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Abstract
A common feature of all eukaryotic membranes is the non-random distribution of different lipid
species in the lipid bilayer (lipid asymmetry). Lipid asymmetry provides the two sides of the plasma
membrane with different biophysical properties and influences numerous cellular functions.
Alteration of lipid asymmetry plays a prominent role during cell fusion, activation of the coagulation
cascade, and recognition and removal of apoptotic cell corpses by macrophages (programmed cell
clearance). Here we discuss the origin and maintenance of phospholipid asymmetry, based on recent
studies in mammalian systems as well as in Caenhorhabditis elegans and other model organisms,
along with emerging evidence for a conserved role of mitochondria in the loss of lipid asymmetry
during apoptosis. The functional significance of lipid asymmetry and its disruption during health and
disease is also discussed.
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Introduction
A common feature of membranes in all eukaryotic cells is the non-random distribution of lipids
across the bilayer. Lipid asymmetry in membranes is a consequence of multiple factors,
including the biophysical properties of lipids that dictate their ability to spontaneously “flip”
their polar headgroups through the hydrophobic membrane interior, and the presence of
transporters (enzymes) that assist in active lipid translocation across the bilayer (see van Meer
et al., 2008, for an excellent review). Moreover, this asymmetrical distribution of lipids has
important functional consequences. For instance, the anionic phospholipid, phosphatidylserine
(PS), is exclusively located at the cytoplasmic side of the plasma membrane in quiescent cells
and is an essential co-factor for a number of membrane-bound enzymes, such as protein kinase
C and Na+/K+-ATPase (Zwaal et al., 2005). However, when exposed on the cell surface, PS
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acts as a conserved recognition signal for phagocytes and promotes the blood coagulation
cascade (Savill et al., 2002). The present review aims to discuss the origin and maintenance
of phospholipid asymmetry as well as the mechanism and functional significance of its
disruption in health and disease.

The origin and maintenance of phospholipid asymmetry in biological
membranes

The variations and permutations of headgroups and aliphatic chains, and the occurrence of
oxidatively modified lipids, allows for the existence of a multitude of individual molecular
species of lipids in any eukaryotic cell (Kagan and Quinn, 2004; Wolf and Quinn, 2008).
Importantly, although all lipids appear to be symmetrically distributed between the two leaflets
of the endoplasmic reticulum membrane, an asymmetric distribution of lipids is seen in the
Golgi, endosomal, and plasma membranes of eukaryotic cells, with sphingomyelin and
glycosphingolipids residing predominantly on the non-cytosolic (luminal) side and the anionic
phospholipids, phosphatidylserine (PS) and phosphatidylethanolamine (PE) enriched in the
cytosolic leaflet (van Meer et al., 2008) (Figure 1). The discovery that this asymmetry results
from the adenosine triphosphate (ATP)-dependent translocation of PS and PE between bilayer
leaflets underscores the notion that membrane lipid asymmetry is of major physiologic
importance, as it demonstrates that cells invest considerable energy in this process (Zwaal and
Schroit, 1997). The identification of the specific enzyme(s) responsible for phospholipid
translocation in the plasma membrane has attracted considerable attention.

