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ABSTRACT

Codon usage bias (CUB) has been documented across a wide range of taxa and is the subject of numerous
studies. While most explanations of CUB invoke some type of natural selection, most measures of CUB
adaptation are heuristically defined. In contrast, we present a novel and mechanistic method for defining
and contextualizing CUB adaptation to reduce the cost of nonsense errors during protein translation.
Using a model of protein translation, we develop a general approach for measuring the protein production
cost in the face of nonsense errors of a given allele as well as the mean and variance of these costs across its
coding synonyms. We then use these results to define the nonsense error adaptation index (NAI) of the
allele or a contiguous subset thereof. Conceptually, the NAI value of an allele is a relative measure of its
elevation on a specific and well-defined adaptive landscape. To illustrate its utility, we calculate NAI values
for the entire coding sequence and across a set of nonoverlapping windows for each gene in the
Saccharomyces cerevisiae S288c genome. Our results provide clear evidence of adaptation to reduce the cost
of nonsense errors and increasing adaptation with codon position and expression. The magnitude and
nature of this adaptation are also largely consistent with simulation results in which nonsense errors are the
only selective force driving CUB evolution. Because NAI is derived from mechanistic models, it is both easier
to interpret and more amenable to future refinement than other commonly used measures of codon bias.
Further, our approach can also be used as a starting point for developing other mechanistically derived
measures of adaptation such as for translational accuracy.

CODON usage bias (CUB) is defined as the non-
uniform use of synonymous codons within a gene

(Ikemura 1981; Bennetzen and Hall 1982; Sharp and
Li 1987). CUB has been extensively documented across
a wide range of organisms and varies greatly both within
and between genomes (Grantham et al. 1980; Ikemura

1981, 1982, 1985; Bennetzen and Hall 1982; Sharp

and Li 1987; Ghosh et al. 2000; Carbone et al. 2003;
Mougel et al. 2004; Subramanian 2008). Most explan-
ations of CUB involve a mixture of factors including
mutational bias, intron splicing, recombination, gene
conversion, DNA packaging, and selection for increased
translational efficiency or accuracy (Bernardi and
Bernardi 1986; Bulmer 1988, 1991; Shields et al.
1988; Kliman and Hey 1993, 1994; Akashi 1994, 2003;
Xia 1996, 1998; Akashi and Eyre-Walker 1998; Musto

et al. 1999, 2003; McVean and Charlesworth 1999;
Ghosh et al. 2000; Wagner 2000; Birdsell 2002;
Comeron and Kreitman 2002; Elf et al. 2003; Chen

et al. 2004; Chamary and Hurst 2005a,b; Comeron

2006; Lin et al. 2006; Warnecke and Hurst 2007;

Drummond and Wilke 2008; Warnecke et al. 2008). As
a result, CUB has played an important role in the
neutralist–selectionist debate (e.g., Wolfe and Sharp

1993; Duret and Mouchiroud 1999; Musto et al. 2001;
Urrutia and Hurst 2003; Plotkin et al. 2004; Sémon

et al. 2005; Chamary et al. 2006; Lynch 2007), inter-
pretations of molecular clocks (e.g., Long and Gillespie

1991; Tamura et al. 2004; Xia 2009), and phylogenetics
(e.g., Goldman and Yang 1994; Mooers and Holmes

2000;Nielsen et al.2007a,b;Anisimovaand Kosiol 2009).
Currently, multiple indexes are available for measur-

ing the average CUB of a gene [e.g., Fop, codon bias
index (CBI), relative synonymous codon usage (RCSU),
codon adaptation index (CAI), Nc, E(g), CodonO, and
relative codon bias (RCB) (Ikemura 1981; Bennetzen and
Hall 1982; Sharp et al. 1986; Sharp and Li 1987;
Wright 1990; Karlin and Mrazek 2000; Wan et al.
2006; Roymondal et al. 2009)]. However, directly re-
lating any of these measures to a specific biological
process is difficult. As a result, while certain measures of
CUB are more popular in some circles than in others,
there is no clear ‘‘correct’’ measure of codon bias. These
shortcomings are due, in part, to the fact that these
indexes are either heuristic or statistical in origin.

An alternative approach that avoids these shortcom-
ings is to develop mechanistically based indexes that are
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based on specific biological processes that can drive the
evolution of CUB. As an example of such an approach,
we present a new CUB index specifically formulated to
measure the degree of adaptation an allele exhibits to
reduce the cost of nonsense errors during protein
translation. We refer to this index as the nonsense error
adaptation index (NAI) value of an allele. While NAI is
specifically formulated to measure adaptation to reduce
the cost of nonsense errors, the approach we present
could be altered to measure adaptation in CUB for
other aspects like translational efficiency, translational
accuracy, or, ideally, a composite measure that evaluates
and partitions the importance of these and other
selective forces.

Nonsense errors, also referred to as processivity
errors, occur when a ribosome terminates the trans-
lation of an mRNA transcript prematurely. Nonsense
errors have a number of different causes such as
ribosome drop-off, improper translation of release
factors, frameshifts, and even missense errors (Kurland

1992; Hooper and Berg 2000; Zaher and Green 2009).
Direct estimates of the per codon nonsense error rates
are rare, but those that do exist for Escherichia coli
suggest that they are on the order of 10�4 per codon
(Manley 1978; Tsung et al. 1989; Jorgensen and
Kurland 1990). For Saccharomyces cerevisiae, no direct
estimates of nonsense error rates exist. However, Arava

et al. (2003, 2005) provide indirect measures of non-
sense error rates for S. cerevisiae that are on the order of
10�3–10�4 per codon. Although there is still great
uncertainty, together these data imply that the proba-
bility of a nonsense error occurring during the trans-
lation of an average length protein of�400 amino acids
is .20%.

Because most incomplete peptides are expected to be
nonfunctional, such peptides impose various costs to
the cell. For example, the production of incomplete
peptides can tie up essential cell resources such as
tRNAs and ribosomes (Dincbas et al. 1999; Cruz-Vera

et al. 2004). Further, the recognition and breakdown of
incomplete peptides may require additional resources
as well and the peptides themselves may be toxic to the
cell (Menninger 1978). Another important cost of a
nonsense error is the amount of energy invested during
protein production into the assembly of the polypeptide
chain (Bulmer 1991; Kurland 1992; Eyre-Walker

1996). Because the cell must expend energy during
each elongation step of translation, the cost of a non-
sense error will increase with codon position at which it
occurs. As a result, selection against nonsense errors
leads to the unique prediction that CUB should increase
intragenically with codon position. Numerous research-
ers have shown either directly or indirectly that CUB
does indeed increase with codon position in E. coli and
other microorganisms (Hooper and Berg 2000; Qin

et al. 2004; Gilchrist and Wagner 2006; Stoletzki

and Eyre-Walker 2007).

In this study we specifically define adaptation as the
degree to which an allele reduces the cost of nonsense
errors during protein translation. Variation in adapta-
tion between alleles is the result of different synony-
mous codons having different nonsense error rates. We
evaluate an allele’s nonsense error cost relative to the
coding synonyms of its synonymous genotype space, i.e.,
the set of alleles that differ in the synonymous codons
they use but not the amino acid sequence they encode.
It is worth noting that other measures of CUB also
restrict their focus to that of coding synonyms. Because
we restrict our focus to only synonymous changes in a
coding sequence, we avoid the more complex question
of how nonsynonymous substitutions affect protein
function. Instead, we are able to focus solely on the
effect synonymous substitutions have on the expected
cost of nonsense errors during protein translation.

To define our NAI we use a simple model of protein
elongation to generate a genotype-to-phenotype map-
ping function. In our mapping function, a genotype is
the specific codon usage of an allele and a phenotype is
the expected amount of high energy phosphate bonds
�P that must be broken to generate the benefit equiv-
alent of one functional protein (i.e., a protein produc-
tion cost–benefit ratio or production cost, for brevity).
We then contextualize the production cost of a given
allele as a Z-score, using the analytically derived meas-
ures of the mean and variance of these costs for its entire
set of coding synonyms. The resulting NAI score of an
allele is a relative measure of its elevation on a nonsense
error cost adaptive landscape for the protein it encodes.
More precisely, the NAI score of an allele measures the
relative deviation of an allele’s nonsense error cost from
its expected value scaled by the standard deviation of
these costs. Because NAI is well defined from both a
statistical and a biological standpoint, it has a number of
important advantages over other measures of CUB.

