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Abstract
In the present voltammetric study, we have characterized cocaine-induced changes in evoked
dopamine release and uptake in the striatum of freely moving mice in real time. Cocaine induced
marked dopamine uptake inhibition measured as apparent Km changes, producing a maximal effect
20 minutes following a single injection (15 mg/kg i.p.). Changes in uptake were paralleled by
increases in evoked dopamine release per stimulus pulse, revealing a high correlation between these
two parameters following cocaine administration. This initial characterization of cocaine effects on
striatal dopamine transmission in the commonly used C57BL/6 mouse strain provides a basis for
future voltammetric studies using genetic mouse models.
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Cocaine increases extracellular dopamine levels by inhibiting the uptake of dopamine through
dopamine transporters located on presynaptic terminals [1]. Many of the characteristic
behavioral effects associated with cocaine, such as psychomotor activation [2], stereotypic
movements [3] and reinforcement [4] are tightly linked to levels of dopamine uptake inhibition.
Although several studies have documented the time-course of cocaine-induced changes in
dopamine uptake in vivo using rats [5;6], a time-course of this effect has never been reported
in mice.

Advances in molecular biology have allowed the production of many different strains of
genetically modified mice, which provide researchers with animal models to study different
human diseases, including psychiatric disorders such as drug addiction. These mouse models
can help to further clarify the neurochemical mechanisms of addictive drugs. Here, we applied
fast-scan cyclic voltammetry [1;2] to study the time-course of cocaine-induced changes in
dopamine uptake and stimulated dopamine release in the striatum of freely moving C57BL/6
mice, a commonly used mouse strain. Our approach clearly demonstrates that real time
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dopamine measurements can be conducted in freely moving mice, and opens the door to future
analyses in transgenic and knockout mice.

All voltammetric recordings were preformed in freely moving male mice (C57BL/6, 8-12
weeks old, n=5). The experimental protocol adhered to National Institutes of Health Animal
Care guidelines and was approved by the Wake Forest University Institutional Animal Care
and Use Committee.

Surgery for implantation of a stimulating electrode, a reference electrode and a guide cannula
for the micromanipulator was carried out as previously described in rats [7]. Mice were
anesthetized with ketamine (100 mg/kg, i.p.) and xylazine (10 mg/kg, i.p.) and placed in a
stereotaxic frame. A hole for the guide cannula (Bioanalytical Systems, West Lafayette, IN)
was drilled according to coordinates from a mouse brain atlas (AP +1.0, L +1.3 mm from
bregma). A Ag/AgCl reference electrode was implanted in the contralateral superficial cortex.
A bipolar stimulating electrode was lowered to the VTA/SN area ipsilateral to the guide cannula
at 3 mm posterior and 1.0 mm lateral to bregma. A newly designed lightweight
micromanipulator (0.95 g) capable of inserting large diameter (1.2-mm) glass capillary carbon-
fiber electrodes in the mouse brain through the guide cannula was constructed for this study.
The head-mounted voltammetric amplifier (UNC Electronics Design Facility, Chapel Hill,
NC) was miniaturized for use with mice. Dopamine was evoked by electrical stimulation of
the VTA/SN and monitored in the dorsal striatum using fast-scan cyclic voltammetry.
Voltammetric recordings were made at the carbon-fiber microelectrode every 100 ms by
applying a triangle waveform (-0.4 to +1.3 V, 300 V/s). Upon establishment of stable baseline
signals, stimulation (24 pulses, 60 Hz, 120 μA, 2 ms/phase, biphasic) was applied every 10
minutes for 20 minutes before and 2 hours after cocaine (15 mg/kg, i.p.) administration.
Cocaine HCl, obtained from the National Institute on Drug Abuse (Research Triangle Institute,
Research Triangle Park, N.C., USA), was dissolved in a solution of sterilized 0.9% saline,
passed through a microfilter (0.45 μm pore size) and diluted to a solution of 2.5 mg/ml for
these experiments. All statistics were performed using SigmaPlot (version 11). Evoked
dopamine levels and uptake parameters were statistically analyzed using an ANOVA with
repeated measures. Correlations are reported as Pearson's r values.