Human erythrocytes have served as a prototypical model to study the structure of the eukaryotic
membrane and associated lipid asymmetry. Both energy-dependent and energy-independent
transport activities have been reported to play an important role for the generation and
maintenance of lipid asymmetry in these cells (Daleke, 2008). At least three types of putative
lipid transporter activities have been proposed: a “flippase”, which catalyzes ATP-dependent
inward transport of lipids; a “floppase”, which promotes ATP-dependent outward migration
of lipids; and a “scramblase”, which stimulates bi-directional movement of lipids between the
two membrane leaflets (Daleke, 2008). While the first two activities are thought to generate
and maintain lipid asymmetry, bi-directional lipid scrambling promotes the collapse of this
asymmetry. Numerous studies have associated a specific class of P-type ATPases (the P4
ATPases) and the ATP-binding cassette (ABC) transporter family, as well as the so-called
scramblase family of proteins with each of these three classes of lipid transporters, respectively
(for a review and original references, see Zwaal et al., 2005). The discovery of an
aminophospholipid translocase (APLT) activity in bovine chromaffin granules led to the
cloning of ATPase II (ATP8A1) (Tang et al., 1996) that is homologous to Drs2p, a trans-Golgi
network-resident protein in yeast. ATP8A1 and Drs2p are founding members of a conserved
subfamily of P-type ATPases that includes 5 yeast, 6 C. elegans, 4 Drosophila, and 14 human
members (Lenoir et al., 2007; Darland-Ransom et al., 2008; D. Xue, unpublished observation).
Approximately at the same time, Sims and colleagues purified a 37-kDa type II single-
transmembrane protein from erythrocyte membranes that could mediate Ca2+- dependent
movement of phospholipids between membrane leaflets and thus possesses the “phospholipid
scramblase” activity (Bassé et al., 1996; Zhou et al., 1997). This phospholipid scramblase,
PLSCR1, is highly conserved among different organisms (Wiedmer et al., 2000; Wang et
al., 2007). A major roadblock, however, in terms of identifying the specific molecules
responsible for the generation or maintenance of lipid asymmetry and for its disruption during
cell activation or cell death is that there are numerous members of each family of transporters,
which precludes genetic analysis of the in vivo role of each of these molecules in mammalian
systems due to potential genetic redundancy. On the other hand, our recent studies in C.
elegans, a model organism especially suited for powerful genetic analyses, have revealed that
a worm P4 ATPase homolog, TAT-1, is required for maintenance of PS asymmetry in living
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cells (Darland-Ransom et al., 2008) (Figure 2). These studies also provided evidence that the
disruption of phospholipid asymmetry in living cells can result in indiscriminate removal of
affected cells by neighboring phagocytes. Moreover, we demonstrated that a worm
phospholipid scramblase homolog, SCRM-1, is important for compromising this PS
asymmetry and promoting the externalization of PS in apoptotic cells (Wang et al., 2007) (see
further discussion below).

Interestingly, the P4 ATPases belong to the superfamily of P-type ATP pumps whose members
usually translocate small cations or metal ions, rather than lipids (Lenoir et al., 2007). In both
cases, the net result of the action of these pumps is to maintain asymmetry or a gradient (of
lipids, or ions) across a membrane, a fundamental aspect of cellular physiology that drives
numerous processes in the cell. As pointed out by Lenoir and co-workers, a challenging
problem is to understand how an ion pump evolved into a flippase i.e. a protein that “flips”
phospholipids. In a very recent study, these investigators provided evidence that the so-called
Cdc50 proteins are integral components of the P4 ATPase transport machinery and that the
affinity of yeast P4 ATPase Drs2p for its Cdc50 binding partner fluctuates during the transport
cycle, with the strongest interaction occurring at a point where the enzyme is loaded with
phospholipid ligand (Lenoir et al., 2009). The specific interactions between P-type ATPases
and Cdc50 proteins could thus suggest a basis for the transport specificity of P-type ATPases.

Because lipid asymmetry is fundamental to several cellular processes, it is important that this
asymmetry is maintained throughout the life-span of the cell. Indeed, as noted above, cells
invest considerable amounts of energy to generate and maintain asymmetric phospholipid
distribution. However, lipid asymmetry-sensing proteins or related downstream signaling
pathways have been poorly defined. Interestingly, recent studies have indicated that the pH-
responsive Rim101 pathway, the protein kinase Mck1, and the transcription factor Mot3 all
act in lipid asymmetry signaling in Saccharomyces cerevisiae and that the Rim101 pathway is
activated in response to changes in lipid asymmetry (Ikeda et al., 2008). These studies are also
suggestive of the convergence of lipid asymmetry sensing and pH adaptation through the
Rim101 pathway. Whether these pathways are conserved in higher species remains to be
elucidated.