For example, because it is based on a Z-score, an
allele’s NAI score is easy to interpret statistically since it
can be directly related to the cumulative distribution
function (CDF) of a standard normal distribution. As a
result, an allele with an NAI score of 0 indicates that it is
more adapted to reduce the cost of nonsense errors
than half of all of the other alleles in its synonymous
genotype space. The fact that the CDF of a standard
normal distribution is 95% at 1.645 means that an allele
with an NAI score of 1.645 is more adapted than 95% of
its coding synonyms and, therefore, could be classified
as showing statistically significant signs of adaptation.
None of the other commonly used CUB indexes have
such a clear statistical interpretation. Further, because
the null expectation of NAI is a standard normal
distribution, NAI measurements meet the assumptions
of most standard statistical approaches such as general
linear regression. Taking advantage of this property
through the use of a hierarchical regression model, we
are able to detect significant signals of adaptation to
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reduce the cost of nonsense errors across most of the S.
cerevisiae genome. Specifically, we find that NAI in-
creases with both codon position and an allele’s protein
production rate. Using permutation techniques and a
simulation model of codon evolution, we show that
these observations are consistent with the hypothesis
that selection to reduce the cost of nonsense errors plays
an important role in driving the evolution of CUB.

MATERIALS AND METHODS

The calculation of an allele’s NAI score can be broken down
into four steps. The first step is the calculation of the codon-
specific elongation and nonsense error probabilities. The
second step is to use these probabilities to calculate the non-
sense error cost–benefit ratio, h, for the codon sequence of
any given allele of a gene. The third step is to calculate the
mean and variance in h-values across the synonymous geno-
type space of that gene. The fourth and final step is to combine
a given allele’s h-value and the moments of h across its
synonymous genotype space to calculate the NAI score for
that allele. Because these calculations are based on explicit
biological processes, any one of them can be expanded upon
or refined in future studies.

Step I. Calculating the per codon elongation and nonsense
error probabilities: Here we use a simple model we developed
previously in Gilchrist and Wagner (2006) to calculate
codon-specific elongation probabilities. In this model, each
elongation step is viewed as an exponential waiting process
with two possible outcomes: successful elongation or the
occurrence of a nonsense error. Conceptually, we assume that
abundances vary between tRNA species and, following the law
of mass action, this variation in tRNA abundances leads to
variation in elongation rates between codons. We also assume
that other factors such as codon wobble can affect the
elongation rate of a codon as well. We represent the elongation
rate of a particular codon as c(NNN), where N 2 {A, T, G, C }.
While elongation rates can vary between codons, conversely we
assume that all codons experience the same universal non-
sense error rate b. Given these assumptions, the probability a
ribosome will successfully complete an elongation step at some
codon NNN is

pðNNN Þ ¼ cðNNN Þ
cðNNN Þ1 b

: ð1Þ

(See Table 1 for symbols used in this study.) Consequently, the
probability a ribosome will experience a nonsense error at the
same codon is 1 – p(NNN). For simplicity, we also assume that
stop codons always lead to termination of translation; i.e.,
p(TAA) ¼ p(TAG) ¼ p(TGA) ¼ 0. We emphasize that there is
ample room for the development of more complex and
biologically accurate relationships between a codon NNN
and its elongation probability p(NNN) as defined in Equation
1. However, such elaborations are beyond the scope of this
study. As long as the calculation of p(NNN) at each codon is
independent of the other codons, any refinement of the
model underlying the calculation of p(NNN) will not alter how
these values are used in the calculations that follow.

Step II. Calculating the cost of nonsense errors h: In
general, we expect natural selection to favor alleles that
produce protein functionality more efficiently than others.
Therefore, we define adaptation as the reduction in the expected
cost of producing the equivalent of one functional protein, h.
More specifically, h describes a cell’s expected cost in high

energy phosphate bonds �P for translating an allele divided
by the expected benefit the cell gains from the translation
product. The use of a cost–benefit ratio as opposed to the
difference between the cost and the benefit of an allele is well
justified since the units of cost are different from the units of
benefit. More importantly, if we assume that an organism
requires a certain amount of protein to be produced at some
target rate, the cost–benefit ratio can be used to calculate
the expected cost, in �P ’s, for meeting that target. Both
Gilchrist (2007) and the simulations we use here provide a
clear illustration of this concept.

We explicitly measure peptide utility in relative terms such
that one unit of relative utility is equal to the functionality
provided by a complete and error-free peptide encoded by a
given gene. Measuring the utility of a peptide in this way allows
us to focus on how translational errors affect the expected
performance of a protein relative to an error-free version as
opposed to having to understand the specific function of the
encoded protein. Thus, even though the importance of a
protein to the organism varies between different genes,
because we consider only relative, not absolute, utility, the
NAI measure we produce is independent of that importance.

TABLE 1

List of symbols used in this study

Symbol Definition

c(NNN) Elongation rate of codon NNN
b Background nonsense error rate
p(NNN) Elongation probability of codon NNN

NNN
���!

Codon sequence of an allele
p~ Vector of elongation probabilities for codon

sequence NNN
���!

siðp~Þ Probability a ribosome will translate up to and
including the ith codon of the sequence NNN

���!
bi Amount of energy expended by the ribosome

in translating up to and including the ith codon
a1, a2 Energetic cost of translation initiation and

elongation, respectively
J Set of synonymous codons of a given amino acid
E(p) Expected elongation probability of a given amino

acid
f Target production rate of a given protein
�h Untransformed expected cost–benefit ratio for

the coding synonyms of an allele
Var hð Þ Untransformed variance in cost–benefit ratio for

the coding synonyms of an allele
a, b Shape and inverse scale parameters of the Gamma

distribution, respectively
h9obs Transformed cost–benefit ratio of the observed

allele
�h9 Transformed expected cost–benefit ratio for the

coding synonyms of an allele
Var h9ð Þ Transformed variance in cost–benefit ratio for the

coding synonyms of an allele
Ai Intercept of regression of NAI with position
Bi Slope of regression of NAI with position
Ai Coefficient of hierarchical regression describing

how the intercept Ai changes with with ln(f)
Bi Coefficient of hierarchical regression describing

how the slope Bi changes with with ln(f)
S The set of alleles that make up the synonymous

genotype space of a gene
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When considering an entire coding sequence, we use
subscripts to indicate the position of a codon relative to its
start codon. By definition, the start codon is at position 0.
Given the fact that the first amino acid of a sequence is part of
the ribosome initiation complex, a ribosome cannot experi-
ence a nonsense error at position 0. Thus we represent a
codon sequence NNN

���! ¼ fNNN1;NNN2; . . . ;NNNng, where n
is the number of elongation steps required to make a peptide.
Because the start codon is at position 0, n is one less than the
number of amino acids in a complete peptide. We use the
notation pðNNN

���!Þ ¼ fpðNNN1Þ; pðNNN2Þ; . . . ; pðNNNnÞg to
represent the allele-specific vector of elongation probabilities
for a given codon sequence. To make the notation more
compact we drop the codon itself from our notation and,
instead, simply index elongation probabilities by their posi-
tion within a sequence, i.e., pi¼ p(NNNi), and, in a similar vein,
leave the codon sequence itself implicit; i.e., p~¼ pðNNN

���!Þ.
Using this notation, we now calculate the expected ener-

getic cost per translational initiation event for a given codon
sequence based on its corresponding elongation probability
vector, p~. We begin by noting that to reach the ith codon, a
ribosome must first successfully translate the preceding i – 1
codons. Using si to represent the probability that a ribosome
will successfully translate the first i codons of an allele, it
follows that

siðp~Þ ¼
Yi

j¼1

pj : ð2Þ

Successful translation occurs when a ribosome translates all n
codons of an allele. The probability of successful translation
can therefore be denoted snðp~Þ. The probability that a
nonsense error will occur somewhere between codon 0 and
n is simply 1� snðp~Þ.

If a nonsense error occurs at the ith codon, then translation
by the ribosome terminates and the amount of energy that has
been expended up to this point equals bi. The simplest
scenario and the one we employ here is to define bi ¼ a1 1
a2(i – 1), where a1 represents the cost of charging the fMet-
tRNA (2� P) and the assembly of the ribosome on the mRNA
(2 � P) and a2 represents the cost of tRNA charging (2 � P)
and translocation of the ribosome during each elongation step
(2 � P) (Bulmer 1991; Wagner 2005). As with calculating
p(NNN), more complex cost functions that include additional
costs, such as the overhead cost of ribosome usage, could also
be used to define bi (see discussion).

To calculate the expected protein production cost per
initiation event, EðCost j p~Þ, one simply sums up the cost of
each possible outcome weighted by its probability of occur-
ring. Doing so gives

EðCost j p~Þ ¼
Xn 1 1

i¼1

bisi�1ðp~Þð1� piÞ: ð3Þ

Note that the summation is taken up to n 1 1 to account for
the stop codon where, by definition, (1 – pn11) ¼ 1.