Stimulated extracellular dopamine efflux was detected in the dorsal striatum of freely-moving
mice as first reported by Yavich and Tiihonen [8]. As illustrated in Figure 1, electrical
stimulation of the VTA/SN area resulted in a rapid increase in striatal extracellular dopamine
(∼1 μM) prior to cocaine administration. The observed maximal amplitude of the evoked
dopamine signal approximately doubled (∼2 μM) 10 minutes after a single cocaine injection
(15 mg/kg i.p.). Figure 2 shows changes in the parameters of apparent Km (filled circles) and
DAp (open squares) over a 2 hour time-course after a single cocaine injection (15 mg/kg i.p.).
Cocaine resulted in a significant increase in DAp (F(12,64) = 7.895; p<0.01), which reflects the
concentration of dopamine released per stimulus pulse, and apparent Km (F(12,64) = 25.685;
p<0.01), which represents the affinity of dopamine for the dopamine transporter. Increased
apparent Km values represent greater uptake inhibition. Maximal apparent Km (1006.2 nM ±
SEM 23.0) and DAp (182.4 nM ± SEM 36.9) values were recorded 20 minutes following
cocaine administration and then gradually returned to baseline values. The apparent Km and
DAp data are replotted in figure 3 to emphasize the relationship between these two parameters.
As illustrated in Figure 3, apparent Km and DAp are highly correlated (r = 0.91) in the presence
of cocaine. Consistent with competitive uptake inhibition, cocaine did not significantly change
Vmax (data not shown), which reflects the maximal velocity of dopamine uptake. The average
Vmax in the dorsal striatum was 3427 nM/s ± SEM 353.5.

While measuring dopamine dynamics in the striatum of freely moving mice we observed that
cocaine markedly decreased the uptake of dopamine by increasing apparent Km without
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significantly changing the maximal uptake rate (Vmax). When maximal dopamine uptake
inhibition (apparent Km) and maximal dopamine per pulse (DAp) were observed, the uptake
rate (Vmax) remained unchanged (3427 nM/s ± SEM 353.5). These data are in agreement with
previous in vitro studies performed in striatal slices from mice [9] and in vivo studies using
anesthetized and freely moving rats [10;11]. Dopamine uptake inhibition (apparent Km)
reached a maximum at 20 minutes, which coincides with previous reports showing maximal
behavioral activation and extracellular dopamine concentrations occur between 20-30 minutes
after a single intraperitoneal injection of 15 mg/kg cocaine in both mice and rats [12;13]. The
apparent Km gradually returned to baseline values within approximately 2 h. These changes
were accompanied by a parallel decrease in behavioral activity. These data further confirmed
the critical role of the dopamine transporter in cocaine-induced psychomotor activation.

In this study both apparent Km and DAp were determined using a model developed by
Wightman and colleagues, in which electrically stimulated dopamine concentrations are
described as a delicate balance between release and uptake [14]. One aspect that merits
additional discussion is the possibility that the changes in electrically-evoked dopamine
concentrations observed after cocaine can be influenced by alterations in both dopamine uptake
and release. In addition to delaying uptake, cocaine can increase the amount of dopamine
detected during the stimulus train by promoting dopamine release from reserve pools of
dopamine-containing vesicles [15]. Additionally, electrically-stimulated dopamine release is
also subject to D2 dopamine receptor-mediated autoinhibition [16-18] which would have the
opposite effect of reducing evoked dopamine concentrations during dopamine transporter
inhibition. In light of this complicated action of cocaine on electrically-evoked dopamine
release, the observation of a high correlation between changes in an apparent Km and DAp
during the drug time course is obviously important. The strong temporal association between
these parameters suggests that the effect of cocaine on the evoked dopamine release can be
preferentially attributed to changes in dopamine uptake. The fact that the increase in
electrically-evoked dopamine levels following cocaine was not observed in mice with a genetic
deletion of the dopamine transporter [19;20] supports this notion. However, the transporter
knockout mice have many other alterations in dopamine storage and release [21], which make
direct comparisons to wild-type mice difficult.

In conclusion, the present data provide the first characterization of cocaine-induced changes
in dopamine uptake and evoked dopamine concentrations in freely moving mice. A time-course
of cocaine induced changes in apparent Km and DAp was documented, revealing a tight
correlation between the two parameters. This work provides both a methodology and a baseline
standard for future pharmacological studies using genetic mouse models of drug addiction.
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Figure 1.
(top) Representative concentration-time plots of electrically evoked dopamine measured in the
dorsal striatum before (left) and 10 minutes after (right) a single injection of cocaine (15 mg/
kg i.p.). Arrows indicate the onset of electrical stimulation.(bottom) Representative color plots
– which topographically depict the voltammetric data with time on the x-axis, applied scan
potential on the y-axis and background-subtracted faradaic current shown on the z-axis in
pseudo-color – are illustrated before (left) and after (right) cocaine administration.
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Figure 2.
time-course of dopamine uptake inhibition and evoked dopamine release after cocaine
administration Changes in apparent Km (filled circles) and DAp (open squares) following
administration of cocaine (15 mg/kg, i.p.) are shown over 2 hours. Data are expressed as means
± SEM. Maximal apparent Km (1006.2 nM ± SEM 23.0) and DAp (182.4 nM ± SEM 36.9)
occurred 20 minutes following cocaine administration.
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Figure 3.
Dopamine uptake inhibition and evoked release are correlative parameters in the presence of
cocaine. A high correlation coefficient was found (r = 0.91) between apparent Km and DAp
when compared across all time-points following a single injection of cocaine (15mg/kg i.p.).
Data were grouped into 10-minute bins of time following cocaine administration and are
expressed as means ± SEM.
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