Molecular mechanisms underlying the disruption of plasma membrane
phospholipid asymmetry

The P4 ATPases flip lipids from the non-cytosolic (outer) leaflet to the cytosolic (inner) leaflet
of the membrane, whereas the so-called ABC transporters work in the opposite direction.
Moreover, ABC transporters are capable of expelling a given lipid out of the membrane (van
Meer et al., 2008). Most of the mammalian ABC transporters that are involved in lipid transport
have been associated with specific diseases or pathologies; however, the mechanism(s) of
action and the specific substrates for many of these ABC transporters remain a matter of debate.
ABCA1, for instance, is mutated in Tangier disease, a condition characterized by a severe high-
density lipoprotein (HDL) deficiency, sterol deposition in tissue macrophages, and prevalent
atherosclerosis (Box 1). Early studies suggested a role for ABCA1 in macrophage engulfment
of apoptotic cells (Luciani and Chimini, 1996) and subsequent studies implicated ABCA1 in
the disruption of phospholipid asymmetry during apoptosis (Hamon et al., 2000). In line with
these studies, Wu and Horvitz (1998) reported that the C. elegans gene ced-7, encoding a
protein homologous to ABCA1, functions in the engulfment of apoptotic cell corpses in the
worm. They also proposed that CED-7 translocates molecules that mediate homotypic adhesion
between the dying and engulfing cells. More recent studies using cells from ABCA1-deficient
mice and from Tangier patients with homozygous mutations in the ABCA1 gene showed that
mutations in ABCA1 do not measurably alter the rate of transbilayer movements of
phospholipids (Williamson et al., 2007). These studies also discounted a role for ABCA1 in
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the surface externalization of annexins, phospholipid-binding proteins previously reported to
be expressed both on the surface of phagocytes and on cells undergoing apoptosis (Fan et al.,
2004). However, these results do not rule out a role for ABCA1 in phospholipid loading to
apoA-1. Similarly, there have been conflicting reports regarding the role of C. elegans CED-7
in PS externalization in apoptotic cells. In one study (Venegas and Zhou, 2007), CED-7 was
found to promote PS externalization in somatic apoptotic cells, whereas in another, CED-7
was suggested to be dispensable (Züllig et al., 2007). Obviously, the role of ABC transporters
as potential transbilayer lipid transporters warrants further examination and investigation.

As shown originally for activated platelets, many cell membranes harbor a Ca2+-dependent
mechanism that can rapidly move phospholipids back and forth between the two membrane
leaflets (lipid scrambling), leading to a loss of membrane phospholipid asymmetry (for a review
and original references, see Zwaal et al., 2004; Zwaal et al., 2005). Scott syndrome, an
extremely rare congenital bleeding disorder characterized by a deficiency in platelet
procoagulant activity (Weiss et al., 1979; Miletich et al., 1979), is the only known primary
pathological consequence caused by an aberration in regulating membrane phospholipid
asymmetry (Rosing et al., 1985) (Box 1). Despite its rare occurrence, investigations of cells
from these patients have shed light on the mechanisms involved in the disruption of
phospholipid asymmetry in the plasma membrane (Zwaal et al., 2004). The disorder was
originally described as an isolated deficiency of platelet procoagulant activity, but the
underlying defect in Ca2+-induced lipid scrambling is also evident in other cell types.
Interestingly, studies in lymphocytes have shown that there are differences between Ca2+-
induced lipid scrambling that occurs during cell activation and the egress of PS that occurs
when cells are undergoing apoptosis. Indeed, whereas Scott syndrome cells fail to expose PS
following Ca2+ influx, PS externalization is normal in apoptotic cells from these patients
(Williamson et al., 2001; Martinez and Freyssinet, 2001). The identification of PLSCR1 as a
protein that exhibits Ca2+-activated phospholipid scrambling activity has provided plausible
candidates for studying the disruption of lipid asymmetry (Zhou et al., 1997). Indeed, PLSCR1
has been implicated in promoting PS externalization in apoptotic cells or PS exposure in
neutrophils stimulated by a chemotactic peptide (Frasch et al., 2000; Frasch et al., 2004).
However, in other studies, overexpression of exogenous PLSCR1 or induction of endogenous
PLSCR1 expression by interferon-α failed to promote PS externalization in human lymphoma
cells undergoing apoptosis (Fadeel et al., 1999). Moreover, mice deficient in PLSCR1 do not
display the hemostatic abnormalities characteristic for Scott syndrome or a defect in PS
externalization in activated cells (Zhou et al., 2002). In fact, recent data suggest a considerably
more complex biology for PLSCR1 (see, for instance, Ben-Efraim et al., 2004; Huang et al.,
2006). Nevertheless, since multiple phospholipid scramblases exist in mammals and in other
organisms (Wiedmer et al., 2000; Wang et al., 2007), these results do not exclude a role for
other phospholipid scramblase(s) in the process of PS externalization in the plasma membrane.