To calculate the expected protein utility per initiation
event, we first define the function ui as the utility of a peptide
for which translation has terminated at codon i. We then
calculate the expected utility of a gene, EðBenefit j p~Þ, by simply
summing up the utility of each peptide given its length
weighted by the probability of producing it. Doing so gives

EðBenefit j p~Þ ¼
Xn 1 1

i¼1

ui�1si�1ðp~Þð1� piÞ: ð4Þ

Here and in our previous work we assume that ui follows a step
function where ui¼ 0 for all i , j; i.e., all nonsense errors prior

to codon j lead to a nonfunctional protein. In the case of such
a step function it follows that EðBenefit j p~Þ ¼ sjðp~Þ and in the
current study we assume that j¼ n. As with other aspects of this
work, our assumptions about ui can easily be relaxed in future
studies. For example, ui could be assumed to be a logistic
function of i. Alternatively, one could expand the formulation
of EðBenefit j p~Þ further to include the possibility of missense
errors and their effects.

Combining our results from Equations 3 and 4, the
expected cost over expected benefit of a coding sequence is

hðp~Þ ¼ EðCost j p~Þ
EðBenefit j p~Þ ¼

P
n11
i¼1 bisi�1ðp~Þð1� piÞ

snðp~Þ

¼
Pn

i¼1 bisi�1ðp~Þð1� piÞ
snðp~Þ

1 bn11; ð5Þ

where the first term on the right-hand side of Equation 5
represents the cost–benefit of the incomplete proteins and the
bn11 term represents the cost–benefit of translating one
complete protein (Gilchrist 2007). In summary, the term
hðp~Þ represents the expected amount of�P that must be spent
to get the benefit of one unit of utility from an allele with a
given codon sequence.

Step III. Calculating the central moments of h: We now
shift our focus from calculating the protein production cost h
for a specific allele to calculating the central moments of h
across the entire set of coding synonyms. For simplicity we
focus on calculating these moments for the entire length of an
allele. In supporting information, File S1, A, we present the
details on carrying out similar calculations for the set of coding
synonyms that differ from the observed allele only over a
restricted window of codons, e.g., from codons 1–20, 21–40,
41–60, and so on. These calculations of NAI over a window
explicitly take into account the codon usage outside of the
window, thus providing a context-specific measure of adapta-
tion to reduce the cost of nonsense errors within the window.
These moments can also be estimated through simulation and
we have exploited this fact to verify that our analytic estimates
of h’s central moments are correct.

Calculating the expected cost–benefit ratio �h: We begin by
computing the expected cost–benefit ratio �h for the coding
synonyms of an allele. Beginning with the definition of h in
Equation 5 and assuming that the choice of codon at each
position is independent of the other, we can calculate the
expected value of h for the entire set of coding synonyms S as

�h ¼
X
i2S

hðp~iÞPrðp~Þ ¼
Xn

i¼1

biE
1� pi

pi

� � Yn

j¼i 1 1

E
1

pi

� �
1 bn11:

ð6Þ

The expectations over functions of pi, such as E 1=pi½ �, are taken
over the set of synonymous codons J for a given amino acid.
Using the amino acid tyrosine (Y) as an example, JY ¼ {TAT,
TAC }. Similarly, for proline (P), JP ¼ {CCT, CCC, CCA, CCG }.
The set of synonymous codons for the amino acid serine is
unique because they occur in two distinct subsets that cannot
be connected via a single-nucleotide substitution. Thus, we
treat each subset as a distinct amino acid; i.e., JS1

¼
fAGT ; AGCg and JS2

¼ fTCT ; TCC ; TCA; TCGg.
Generally speaking, the expected inverse elongation proba-

bility for an amino acid is Eð1=pÞ ¼
P

j2J PrðNNNjÞ1=pðNNNjÞ,
where Pr(NNNj) is the probability of codon NNNj occurring in
a given genome. In the absence of any mutational bias all
codons have equal probability of occurring, Pr(NNNj) ¼ 1/jJj
for all j in J. If mutational bias does occur, then the Pr(NNNj)
for each codon is simply the equilibrium frequency of each
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codon given the biased mutation rate. For example, to include
the effect of a genomewide AT bias in our calculation of E(p),
we simply set

PrðNNNiÞ ¼
ðx=ð1� xÞÞyðNNNi ÞP
j2Jðx=ð1� xÞÞyðNNNj Þ ;

where x is the degree of observed AT bias and y(NNNi) is the
number of A or T nucleotides in codon NNNi.

Calculating the variance in the cost–benefit ratio Var hð Þ: Given
our assumption of independence between pi values at differ-
ent positions, the variance in h-values across the synonymous
genotype space S is

VarðhÞ ¼
Xn

i¼1

b2
i VarðYiÞ1 2

Xn

i¼1

bi

Xn

j¼i 1 1

bj CovðYi ; YjÞ
 !

;

ð7Þ
where

Yi ¼
1� pi

pi

� � Yn

k¼i 1 1

1

pk

� �
;

VarðYiÞ ¼ E
1� pi

pi

� �2� � Yn

j¼i 1 1

E
1

pj

� �2� �

� E
1� pi

pi

� � Yn

j¼i 1 1

E
1

pj

� � !2

; ð8Þ

CovðYi ; YjÞ ¼ E ðYi � E½Yi �Þ Yj � E Yj

� �	 
� �
¼ E YiYj

� �
� E Yi½ �E Yj

� �	 

; ð9Þ

and

E YiYj

� �
¼ E

1� pi

pi

� � Yj�1

k¼i 1 1

E
1

pk

� � !
E

1� pj

p2
j

" # !

3
Yn

k¼j 1 1

E
1

pk

� �2
 !

: ð10Þ

Substituting the results from Equations 8–10 into Equation 7
allows for the direct calculation of the variance in the h-values
around �h for all S genotypes.

Step IV. Calculating the NAI score of a gene: We define hmin

as the cost–benefit ratio of producing a protein that uses only
the most optimal codons and hence represents the minimum
cost of producing that protein. Random samples of synonyms
for different genes indicate that, after subtracting off hmin from
each value, the distribution of h-values for the synonyms of
an allele is approximately Gamma distributed (see File S1, B
for details). Under the assumption of a Gamma distribution,
we can solve for the shape and inverse scale parameters, a
and b, respectively, on the basis of the �h and Var hð Þ values
calculated in step III. Doing so gives a ¼ ð�h� hminÞ

2=Var hð Þ and
b ¼ ð�h� hminÞ=Var hð Þ (Rice 1995).

As mentioned earlier, the NAI of a gene is essentially a Z-
score, which, in turn, is based on a standard normal distribu-
tion. For a given mean and variance, the Gamma distribution
has greater skewness than the normal distribution. Because of
this skewness, if we calculate a gene’s NAI score using the raw,
untransformed moments, �h and Var hð Þ, we will underestimate
the true proportion of genotype space with alleles that are less
adaptive in their h-values. To reduce this effect, we apply a
Box–Cox transformation with h¼ 1

3 , which is the best skewness-
reducing transformation for the Gamma distribution among

the Box–Cox family (Pace and Salvan 1997) (see File S1, C
for details). Using 9 to denote the Box–Cox-transformed
values, we define the NAI score of a gene as

NAI ¼ � h9obs � �h9ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðh9Þ

p : ð11Þ

The negative sign is included in the definition of the NAI score
because while natural selection favors a reduction in h-values,
adaptation is generally defined as being increased by natural
selection. Thus the inclusion of the negative sign means that
NAI is an increasing function of adaptation to reduce the cost
of nonsense errors.

NAI calculations and simulations: We have developed a
computer program called NAI that can be used to calculate the
NAI score of an allele as well as the NAI score for a series of
moving windows within an allele. This program allows NAI to
be calculated in two different ways, either using Equations 6–
10 to calculate the exact moments analytically or through
random sampling of synonymous genotype space weighted by
a given AT bias. The sample population is then used to
estimate the moments of h for the entire set of coding
synonyms. The results we present here were generated by
calculating the moments analytically, but we have used the
random sampling approach to verify our results.

We have also developed an additional stochastic, simulation
program called codon evolution simulation (CES). CES simu-
lates the evolution of a locus where the resident allele is allowed
to evolve across its synonymous genotype space following the
allele substitution model described in Sella and Hirsh (2005).
The same substitution probabilities were also independently
derived by Iwasa (1988) and Berg and Lässig (2003). For
further details refer to File S1, D. Both NAI and CES are written
in ANSI standard C and released under the GNU Public License
2.0. Both precompiled *nix binaries and source code are
available at www.tiem.utk.edu\�mikeg\Software.

