. Their method, with
some key enhancements described above, was used in
ExactoHW. An alternative method proposed by Huber

et al. (2006) is optimal for very large sample sizes (n .

105). The other Monte Carlo strategy makes use of a
Markov chain to approximate the distribution of the
test statistic (Guo and Thompson 1992; Lazzeroni and
Lange 1997). This method has the disadvantage of
requiring trial-and-error to determine the parameters
needed to give the estimated P-value its desired pre-
cision (Guo and Thompson 1992) as opposed to the
method of independent trials, which yields an estimate
of the P-value whose standard error is inversely pro-
portional to the square root of the number of trials.
Fortunately, sufficiently many independent trials can be
generated for any realistic sample size. For example,
ExactoHW generates independent trials for the large
sample in Figure 1D at the rate of 2 million tables per
minute while computing the probability, LR, and U-score
for each. Since this example is larger than most actual
data sets, and since the number of random tables needed
for an adequate estimate of the P-value is well below 1
million (Guo and Thompson 1992), it seems clear that
the method is adequate for any realistic sample.

These speeds improve on existing methods of in-
dependent sampling by at least two orders of magni-
tude. With the Markov chain method speed is not
usually an issue. However, it is worth noting that the
independent trial method given here actually out-
paces that of the Markov chain method when tested
for a given degree of precision (see Table S3). The
efficiency of the independent-sampling Monte Carlo
method as implemented in ExactoHW would seem to
eliminate any necessity to resort to the Markov chain
approach.
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One concern with any statistical procedure based on
discrete data, and with the exact HW tests in particular,
is that the resulting P-value takes on only discrete values
(Hernandez and Weir 1989; Weir 1996). As a result, if
an experimenter sets a threshold level for the P-value, a

say, it may be that the actual probability of rejecting the
null hypothesis when it is true is not close to a. Rohlfs

and Weir (2008) derived the distribution of the P-value
for the exact probability test for HW in the case of two
alleles and used this information to correct the bias.
This consideration can be important when it is neces-
sary to make specific decisions on the basis of the
evidence against HW proportions (Gomes et al. 1999;
Salanti et al. 2005; Zou and Donner 2006). On the
other hand, for most situations where no immediate
decision is required, one can follow the advice of Yates

(1984), who recommended for discrete data that
researchers simply report the calculated P-value itself
without worrying about whether it lies above or below an
arbitrary cutoff point. That way, readers can interpret
the exact P-value as a measure of the strength or
weakness of the case against the population being in
HW proportions and the genotyping being accurate and
complete.

Carter Denniston and Jeff Rohl contributed many useful ideas
concerning discrete statistical methods and the use of recursion and
distributed computation. The software described here is assigned to
the Wisconsin Alumni Research Foundation (WARF). Nonprofit
entities can contact the author for academic use. Commercial entities
can contact WARF at 608-262-8638 or licensing@warf.org.This work
was supported by grant GM30948 from the National Institutes of
Health.
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FIGURE S1.—Distribution of test statistics. The likelihood ration and probability was computed for each of a set of randomly 

drawn tables from the allele counts shown in Figure 1. Darker shading in symbols indicates overlapping points. Both axes are 
logarithmically scaled. (A-D) as in Figure 1 
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FIGURE S2.—Power Comparison. Plots are similar to those in Figure 2 except that the denominator is the power computed 

using the Chi square value to order tables instead of the probability.  
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FILE S1 

Disk image file containing software ExactoHW and its user's  manual  file. 

File S1 is available for download at http://www.genetics.org/cgi/content/full/genetics.109.108977/DC1. 
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FILE S2 

Power comparison movie similar to Figure 3 with alpha = 0.05.   Time dimension is sample size ranging from 
10 to 600. 

 

File S1 is available for download as a .mp4 file at http://www.genetics.org/cgi/content/full/genetics.109.108977/DC1. 
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TABLE S1 

Computed P-values 

 Fig. 1A Fig. 1Ba Fig. 1C Fig. 1Db 

P-value for probability test 

ExactoHW (full enumeration) 0.0174423 0.215939822 0.000009987 ND 

GENEPOP (full enumeration) 0.0174423 ND 0.000009987 ND 

ExactoHW (Monte Carlo)c 0.017434  

± 0.000131 

0.215796  

± 0.0004113 

0.000002  

± 0.0000014 

0.71224  

± 0.002024 

GENEPOP (Markov chain)d 0.017423  

± 0.000119 

0.215512  

± 0.00104635 

0.0000043  

± 0.000002196 

0.716244  

± 0.0032852 

P-value for LR test 

ExactoHW (full enumeration) 0.012945135 0.286522164 0.000016785 ND 

ExactoHW (Monte Carlo)c 0.013022  

± 0.0001133 

0.286691  

± 0.00045221 

0.00002  

± 0.0000045 

0.62515  

± 0.00343 

P-value for U-Score teste 

ExactoHW (full enumeration) 0.00334289 0.006689186 0.00773909 ND 

GENEPOP (full enumeration) 0.00334289 ND 0.00773909 ND 

ExactoHW (Monte Carlo)c 0.003202  

± 0.000056 

0.006762  

± 0.000082 

0.007785  

± 0.000088 

0.37850  

± 0.00343 

GENEPOP (Markov chain)d 0.003366  

± 0.000041 

0.006876  

± 0.000163 

0.0079028  

± 0.0000623 

0.39287  

± 0.00533 

 

a Full enumeration could not be performed by GENEPOP for the samples in Figure 1B or 1D because more than 

four alleles are present. 

b No full enumeration tests could be done by either algorithm for the sample in Figure 1D owing to the very large 

number of tables required. 

c One million trials were performed for samples A, B and C, and 50,000 for sample D. The standard errors were 

obtained from the binomial distribution. 

d Trial-and-error was used to find parameters for the Markov chain test so that the resulting standard errors were 

comparable to the independent-trial tests performed by ExactoHW on the same sample. These parameters were: 

dememorization: 10000; batches: 2000; iterations per batch: 10000. 

e The directionality of the U-test corresponds to that of the sample. Thus, the U-test was for heterozygote excess in 

the case of sample A and for homozygote excess in the other samples. 
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TABLE S2 

Times for full enumeration tests (seconds) 

 

The sample tested had four alleles with observed frequencies 0.49, 0.49, 0.01 

and 0.01. Several replicates were performed for each test, but the variability 

between runs was extremely small compared to the difference between 

algorithms. The choice of genotype counts with the constraints of allele counts 

also had no significant effect on the speed. The same machine was used for all 

tests and for compilation of both programs. 

aTime is for all three tests (probability, LR and U-score). 

bTime is for probability test only. 

c The numbers of tables generated were the same for both programs, as were the 

P-values, providing further confirmation that both algorithms are performing the 

same task. 

 n = 500 n = 1000 n = 1500 n = 2000 

ExactoHWa 0.08 sec 2.58 sec 29 sec 158 sec 

GENEPOPb 4.20 sec 324.30 sec 4620 sec 31320 sec 

No. of tablesc 908271 34640276 327431016 1670871741 
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TABLE S3 

Times (seconds) for Monte Carlo tests in Table S1 

 Fig. 1A Fig. 1B Fig. 1C Fig. 1D 

ExactoHWa  1.3725  1.5889  1.6928  1.5533 

GENEPOPb  7.2719  4.6095  7.4291  5.4184 

 

a Monte Carlo tests with independent trials. All three tests were 

performed (probability, likelihood ratio and U-score). The numbers of trials 

are as given in Table S1. 

b Monte Carlo tests using Markov chain method. Times are for the 

probability test only. Parameter settings are as in Table S1. 

 