Two recent studies have provided evidence that some C. elegans phospholipid scramblases
indeed are involved in PS externalization in apoptotic cells (Venegas and Zhou, 2007; Wang
et al., 2007). We have found that inactivation of scrm-1, which encodes one of the eight C.
elegans phospholipid scramblase homologues (named SCRM proteins), significantly reduces
PS exposure on the surface of C. elegans apoptotic germ cells and compromises cell corpse
engulfment (Wang et al., 2007) (Figure 3), suggesting that surface-exposed PS also serves as
an “eat-me” signal for removal of apoptotic cells in C. elegans. In a similar study, Venegas
and Zhou (2007) found that another C. elegans scramblase, SCRM-3 (or PLSC-1) also mediates
PS externalization in apoptotic germ cells and affects their removal by phagocytes. However,
loss of scrm-1 or scrm-3 only partially reduces PS exposure on the surface of apoptotic cells,
indicating that additional phospholipid scramblases or lipid transporters may be involved in
mediating PS externalization in C. elegans apoptotic cells. Moreover, as lipid scrambling
enzymes, the activities of these scramblases need to be tightly controlled so that their activities
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are activated only in apoptotic cells. What could be the activation signals or mechanisms?
Interestingly, we found that the C. elegans mitochondrial factor, WAH-1, a homolog of human
apoptosis-inducing factor (AIF), also affects cell corpse engulfment (Wang et al., 2007).
Further analysis indicated that loss of wah-1 markedly reduces PS externalization in apoptotic
germ cells. However, WAH-1 by itself had no lipid scrambling activity and therefore probably
needs to act through a lipid transporter. Indeed, we found that WAH-1 and SCRM-1 act in the
same pathway to promote PS externalization in C. elegans apoptotic cells and that they interact
with each other in vitro. Strikingly, in proteoliposome assays, WAH-1 could activate the PS
scrambling activity of SCRM-1 by ten-fold and this SCRM-1-activating activity depends on
specific interaction between SCRM-1 and WAH-1. Therefore, WAH-1 is an apoptotic activator
and SCRM-1 is a downstream lipid-flipping enzyme that mediates PS externalization during
apoptosis (Figure 4). Since the conserved BH3-only cell death initiator, EGL-1 induces the
release of WAH-1 from mitochondria during apoptosis (Wang et al., 2002), this finding
delineates a novel mitochondrion-to-plasma membrane signaling pathway that promotes
apoptotic PS externalization. Interestingly, previous studies demonstrated that the
microinjection of AIF into the cytosol of human cells induces dissipation of the mitochondrial
transmembrane potential and PS externalization on the cell surface (Susin et al., 1999).
Furthermore, numerous studies support the view that PS externalization occurs downstream
of mitochondria in cells undergoing apoptosis (Zhuang et al., 1998; Uthaisang et al., 2003;
Blom et al., 2003; Ricci et al., 2004). It will be interesting to see whether the WAH-1/SCRM-1
PS externalization pathway is conserved in mammals. Further dissection of the molecular
pathways that mediate PS externalization is now possible based on the studies performed in
the nematode system.