Application to the S. cerevisiae genome: To illustrate the
utility and behavior of NAI, we applied it to the S. cerevisiae
strain S288c genome based on the Saccharomyces Genome
Database’s June 6, 2008 release (Dolinski et al. 2008). Default
parameter values for the simulation of the S. cerevisiae genome
using both CES and NAI calculations are given in Table 2. We
restricted our analysis of gene level NAI scores to the 4674
verified nuclear genes that lack internal stops and our analysis
of how NAI changes with window position to the 4377 genes
within that set with at least 100 codons. The per codon
elongation rates were generated as in Gilchrist and Wagner

(2006). These rates are proportional to the tRNA abundance
and take into account a set of wobble penalties based on
Curran and Yarus (1989). Exact values used are given in the
Table S1. Since no reliable empirical measurements of the
nonsense error rate in S. cerevisiae exist, on the basis of

TABLE 2

List of default parameter values used for all NAI calculations
and the CES simulation

Parameter Value

b 0.0012/sec
a1 4 � P
a2 4 � P
q 4.19 3 10�7

Ne 1.36 3 107

m 10�9/generation
AT bias 0.62
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experiments with E. coli by Jorgensen and Kurland (1990) we
used a nonsense error rate of b¼ 0.0012/sec. Given an average
per codon elongation rate of 10/sec, this value is consistent
with indirect empirical estimates of b in S. cerevisiae by Arava

et al. (2005). Because of the uncertainty in the model
parameters and the fact that such parameters are largely
unknown for most organisms, we evaluated the sensitivity of
NAI to changes in the key parameters: the background
nonsense error rate b, the cost of translation initiation a1,
the cost of each elongation step a2, and the elongation
probability for each codon pi after Hamby (1994).

Because selection pressure against nonsense errors in-
creases with codon position along a sequence, we also
evaluated how NAI changes with codon position in both the
S288c and the simulated genomes. Since we are more in-
terested in general trends across the entire S. cerevisiae genome
than in the behavior of specific genes, we used a hierarchical
regression model approach when analyzing the data. In this
approach, we began by calculating the NAI values for succes-
sive, nonoverlapping windows of 20 codons. We then fitted a
linear regression model to these intragenic NAI values of an
allele. The regression model allows us to estimate the initial
degree of adaptation to reduce the cost of nonsense errors
through the regression intercept Ai. The model also allows us
to estimate how such adaptation changes with position
through the regression slope Bi of a given allele i. That is,

NAIiðxÞ ¼ Ai 1 Bix 1 e; ð12Þ
where e here and below represents a noise term, x is the codon
position at the center of the window, i.e., x ¼ {10, 30, 50, . . . ,
xmax – 10}, and xmax is the largest multiple of 20 less than or
equal to the length n of the coding sequence.

To quantify the general behavior of the output generated by
the regression model of Equation 12 across the S. cerevisiae
genome, we then fitted second-order regression models to the
intercept Ai and slope Bi values for each gene as a function of
its log protein production rate, ln(fi). In other words, we
fitted the following models

Ai ¼ A0 1A1 lnðfiÞ1A2 lnðfiÞ2 1 e ð13Þ

Bi ¼ B0 1B1 lnðfiÞ1B2 lnðfiÞ2 1 e ð14Þ

to the set of maximum-likelihood estimates (MLEs) for the
model parameters Ai and Bi in Equation 12 weighted by their
standard error. Thus, the hierarchical analysis measures how
NAI changes with the two dependent variables: codon
position, x and log protein production rate, ln(f). Although
higher-order functions could be fitted to the MLE data, our
goal is to capture the general behavior of the system as simply
as possible. The gene-specific protein production rates fi

were based on a combination of mRNA measurements from
AffyMetrix data sets as presented in Beyer et al. (2004) and
translation rates per mRNA based on ribosome occupancy
data given in Arava et al. (2003) and Mackay et al. (2004). See
Gilchrist (2007) for further details.

To better contextualize our results and control for the fact
that other selective forces could be driving some or all of the
adaptation we observe, we repeated the above analysis on
multiple artificial data sets that were generated either by
randomizing the codon order of each gene in the S. cerevisiae
genome or by randomly assembled genes. In terms of
randomly reordered data sets, two different types of data sets
were generated: partial and complete reorderings. Partial
reordering involved randomly reordering codons on a per
amino acid basis such that the codon order of a gene was
randomized but the amino acid order of the sequence
encoded was not altered. In contrast, complete reordering

involved the random reordering of codons independent of the
amino acids encoded. While both partial and complete
reordering change the codon order of an allele, neither
approach alters the set of codons used. Since nonsense errors
are the only selective force that is expected to result in
increasing CUB with position, these reordered data sets serve
as a control. We also generate a random population of alleles
for each gene by randomly sampling the population of coding
synonyms independent of their specific cost–benefit values h
but weighted by an AT bias of 0.62. These random samples
serve as controls for when there is no selection on CUB
evolution.

To understand how the NAI behaves when CUB evolves
solely under selection to reduce the cost of nonsense errors,
we simulated the evolution of each gene using CES. The
simulation was run assuming that the protein production rate
of a gene was equal to its empirically estimated value fi

multiplied by a log-normal random variable centered around 1
and with a standard deviation equal to the standard error of
the log-transformed mRNA abundance values given in Beyer

et al. (2004). The use of this additional noise factor mimics the
uncertainty in the estimates of fi inherent in the analysis of the
S288c and reordered genomes. The simulation was run for
20/m generations (i.e., sufficiently long such that we expect 20
substitutions per nucleotide under a pure mutation–drift
process) so that the simulation results should represent
samples from the stationary distribution of allele fixation.
We applied the same hierarchical regression analysis to our
CES simulated genome as we used with the S. cerevisiae 288c
genome.

Figure 1.—Distribution of NAI values for 1000 randomly
assembled alleles (open bars) and 1000 CES simulated alleles
(shaded bars) for the gene YBL068W. CES simulations were
done using the empirically estimated protein production rate
of f ¼ 0.21s�1. The dashed line at 4.015 indicates the NAI
value for the YBL068W allele in S. cerevisiae S288c, which cor-
responds to the 99.997th percentile of a standard normal dis-
tribution, which is represented by the solid curve. Note that
the mean of the NAI scores of the random population does
not significantly differ from zero (t ¼ 0.1917, P-value .0.8)
while the mean of the NAI scores of the simulated population
does (t ¼ 172.2, P-value ,10�15).
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RESULTS

General behavior of NAI: We begin by analyzing the
behavior of the NAI for entire coding sequences. First
and as we expected, we find that the NAI scores for
random samples of coding synonyms are normally
distributed around a mean of 0 and a standard deviation
of 1 (cf. Figure 1) (Shapiro-Wilk’s test, P-value ¼ 0.916).
We also see that the distributions of S288c and simulated
NAI scores across the entire genome behave in a similar
and predictable manner, where genes with greater
protein production rates have higher NAI scores (Fig-
ure 2). The S288c NAI scores for genes were also well
correlated with the NAI scores in our CES-generated
genome (r � 0.74), which provides further evidence
that selection against nonsense errors can explain much
of the CUB observed in S. cerevisiae.

Indeed, if there was no adaptation to reduce the cost
of nonsense errors, the distribution of NAI scores across
the S. cerevisiae genome would follow a standard normal
distribution. Looking at the S. cerevisiae genome, we
find that the distribution of these NAI values does not
mimic the standard normal distribution, but instead is
highly skewed toward higher values (Figure 3). This
distribution of NAI scores as summarized in Table 3
indicates that most genes show some degree of adapta-
tion to reduce the cost of nonsense errors.

For example, we find that 92.1% of the S. cerevisiae
genes have NAI values .0 . Under a pure mutation–drift
process only 50% of the genes would be expected to
have NAI scores .0. In fact,�68% of S. cerevisiae’s genes
have NAI scores .1.645. Again, under a pure mutation–
drift process we would expect to only see 5% of the
genes with NAI scores in this range. These results clearly
demonstrate that most genes are significantly more
adapted to reducing their cost–benefit ratio h than their
coding synonyms. In fact, over half of all S. cerevisiae
genes have an NAI score .2.326, indicating that they
are more adapted than 99% of their coding synonyms.
More striking, a full 33% are more adapted than 99.99%

of their coding synonyms (NAI . 3.719). We observed
similar levels of adaptation in our simulated sequences
and less adaptation in our reordered data sets (Table 3).
For example, in a typical simulated data set we found
that 86% had NAI values .0 and 55.5% had NAI
values .1.645.

The sensitivity of NAI to changes in parameter values
is presented in File S1, E, Figure S3 and Table S3. �h,
Var(h), and NAI values for each gene are presented in
Table S4, Table S5, Table S6, and Table S7, E. To
summarize, NAI scores are relatively insensitive to
changes in almost all of the parameters underlying its
formulation. This insensitivity is especially strong for

Figure 2.—Correlation
of NAI values with log pro-
tein production rates ln(f)
for the S288c and CES
simulated genomes. r rep-
resents the correlation co-
efficient between the two
variables.

Figure 3.—Distribution of NAI values of S288c and CES
simulated genomes. Shaded bars represent the distribution
of NAI scores across all genes in the S288c genome and
hatched bars represent NAI scores of CES simulated genes.
The solid line represents the standard normal distribution,
which is the expected distribution of NAI scores in the ab-
sence of any selection.
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the initiation cost, the elongation cost, and the non-
sense error rate, a1, a2, and b, respectively.

Changes in NAI with codon position: One specific
prediction about CUB driven by the cost of nonsense
errors is that the strength of selection and, therefore,
the degree of adaptation should increase with codon
position.

To test this prediction, we calculated the NAI value for
each successive, nonoverlapping window of 20 codons
for each gene and then fit the first-order regression
model in Equation 12. We then fit the weighted second-
order regression model in Equations 13 and 14 to the
maximum-likelihood estimates of the Ai and Bi param-
eters in Equation 12. The overall behavior of how NAI
changes with codon position and log protein produc-
tion rate ln(f) is summarized by the curves of the
hierarchical model. Specifically, the parameters given in
Table 4 and plotted in Figure 4 describe how the inter-
cept Ai and slope Bi of the NAI vs. position regression
model in Equation 12 change with ln(f). In general, all
hierarchical model parameters differed significantly from
zero. We also find that the initial NAI value Ai and the rate
at which NAI increases with codon position Bi both
increase in an accelerating manner with ln(f).

Quantitatively, looking at the estimates ofA0 in Table
4 we see that the S. cerevisiae S288c genome shows
greater adaptation or higher NAI values at the start of
low expression genes than the genome simulated using
CES. However, inspection ofA1 andA2 values indicates
that for both the observed and the simulated sequences,
the NAI values at the beginning of a gene increase with
ln(f) in a similar manner. Given the fact that the 288c
alleles tend to have greater than expected NAI values, it
is then perhaps not surprising that the rate at which NAI
increases with position is lower in the S288c sequences
when compared to the simulated sequences. This is
illustrated by the fact that B0, B1, and B2 are lower in the
observed sequences than in the genome simulated
using CES. Although upon first glance the magnitude
of the regression slopes for the NAI vs. position Bi may
appear slight, these values are substantial as the slope

increases in units of standard deviation and the alleles
generally encode hundreds of codons. Figure 5 allows us
to see these differences in behavior between the S288c
and simulated and data sets for six genes from across a
wide range of protein production rates.

Stepping back, we note that qualitatively the distribu-
tions of Ai and Bi values around the hierarchical
regression curves are quite noisy in both observed and
simulated data sets (Figure 4). This results from the fact
that while the selective forces against nonsense errors
are consistent and increase with the protein production
rate of a gene, mutation and drift clearly play important
roles in the evolution of CUB.

To test our rather strong assumption that only
completely translated proteins have any functionality,
we repeated the hierarchical analyses where the final 10
or 20 amino acids were excluded from our NAI. This is
roughly equivalent to assuming a (0, 1) functionality
threshold at n – 10 or n – 20. The results of these analyses

TABLE 3

Distribution of NAI scores and their corresponding percentile in a standard normal distribution

% genome above NAI score

NAI score % CDF, standard normal S. cerevisiae CES simulation

0 50 92.14 85.95
1.282 90 74.59 61.57
1.645 95 67.92 55.54
2.326 99 54.63 45.67
2.576 99.5 50.42 42.45
3.090 99.9 43.27 37.38
3.291 99.95 39.84 35.43
3.719 99.99 33.79 32.30

TABLE 4

Hierarchical regression analysis results

MLE SE t P-value

S288c genome: parameters for regression intercept A
A0 2.102 0.029 71.97 ,2 3 10�16

A1 0.793 0.016 50.12 ,2 3 10�16

A2 0.084 2.3 3 10�3 36.68 ,2 3 10�16

S288c genome: parameters for regression slope B
B0 2.72 3 10�2 1.635 3 10�3 16.63 ,2 3 10�16

B1 8.74 3 10�3 7.92 3 10�4 11.03 ,2 3 10�16

B2 7.94 3 10�4 9.6 3 10�5 8.27 ,2 3 10�16

CES simulated genome: parameters for regression intercept A
A0 1.021 0.025 40.48 ,2 3 10�16

A1 0.447 0.0145 30.89 ,2 3 10�16

A2 0.047 2.05 3 10�3 22.94 ,2 3 10�16

CES simulated genome: parameters for regression slope B
B0 0.135 1.82 3 10�3 74.5 ,2 3 10�16

B1 4.48 3 10�2 8.97 3 10�4 49.96 ,2 3 10�16

B2 3.74 3 10�3 1.08 3 10�4 34.66 ,2 3 10�16
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showed no statistically significant change in the param-
eter estimates of our hierarchical model (Table S2).

Given the complexity of our NAI calculations, it is
possible that the observed changes in NAI values with
codon position and log protein production rate, ln(f),
in the S. cerevisiae genome are actually an artifact of
selection for translational accuracy or translational
efficiency irrespective of nonsense errors. If this were
the actual case, then we would expect to see no
difference between how NAI changes with position in
the observed and reordered genomes. Instead we find
that 66% of the genes in the S. cerevisiae genome have
slope parameters Bi . 0, a frequency that is significantly
greater than what was observed in each set of partially
reordered, completely reordered, and randomly assem-
bled genomes that are all distributed around 0.5 (see
Table 5). The difference in behavior between the
observed and the reordered genomes can also be
observed in the hierarchical regression curves, a typical
example of which is illustrated in Figure S2. Note that
both partially and completely reordered genomes do
show a very slight upward bias in their individual
regression slopes Bi and this bias is unexpected, but
increases with protein production rate. The cause of this

bias and its relationship to ln(f) is not understood at
this point. For example, it may be caused by subtle
compositional effects or the fact that the true distribu-
tion of h-values calculated over a window is not actually
Gamma distributed as we assume. Whatever the cause,
the effect is small when compared with the fraction of
genes with positive regression slopes Bi and the magni-
tude of the parameters of our hierarchical model.

DISCUSSION

In this study we developed a method for quantifying
the adaptation an allele displays to reduce the cost of
nonsense errors during protein translation h relative to
its set of alternative coding synonyms. The approach
presented here is a generalization of the definition of h

derived in Gilchrist (2007) and provides analytic
expressions for the mean and variance of h-values in a
given synonymous genotype space. These values are
used to contextualize the h-value for any given point in
synonymous genotype space into a single NAI value. To
our knowledge, our work is the first to provide a general
means of surveying a biologically meaningful adaptive

Figure 4.—Hierarchical
analysis results. Each data
point represents the maxi-
mum-likelihood estimates
of the regression parame-
ters of NAI vs. position
(Equation 12) for each in-
dividual gene. Curves rep-
resent the weighted
second-order hierarchical
regression curves of A and
B given in Equations 13
and 14. Weighting is based
on the standard error of
each data point.
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landscape and then use these results to contextualize
adaptation at the molecular level.

NAI scores are based on a mechanistic model of
protein translation and functionality. As a result, the
nature of adaption of NAI measures is clearly defined.
In addition, because of its mechanistic derivation, our
approach is flexible enough to allow for future re-
finement or expansion of the NAI as our understanding
of the processes involved in protein translation and
other processes progresses. This flexibility is best
illustrated in the seamless manner with which we are
able to incorporate mutation bias into the calculation of
the NAI. The fact that we can easily incorporate codon-
specific nonsense error rates into our model by simply
using codon-specific b values in Equation 1 also illus-
trates this point. Another example of this flexibility is in
the cost of function b(i) used in Equation 3.

In our current formulation b(i) includes only the
direct assembly cost of a protein. However, b(i) could be
expanded to include other costs as well. For example,

given our assumption about exponential waiting times
during each elongation step, the combined assembly
and ribosome overhead costs at a given codon i could be
calculated as bðiÞ ¼ a1 1 a2ði � 1Þ1 k

	
a3 1

Pi�1
j 1=c

NNNj

	 


, where k is a scaling constant representing

the per second overhead cost of the ribosome cost in
�P’s and a3 is the expected time it takes for a ribosome
to intercept an mRNA and initiate translation. Expand-
ing our cost function b(i) in this way highlights the
potentially large effect nonsense errors can have on the
overall translational efficiency of a ribosome, a point
overlooked in most discussions of CUB.