The expanding role of phospholipid scrambling: implications for
mitochondrial apoptosis signaling

Mice lacking PLSCR3, a member of the mammalian phospholipid scramblase family, display
adiposity, dyslipidemia, and insulin resistance (Wiedmer et al., 2004), suggesting that defects
in lipid scrambling may contribute to the dysregulation of lipid metabolism and the
development of metabolic syndromes. PLSCR3 has also been implicated in the translocation
of a phospholipid, cardiolipin (CL), from the inner to the outer mitochondrial membrane (Liu
et al., 2003). CL integrates a variety of apoptosis-inducing signals at the level of mitochondria
(Schug and Gottleib, 2009). For instance, apoptosis induced by tumor necrosis factor (TNF)-
α and TNF-related apoptosis-inducing ligand (TRAIL) is potentiated by PLSCR3, through its
effects on the distribution of CL on the mitochondrial surface (Liu et al., 2008; Ndebele et
al., 2008). The latter serves as an illustrative example of the importance of the specific
membrane distribution of a phospholipid for the regulation of cellular processes (apoptosis).

Further studies on the regulation of plasma membrane phospholipid
asymmetry by mitochondria

Calcium has been implicated in the regulation of both cell survival and cell death (apoptosis)
pathways and mitochondria participate actively in intracellular Ca2+ compartmentalization and
signaling (Orrenius et al., 2003). Ca2+ ions are thought to play a role in the regulation of
phospholipid asymmetry, as the activity of some scramblases is dependent on Ca2+, at least in
platelets, whereas aminophospholipid translocase activity is also inhibited by Ca2+ (Zwaal and
Schroit, 1997). Furthermore, in platelets, elevation of cytosolic Ca2+ with thapsigargin, an
inhibitor of the sarco-endoplasmic reticulum Ca2+-ATPase, can trigger PS exposure in minutes
(Dachary-Prigent et al., 1995). In thapsigargin-treated Jurkat cells, however, far fewer cells
exposed PS, and the process took up to six hours (Hampton et al., 1996). In addition, removal
of extracellular Ca2+, but not chelation of intracellular Ca2+, inhibited PS exposure in Fas-
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treated Jurkat cells by approximately 50%. Therefore, it appears that PS exposure in cells
undergoing death receptor-mediated apoptosis is Ca2+-dependent, but not Ca2+-regulated,
whereas the same process in platelets is Ca2+-regulated. Interestingly, antibodies to CD9, a
member of the tetraspan family of membrane proteins, inhibits the prompt (within minutes)
PS exposure in Jurkat cells stimulated by the calcium ionophore, A23187, but fails to block
the delayed PS exposure induced by various apoptotic treatments (Li and Tait, 1998).
Moreover, in lymphocytes from patients with Scott Syndrome, the scramblase activity is not
activated by elevated internal Ca2+ levels but can still be induced by apoptosis (Williamson et
al., 2001; Zhou et al., 1998), suggesting that at least two different pathways, one of which is
Ca2+-dependent and one of which is Ca2+-independent but apoptosis-dependent, independently
activate the scramblase activity in the cell. Consistent with this observation, our recent studies
in C. eleggans have demonstrated that the mitochondria-derived factor, WAH-1 can activate
the phospholipid scrambling activity of SCRM-1 in a Ca2+-independent manner (Wang et
al., 2007). These findings further support the view that different pathways of PS externalization
are initiated in cells undergoing apoptosis and following Ca2+-dependent activation.