In a similar manner, the utility function ui could be
defined by a continuous, sigmoidal function rather than
the step function we use here. Doing this would allow
calculations of h to include the contribution of in-
complete, but partially functional peptides. More gen-
erally, ui could take on negative values, allowing it to
describe any toxic or interference effects some short,
incomplete peptide may have. A final example of how

Figure 5.—Change in
NAI with position and pro-
tein production rate, f.
Shown is how NAI changes
with position for six genes
chosen from a wide range
of empirically estimated
protein production rates,
f. Solid circles (d) repre-
sent NAI values for the
S288c coding sequence of
the gene while open circles
(s) represent NAI values
for a simulated coding se-
quence. The regression
lines through the NAI val-
ues are given by – – – for
the S288c sequence and
by � � � for the simulated se-
quence.
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our approach can be extended can be found by
examining one of the strongest assumptions we make,
the lack of interactions between ribosomes on the same
mRNA. Because the presence of a ribosome at one
position can interfere with the behavior of another
ribosome upstream from it, this assumption is clearly
violated. Relaxing this assumption would make the
computation of NAI substantially more challenging
(e.g., see Chou 2003; Basu and Chowdhury 2007).
While we believe that our current approach is a reason-
able first approximation, other research suggests relax-
ing this assumption might be useful. For example,
Bulmer (1991) showed this type of interribosomal
interference can lead to additional selection for in-
creased translational efficiency at the start of a coding
sequence. This idea of interribosomal interference is
consistent with our own observation of greater observed
NAI values at the start of a sequence than expected on
the basis of our simulation.

It is important to recognize that one of the most
common uses of CUB is to predict relative gene
expression levels from the coding sequence of a gene.
While the primary purpose of NAI is not to predict gene
expression, the concepts underlying it can be used for
that purpose (Gilchrist 2007). Nevertheless, NAI
values are well correlated with the most commonly used
CUB indexes (r ¼ 0.793–0.822, Figure S1).

Most CUB indexes are based on some sort of distance
measure in synonymous genotype space. For example,
consider Sharp and Li’s (1987) CAI, which is probably
the most commonly used measure of CUB. The CAI
value of an allele is based on the geometric mean
frequency of codons it uses relative to the usage within a
subset of highly expressed genes. Conceptually, CAI is a
multiplicative distance measurement of an observed
allele from an allele whose CUB mirrors that of a subset
of highly expressed genes. Another, more recent exam-
ple can be found in Roymondal et al.’s (2009) RCB
index. RCB measures the CUB of an allele relative to its
expected position on the basis of mutation and drift
alone. Similarly, the CUB indexes E(g) (Karlin and
Mrazek 2000), Fop (Ikemura 1981), and Nc (Wright

1990) can be thought of as providing similar types of
distance measures.

While the NAI is similar to these other indexes in that
it is a measure of relative distance, the distance
measurement is not in terms of positioning within an
allele’s synonymous genotype space, but is based on the
relative altitude of an allele on an adaptive landscape.
The fact that the NAI is based on the phenotypic
adaptation of an allele rather than its position in
genotype space makes it fundamentally different from
these other measures. Unlike most other commonly
used indexes, the NAI explicitly takes into account the
effect of genomewide AT bias in shaping the codon
usage of a gene. In addition, because the NAI is based on
a Z-score, its easier to interpret and has desirable
statistical properties that are absent in most CUB
indexes.

Despite the fact that selection against codon usage
bias is generally thought to be a rather weak selective
force (Stoletzki and Eyre-Walker 2007; Hershberg

and Petrov 2008), the NAI scores for the S. cerevisiae
genome indicate that most (.92%) of its coding
sequences are more adapted to reduce the cost of
nonsense errors than expected. Indeed, .67% of the
S. cerevisiae alleles are at a higher point on the adaptive
landscape than 95% of their coding synonyms. Perhaps
more striking is the finding that .33% of the S. cerevisiae
alleles are found above the 99.99th percentile of the
adaptive landscape. Thus, almost a third of all alleles can
be found in the far upper reaches of the nonsense error
adaptive landscape. In addition, we also observe that
NAI values generally increase with codon position of a
gene, a unique pattern expected to result only from
selection against nonsense errors. Indeed, the increases
we see are consistent with the increases observed in our
simulations where nonsense errors are the sole selective
force. Taken together, our results provide additional
evidence that nonsense errors play an important role in
CUB evolution of S. cerevisiae.

One shortcoming of our study is that we consider only
one source of selection: nonsense errors. In reality,
many other selective forces contribute to the evolution
of CUB. Indeed, the emerging picture from the field
clearly indicates that any synonymous change in the
coding region of a gene is likely to be pleiotropic,
possibly affecting mRNA folding, translational accuracy,

TABLE 5

Frequency of individual regression slopes Bi . 0

% mean
frequency

vs. S288c genome vs. CES simulation

SD t-statistic P-value t-statistic P-value

Random 49.9 0.0086 �604.630 ,2 3 10�16 �1021.83 ,2 3 10�16

Partially reordered 51.6 0.0083 �560.143 ,2 3 10�16 �990.58 ,2 3 10�16

Completely reordered 50.2 0.0087 �586.051 ,2 3 10�16 �996.92 ,2 3 10�16

Shown is the frequency of genes with positive regression slopes based on a sample of 1000 genomes for each
category as well as a comparison of these populations to the frequency for the S288c genome (77%) and the
CES simulation genome (66%).
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translational efficiency, protein folding, etc. This sug-
gests that there are many places for these sources of
selection to either conflict with or reinforce one
another. Even though some of the adaptation we
observe is likely due to these other forces, the fact that
we do not consider these other forces when calculating
an NAI value does not invalidate its meaning. NAI is
simply a measure of adaptation to the cost of nonsense
errors and does not depend on the forces ultimately
responsible for that adaptation. While the tendency of
NAI to increase with codon position can currently be
explained only by selection against nonsense errors, the
exact degree to which the overall adaptation of an allele
can be directly attributed to this selective force is still
open to debate. One way of resolving this debate would
be to expand the approach developed here to include
other potential selective forces. Indeed, we hope that
the approach we develop here will serve as a starting
point for generating other measures of adaptation. Only
when we have a combination of such measures will
researchers be able to evaluate the importance of the
different selective forces driving the evolution of CUB.

We thank Sergey Gavrilets, Michael Saum, and Hong Qin for
providing helpful suggestions and comments on this manuscript. We
also thank two anonymous reviewers for their constructive criticisms
and suggestions that have greatly improved this manuscript.
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A Calculations over a Moving Window for NAI

Breaking η("p) into Components We define a window where we are evaluating the NAI of a gene as going

from x to y, inclusive. We break the η function into three parts, one part is before the window (1, x − 1),

the second part is within the window (x, y), the third part is after the window, (y + 1, n).

η("p) =
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Calculating η̄ and Var (η)

Mean η: Given the amino acid sequence of a gene and assuming that the choice of codon at each position

is independent, the expectated cost-benefit ratio of a sequence which is allowed to vary over a window from

i = x to y is given by,
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where, for notational convenience, we define

σi,j =
σj

σi
=
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1
pk

i > j

. (6)

Unlike calculating η for an entire gene, here the expectations are conditional only on the possible set of

pi values in #p(#c) from i = x to y. As before, our expectations for pi are taken over p values for a given set

of synonymous codons.

Var (ηx,y): Beginning with Equation (1) gives,
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For notational simplicity in writing the variance and covariance terms, we begin by defining
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Again, given our assumption of independence of p values at different positions, it follows that
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and
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In the above argument, the variance terms follow a similar form to the full calculation.
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Turning to the calculation of the two covariance terms in equation (15) we first note that, in general,

Cov(Yi, Yj) = E [(Yi − E[Yi]) (Yj − E [Yj ])] (18)

= E [YiYj ] − E [Yi] E [Yj ] (19)

Cov(X,Yj) = E [XYj ] − E [X] E [Yj ] (20)

When i < j ≤ y, it follows that
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Finally, we note that,
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B Model Selection for Distribution of η across Synonymous Genotype Space

The fact that the size of the synonymous genotype spaces S for the average gene is on the order of 3400 =

7.4 × 10190 makes it impossible to survey the η values across such a space completely. Instead we assume

that the distribution of η across S can be approximated by a continuous distribution such as the Gamma,

Weibull, Normal, and Log-Normal distribution. We evaluated the fit of η values to each of these distributions

based on how well they fit a random sampling of 1000 alleles from S for each of 2000 randomly selected genes

in the S. cerevisiae genome using the Akaike Information Criteria (AIC).