Interestingly, a sustained intracellular calcium level in Jurkat cells mediated through the
receptor-operated calcium channel was shown to induce mitochondria-dependent PS exposure
in the absence of caspase activation and without evidence of mitochondrial release of
cytochrome c or AIF (Jambrina et al., 2003). However, the process required oxidative/
nitrosative stress. One may thus speculate that the PS exposure evidenced in the latter model
is related to oxidative/nitrosative inactivation of aminophospholipid translocase activity, as
demonstrated recently in HL-60 cells (Tyurina et al., 2007). In this context, it is also interesting
to note that neutrophils from patients with Barth syndrome, a rare, metabolic (mitochondrial)
disorder characterized by neutropenia and cardioskeletal myopathy, expose low amounts of
PS on the surface, yet do not display other features of apoptosis (Kuijpers et al., 2004). The
mechanism that underlies the PS exposure in Barth syndrome neutrophils remains elusive but
it has been suggested that mitochondria-derived reactive oxygen species (ROS) may act as
signaling intermediates in this process (van Raam and Kuijpers, 2009). Detailed assessment
of phospholipid scramblase and aminophospholipid translocase activities in neutrophils from
these patients versus healthy controls could shed some light on the link between mitochondrial
ROS production and the loss of phospholipid asymmetry in the plasma membrane.

Evidence has also been presented for de novo synthesis of PS during apoptosis, suggesting yet
another potential role for mitochondria in regulating PS asymmetry in plasma membrane. PS
synthesis takes place in the endoplasmic reticulum (ER) and results from replacement of the
polar head group of preexisting phospholipids (either PC or PE) by a serine (Kuge and
Nishijima, 2003). The exchange of the polar head group is catalyzed by the Ca2+-dependent
serine-base exchange enzyme system. Newly synthesized PS migrates either to the innner
leaflet of the plasma membrane or to mitochondria where it is decarboxylated to PE. Aussel
et al. (1998) first reported a robust yet transient neosynthesis of PS in Jurkat cells triggered to
undergo Fas-mediated apoptosis. PS decarboxylation, a mitochondria-specific process, was
strongly inhibited in this model, and the newly synthesized PS was detectable on the cell
surface. Subsequent studies from the same investigators suggested a relationship between PS
synthesis through the serine-base exchange enzyme system in the ER and PS exposure at the
cell surface during Fas-mediated apoptosis (Pelassy et al., 2000). Similarly, treatment of mouse
thymocytes with the apoptotic stimulus, dexamethasone, enhances the activity of the serine-
base exchange enzyme (Burrata et al., 2000). However, the decarboxylation of newly
synthesized PS to PE was almost negligible in mouse thymocytes, indicating that while
different apoptotic stimuli may trigger an increase of PS synthesis, with subsequent PS
exposure, they may have specific effects on the enzymes and organelles involved in PS
metabolism.
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Role of plasma membrane phospholipid asymmetry for intrinsic membrane
potential

The intrinsic membrane potential affects or governs a variety of biological phenomena, and it
has been generally accepted that the difference in membrane potential arises from the salt ion
imbalance across the plasma membrane. However, recent atomic-scale molecular dynamics
simulations show that a non-zero transmembrane potential can be observed in phospholipid
membranes in the absence of ions, and suggest that the asymmetric distribution of lipids across
the membrane and the intrinsic membrane potential are coupled phenomena (Gurtovenko and
Vattulainen, 2007). The latter findings are in agreement with classical experimental data on
dipole potential measurements in asymmetric lipid membranes (Latorre and Hall, 1976). It is
of interest to note that the negative charge of the surface of apoptotic cells associated with
externalization of PS has been shown to trigger endothelial cell membrane hyperpolarization
and cytoskeleton reorganization, events that are important for angiogenesis and vascular
remodeling (Weihua et al., 2005). Moreover, the negative charge associated with the presence
of PS on the cytosolic leaflet of the membrane in living cells has been shown to direct proteins
with a moderately positive charge to the endocytic pathway (Yeung et al., 2008). Recent studies
have shown that PS persists on phagosomes of murine macrophages as the plasma membrane
invaginates and that by conferring a considerable negative charge onto the phagosomal surface,
PS contributes to the recruitment of cationic proteins like the c-Src tyrosine kinase (Yeung et
al., 2009).