On a per gene basis, the gamma distribution gave the lowest AIC values in 53.75% of the genes. The

Normal, Log-Normal and Weibull distributions had the lowest AIC values in 36.1%, 10.15% and 0% of the

genes, respectively. In terms of the combined dataset of 2000 genes, the gamma distribution had the AIC

lowest score and the AIC differences ∆AICi values for the other distributions were 3886, 8078, and 375,226

for the Normal, Log-Normal, and Weibull distributions, respectively.

C Skewness Reducing Transformation of η Distribution

The specific parameters used in the transformation are based on the shape and scale parameters of the

gamma distribution describing the distribution of η values across the synonymous genotype space, i.e. α and

β, respectively. Based on this transformation (Pace and Salvan, 1997), for a given allele the transformed

ηobs value and central moments of η for its synonyms are,

η
′
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(

(ηobs − ηmin)
1

3 − 1
)

(23)
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3
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)

(25)

where the ′ is used to distinguish the transformed from the untransformed terms.

D Allele Substitution Model in CES

Our simulations follow the ideas developed in Gilchrist (2007) where each locus has its own average protein

production rate φ. In this model, the marginal fitness effect of allele i at that locus is w(
−−−−→
NNN i) = wi ∝

exp(−φqηi), where q is a scaling term that relates energy expenditure and fitness. Note that, unlike φ, q
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does not vary between genes. This fitness function is consistent with the idea that any change in ∼P/sec

that an organism must expend to meet its target protein production rate φ caused by a change in η will

lead to a very small, but fixed proportional change in fitness. This ensures that the strength of selection for

reducing energetic costs is consistent across all genes. We assume that new alleles of a gene are generated

through a step wise mutation process where µ represents the per nucleotide mutation rate. The probability

a new potentially invading allele j will replace the resident allele i is based on the relative fitness of the two

alleles and the organism’s effective population size Ne. The exact substitution probabilities are calculated

using the formulation presented in Sella and Hirsh (2005), i.e.

π(i → j) =
1 −

(

wi

wj

)2

1 −
(

wi

wj

)2Ne
=

1 − exp [−2φq (ηi − ηj)]

1 − exp [−2Neφq (ηi − ηj)]
. (26)

E Robustness of NAI to Parameter Uncertainty

In order to estimate the sensitivity of NAI scores to changes in parameter estimates, we calculated the

sensitivity coefficient, Ψ (Hamby, 1994) for each parameter. For instance, sensitivity coefficient, Ψ for b is

defined as

Ψ =
d NAI

db

b

NAI
. (27)

In general, we find that the calculation of NAI scores is remarkably robust to uncertainty in the values

underlying its calculation such as the background nonsense error rate b (Ψ=0.003), the cost of ribosome

initiation a1 (Ψ=0.001), and the cost of peptide elongation a2 (Ψ=0.009) (Supporting Figure S3). To

understand NAI’s robustness, we return to our calculations of an allele’s cost-benefit ratio η. We begin

by noting that while the probability of a nonsense error occurring somewhere along a transcript may be

substantial, the actual probability per codon or unit time is quite small, on the order of 1 × 10−4/codon or

1 × 10−3/sec. If one performs a first order Taylor series expansion for η as defined in Equations (1)-(5) we

get.

η($p) = (a1 + a2n) + b
n

∑

i=1

a1 + a2(i − 1)

ci
+ O[b2]. (28)
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Based on this result we can calculate estimates of the first two moments of η as,

η̄ ≈ (a1 + a2n) + b
n

∑

i=1

(a1 + a2(i − 1)) E

(

1

ci

)

(29)

Var (η) ≈ b2
n

∑

i=1

(a1 + a2(i − 1))2 Var(Yi) (30)

= b2
n

∑

i=1

(a1 + a2(i − 1))2
(

E
[

Y 2
i

]

− E [Yi]
2
)

. (31)

(32)

This approximation shows it is possible to factor out the background nonsense error rate b from all three

terms used to calculate NAI: ηobs, η̄ and
√

Var (η). Even after our Box-Cox transformations, the b we have

factored out will cancel, thus explaining why NAI is relatively insensitive to changes in b so long as b # ci for

all codons. A similar result can be obtained with the elongation cost parameter a2. Conceptually, increasing

either term is similar to simply rescaling the η values for the synonymous set of alleles. Since NAI measures

the adaptation of an allele relative to its coding synonyms, rescaling the η values across this space will have

no effect on an allele’s relative position. We can explain NAI’s insensitivity to changes in a1 by noting that

the average gene has ∼ 400 amino acids and so long as a1 is not orders of magnitude greater than a2, then

a2(i− 1) will be greater than a1 for most codon positions within an allele. Thus, changing a1 also has little

impact on the NAI value of an allele as well.

NAI values were also found to be robust to small changes in the estimates of elongation rates of codon.

These sensitivity coefficients ranged in value from Ψ = −9 × 10−4 to Ψ = 0.235 with their average value

being 0.003 (Supporting Table S3). In general, slowly translating codons were more sensitive to changes in

their elongation rates than codons with high elongation rates.
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FILE S2 

Computer Code 

 
 

NAI ZIP archive with source code for program to calculate NAI of a genome as well as example datasets and 
README file. Released under the GNU Public License Version 2. Updated versions at 
www.tiem.utk.edu~/mikeg/SupplementaryMaterials/NAI/Code/RunNAI. See the README file for more 
information. 
 
 
CES ZIP archive with source code for program for running codon evolution simulations (CES) as well as example 
datasets and README file. Released under the GNU Public License Version 2. Updated versions at 
www.tiem.utk.edu~/mikeg/SupplementaryMaterials/NAI/Code/CES. See the README file for more 
information. 
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Supporting Figures
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Figure S1: Correlation of NAI values with (a) the Codon Adaptation Index (CAI), (b) the Codon Bias Index

(CBI), (c) the effective number of codons Nc, and (d) the frequency of optimal codons Fop. The correlation

coefficient between NAI and each index is given by ρ.
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FIGURE S1.—Correlation of NAI values with (a) the Codon Adaptation Index (CAI), (b) the Codon Bias Index (CBI), (c) the 
effective number of codons Nc, and (d) the frequency of optimal codons Fop. The correlation coefficient between NAI and each 
index is given by p. 
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Figure S2: Regression lines of hierarchical analysis of NAI values of the S. cerevisiae S288c genome and

exemplar partially reordered, completely reordered, and randomly assembled genomes. We again note that

both partially and completely reordered genomes do show an unexpected, but slight upward bias in their

individual regression slopes Bi and this bias increases with protein production rate, the source of which is

not understood at this point.
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FIGURE S2.—Regression lines of hierarchical analysis of NAI values of the S. cerevisiae S288c genome and exemplar partially 
reordered, completely reordered,  and randomly assembled genomes. We again note that both partially and completely reordered 
genomes do show an unexpected, but slight upward bias in their individual regression slopes Bi and this bias increases with 
protein production rate, the source of which is not understood at this point. 
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Figure S3: Comparison of NAI values across a range of (a) elongation costs a2 and (b) nonsense error rate b.
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Supporting Tables

Amino
Acid

tRNA
Anti-Codon Codon

Translation
Rate

ala IGC GCT 18.20
GCC 11.70

UGC GCA 7.82∗

GCG 7.82∗

arg ICG CGT 4.21
CGC 2.70
CGA 2.70

CCG CGG 1.56∗

UCU AGA 17.20
CCU AGG 1.72

asn GUU AAT 9.56∗

AAC 15.60∗

asp GUC GAT 15.50
GAC 25.30

cys GCA TGT 4.56
TGC 7.47

gln UUG CAA 14.10∗

CUG CAG 1.56∗

UUC GAA 18.40
CUC GAG 3.13∗

gly GCC GGT 16.50
GGC 27.00

UCC GGA 4.69∗

CCC GGG 3.13∗

his GUG CAT 8.43
CAC 13.80

ile IAU ATT 20.30∗

ATC 13.00∗

UAU ATA 3.13∗

Amino
Acid

tRNA
Anti-Codon Codon

Translation
Rate

leu UAA TTA 10.90∗

CAA TTG 19.20
GAG CTT 0.96∗

CTC 1.56∗

UAG CTA 9.00
CTG 9.00

lys UUU AAA 6.70
CUU AAG 15.10

met CAU ATG 7.82∗

phe GAA TTT 8.90
TTC 14.60

pro IGG CCT 3.13∗

CCC 2.01∗

UGG CCA 15.60∗

CCG 15.60∗

ser1 GCU AGT 3.82∗

AGC 6.26∗

ser2 IGA TCT 22.40
TCC 14.40

UGA TCA 7.28
CGA TCG 1.56∗

thr IGU ACT 17.40
ACC 11.20

UGU ACA 6.26∗

CGU ACG 1.56∗

trp CCA TGG 11.70
tyr GUA TAT 10.40∗

TAC 17.00
val IAC GTT 19.30

GTC 12.40
UAC GTA 3.13
CAC GTG 2.87

Table S1: Amino acid, codons recognized, and scaled intra-cellular tRNA concentrations, within S. cerevisiae
as measured by Ikemura (1985) or estimated from gene copy number, as indicated by a ∗, after Percudani
et al. (1997). The translation rates of codons using the G-U wobble were reduced by 39% compared to their
G-C wobble counter-parts (Thomas et al., 1988; Curran and Yarus, 1989). Similarly, the translation
rates of codons using the I-G wobble were reduced by 36% relative to their I-U counterparts (Curran and
Yarus, 1989). The entire set of translation rates were scaled so that their average value is 10 codons/sec.