Loss of phospholipid asymmetry and PS externalization regulate important
biological processes

The loss of lipid asymmetry in the plasma membrane and the appearance of the anionic
phospholipids such as PS and PE on the cell surface have been implicated in numerous
biological processes, including blood coagulation, myotube formation, vesicle fusion, cell
division, sperm capacitation, and phagocytic recognition and clearance of apoptotic cell
corpses (for a review, see Witasp et al., 2008). Moreover, loss of PS asymmetry in the plasma
membrane may also be important for some viral infections. Viruses budding off an apoptotic
host cell acquire a viral envelope that also exposes PS on its external surface, and entry of
vaccinia virus through macropinocytosis was recently shown to be dependent on the presence
of exposed PS on the viral membrane, suggesting that certain viruses may employ apoptotic
“mimicry” to enter cells (Mercer and Helenius, 2008). Apoptotic mimicry by another obligate
intracellular parasite was demonstrated previously (de Freitas Balanco et al., 2001; Wanderley
et al., 2006). These studies showed that exposure of PS on the surface of the disease-
propagating amistigotes of Leishmania amazonensis inhibits macrophage activity and
increases susceptibility to intracellular leishmanial growth. Hence, while the protozoan
Trypanosoma cruzi has been reported to use apoptotic host T lymphocytes for macrophage
inactivation and consequent persistence in the mammalian host (Freire de Lima et al., 2000),
Leishmania amazonensis, an intra-macrophagic parasite, appears to use an apoptotic-like
feature of its own cells for a similar purpose.

Binding of blood clotting enzyme complexes to phospholipid membranes is a characteristic
feature of blood coagulation (Zwaal et al., 2004). PS externalization on the surface of activated
platelets produces a nearly million-fold increase in the rate of thrombin formation, the key
enzyme of blood coagulation. Surface exposure of PS is brought about by the activation of
Ca2+-dependent plasma membrane scramblases. Moreover, and as noted above, Scott
syndrome is a hematological disorder in which blood clotting does not take place due to
defective phospholipid scrambling in the plasma membrane. Schoenwaelder et al. (2009)
recently reported the existence of two distinct pathways regulating the procoagulant function
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of platelets in vitro: the classical, Ca2+-dependent pathway induced by physiological agonists,
and a Bak/Bax-dependent and caspase-mediated (apoptotic-like) pathway independent of
platelet activation. Whether the apoptosis-related pathway participates in externalizing PS on
the surface of platelets to generate thrombin in vivo or whether it merely acts to produce a
signal for the clearance of platelets by phagocytic cells remains to be investigated. Platelets
are anuclear cells generated through the compartmentalized, caspase-directed death of their
progenitors, megakaryocytes (de Botton et al., 2002). Interestingly, this aborted apoptosis
process yields functional platelets that retain their plasma membrane phospholipid asymmetry
(Clarke et al., 2003). The latter findings thus reinforce the notion that plasma membrane
changes of apoptosis can be dissociated from the caspase-directed program of nuclear
condensation and fragmentation (Zhuang et al., 1998).

Cell surface exposure of PS has also been shown to be part of normal physiology of skeletal
muscle development and to mediate myotube formation (van den Eijnde et al., 2001). PS
exposure in myoblasts is caspase-independent, occurs mainly at cell-cell contact areas, and
takes place at a stage when the structural organization of the sarcomeric protein titin is initiated,
prior to actual fusion of individual myoblasts into multinucleated myotubes. PS exposure is
viewed as a common signal for engulfment, yet studies in mouse embryos showed that no
accumulation of phagocytes occurred in areas of myoblast differentiation. As suggested by
van den Eijnde et al. (2001), this may potentially be explained by the lack of secretion of
chemoattractant factors for phagocytes.