S10

 
 
 
 

TABLE S1 

Amino acid, codons recognized, and scaled intra-cellular tRNA concentrations, within S. cerevisiae 

as measured by Ikemura (1985) or estimated from gene copy number, as indicated by a*, after 

Percudani et al. (l997) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The translation rates of codons using the G-U wobble were reduced by 39% compared to their G-C wobble 
counter-parts (THOMAS et al., 1988, CURRAN and YARUS, 1989}. Similarly, the translation rates of codons using the 
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Table S2: Hierarchical Regression Analysis Results

S288c Genome
Parameters for regression intercept A

MLE SE t p value
A0 2.102 0.029 71.97 < 2 × 10−16

A1 0.793 0.016 50.12 < 2 × 10−16

A2 0.084 2.3 × 10−3 36.68 < 2 × 10−16

Parameters for regression slope B
MLE SE t p value

B0 2.72 × 10−2 1.635 × 10−3 16.63 < 2 × 10−16

B1 8.74 × 10−3 7.92 × 10−4 11.03 < 2 × 10−16

B2 7.94 × 10−4 9.6 × 10−5 8.27 < 2 × 10−16

S288c Genome with Removing Last 10 aa
Parameters for regression intercept A

MLE SE t p value
A0 2.100 0.03 70.23 < 2 × 10−16

A1 0.796 0.0162 49.10 < 2 × 10−16

A2 0.085 2.34 × 10−3 36.32 < 2 × 10−16

Parameters for regression slope B
MLE SE t p value

B0 2.71 × 10−2 1.677 × 10−3 16.16 < 2 × 10−16

B1 8.57 × 10−3 8.11 × 10−4 10.57 < 2 × 10−16

B2 7.68 × 10−4 9.8 × 10−5 7.83 6.04 × 10−15

S288c Genome with Removing Last 20 aa
Parameters for regression intercept A

MLE SE t p value
A0 2.11 0.03 70.61 < 2 × 10−16

A1 0.799 0.0162 49.21 < 2 × 10−16

A2 0.085 2.34 × 10−3 36.3 < 2 × 10−16

Parameters for regression slope B
MLE SE t p value

B0 2.62 × 10−2 1.676 × 10−3 15.706 < 2 × 10−16

B1 8.178 × 10−3 8.088 × 10−4 10.11 < 2 × 10−16

B2 7.23 × 10−4 9.757 × 10−5 7.41 1.53 × 10−13

Note that all of the maximum likelihood estimates of the model parameters differ from one another by less
than 2 standard errors (SE).
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Table S3: Sensitivity Analysis of NAI to changes in per codon elongation rate

AA Codon ci

Mean
Ψ

SD
Ψ

Fraction
Outliers

A GCA 7.82 0.0069 0.0709 0.0442
A GCC 11.70 0.0050 0.0581 0.0442
A GCG 7.82 0.0099 0.0425 0.0421
A GCT 18.20 0.0079 0.0348 0.0421
C TGC 7.47 -0.0251 0.0526 0.0479
C TGT 4.56 -0.0210 0.0431 0.0479
D GAC 25.30 0.0016 0.0286 0.0467
D GAT 15.50 0.0012 0.0234 0.0467
E GAA 18.40 -0.0037 0.0341 0.0506
E GAG 3.13 -0.0032 0.0279 0.0506
F TTC 14.60 0.0065 0.0559 0.0506
F TTT 8.90 0.0049 0.0458 0.0506
G GGA 4.69 -0.0081 0.0260 0.0460
G GGC 27.00 -0.0067 0.0213 0.0460
G GGG 3.13 0.0133 0.0424 0.0460
G GGT 16.50 0.0107 0.0347 0.0460
H CAC 13.80 0.0059 0.0323 0.0467
H CAT 8.43 0.0046 0.0264 0.0467
I ATA 3.13 -0.0310 0.1889 0.0467
I ATC 13.00 -0.0309 0.1564 0.0467
I ATT 20.30 0.0012 0.0352 0.0483
K AAA 6.70 0.0008 0.0288 0.0483
K AAG 15.10 -0.0017 0.0577 0.0483
L CTA 9.00 -0.0018 0.0472 0.0483
L CTC 1.56 -0.0284 0.1120 0.0435
L CTG 9.00 -0.0250 0.0919 0.0435
L CTT 0.956 -0.0029 0.0214 0.0398
L TTA 10.90 -0.0024 0.0174 0.0398
L TTG 19.20 -0.0304 0.1086 0.0515
M ATG 7.82 -0.0277 0.0894 0.0515

AA Codon ci

Mean
Ψ

SD
Ψ

Fraction
Outliers

N AAC 15.60 0.0195 0.0411 0.0369
N AAT 9.56 0.0159 0.0338 0.0369
P CCA 15.60 -0.0046 0.0255 0.0456
P CCC 2.01 -0.0039 0.0208 0.0456
P CCG 15.60 0.0078 0.0415 0.0460
P CCT 3.13 0.0061 0.0340 0.0460
Q CAA 14.10 -0.0392 0.2086 0.0430
Q CAG 1.56 -0.0371 0.1723 0.0430
R AGA 17.20 0.0026 0.0489 0.0421
R AGG 1.72 0.0019 0.0400 0.0421
R CGA 2.70 0.0045 0.0318 0.0442
R CGC 2.70 0.0036 0.0260 0.0442
R CGG 1.56 -0.0009 0.1109 0.0499
R CGT 4.21 -0.0020 0.0910 0.0499
S AGC 6.26 0.0008 0.0493 0.0499
S AGT 3.82 0.0004 0.0403 0.0499
S TCA 7.28 -0.0263 0.0610 0.0483
S TCC 14.40 -0.0220 0.0498 0.0483
S TCG 1.56 -0.0796 0.2545 0.0517
S TCT 22.40 -0.0768 0.2095 0.0527
T ACA 6.26 -0.0031 0.0567 0.0568
T ACC 11.20 -0.0029 0.0464 0.0568
T ACG 1.56 0.2352 0.4403 0.0511
T ACT 17.40 0.1807 0.3908 0.0515
V GTA 3.13 -0.0139 0.0710 0.0467
V GTC 12.40 -0.0117 0.0579 0.0467
V GTG 2.87 0.0187 0.0393 0.0387
V GTT 19.30 0.0151 0.0321 0.0387
W TGG 11.70 -0.0001 0.0001 0.0334
Y TAC 17.00 -0.0001 0.0001 0.0334
Y TAT 10.40 0.0003 0.0454 0.0401

The mean, standard deviation (SD), and fraction of outliers of the sensitivity coefficients Ψ for each codon.
Ψ values were individually calculated for each of the 4674 verified genes in the S. cerevisiae genome. For
each codon, outliers were identified by Grubb’s test at a stringent p-value of 0.0025 and removed before
calculation of the mean and SD of its Ψ values. These outliers are primarily genes with very low NAI score,
which lead to an over-inflated Ψ. For instance, a change in NAI score from 0.001 to 0.005 would lead to a
corresponding change in percentile of ∼ 0.0016 but a Ψ value of 4.
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TABLE S4 

eta.var.window.tsv 

 

A list of var(η) values for the entire sequence and non-overlapping windows of 20 codons. This file is available for 

download at http://www.genetics.org/cgi/content/full/genetics.109.108209/DC1. 
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TABLE S5 

eta.min.window.tsv 

 

A list of ηmin values for the entire sequence and non-overlapping windows of 20 codons. This file is available for 

download at http://www.genetics.org/cgi/content/full/genetics.109.108209/DC1. 
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TABLE S6 

nai.window.tsv 

 

A list of NAI values for the entire sequence and non-overlapping windows of 20 codons. This file is available for 

download at http://www.genetics.org/cgi/content/full/genetics.109.108209/DC1. 
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TABLE S7 

eta.mean.window.tsv 

 

A list of mean η values for the entire sequence and non-overlapping windows of 20 codons. This file is available for 

download at http://www.genetics.org/cgi/content/full/genetics.109.108209/DC1. 

 