Loss of phospholipid asymmetry and cell surface externalization of PS is a general feature of
the phagocytosis of apoptotic cells by macrophages (Fadok et al., 1992; Martin et al., 1995;
Krahling et al., 1999) and has been linked to the activation of caspases (Martin et al., 1996;
Vanags et al., 1996). Apoptotic cells that fail to express PS are not efficiently engulfed by
macrophages, and the clearance defect can be restored by repleting the plasma membrane of
target cells with exogenous PS (Fadok et al., 2001; Kagan et al., 2002). In addition, oxidized
phospholipids including oxidized PS (PS-OX) may mediate macrophage recognition (Chang
et al., 1999; Matsura et al., 2002; Kagan et al., 2002; Arroyo et al., 2002; Tyurina et al.,
2004). Furthermore, Kagan and associates have demonstrated that cytochrome c released from
mitochondria is involved in the selective catalysis of PS oxidation during programmed cell
clearance (Jiang et al., 2004), underscoring the role of mitochondria-derived factors in
apoptosis-related alterations of the plasma membrane.

Phosphatidylserine receptors: lessons emerging from studies in mice and
other model organisms

PS externalization serves as an important and conserved recognition signal during apoptosis
(Fadeel and Xue, 2006), and recent studies have identified several different PS receptors on
macrophages, including T cell immunoglobulin- and mucin-domain-containing molecule-4
(Tim-4) and Tim-1 (Miyanishi et al., 2007; Kobayashi et al., 2007; Ichimura et al., 2008), the
G protein-coupled receptor, brain-specific angiogenesis inhibitor 1 (BAI1) (Park et al.,
2007), and stabilin 2 (Park et al., 2008), in addition to the original PS receptor (PSR) that was
cloned almost 10 years ago by Fadok et al. (2000). Importantly, studies in mice that are deficient
for PSR (Li et al., 2003; Kunisaki et al., 2004) or the PS-binding protein, milk fat globule-
epidermal growth factor 8 (MFG-E8) (Hanayama et al., 2004) have demonstrated the
occurrence of numerous unengulfed apoptotic cells and autoimmune disease, thus providing
compelling evidence that PS-dependent programmed cell clearance is required for maintenance
of tissue homeostasis. Injection of an MFG-E8 mutant protein that binds to PS but fails to
bridge the apoptotic cells to macrophage receptors also results in impairment of apoptotic cell
engulfment and production of autoantibodies in mice (Asano et al., 2004). Furthermore,
inactivation of the C. elegans PSR homolog, PSR-1, also results in an engulfment defect and
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PSR-1 is found to act upstream of the CED-5/CED-12 engulfment pathway and may transduce
the PS “eat-me” signal through its interacting proteins, CED-5 and CED-12 (Wang et al.,
2003). Similarly, knockdown of the zebrafish PSR homolog (zfpsr) by a PSR morpholino
oligonucleotide led to accumulation of a large number of dead apoptotic cells during
development (Hong et al., 2004). Moreover, the Drosophila PSR homolog (dPSR) plays an
important role in mediating the removal of growth-disadvantaged cells that have reduced
ribosomal protein gene dose by neighboring wild-type cells through a phagocytic mechanism
(Li and Baker, 2007), although in a different study no obvious defect in engulfment of apoptotic
cells was found in dPSR-deficient flies and instead dPSR appeared to function to inhibit
apoptosis (Krieser et al., 2007). In a third study involving PSR-deficient mice, Böse et al.
(2004) reported that PSR-deficient macrophages were impaired in pro- and anti-inflammatory
cytokine signaling after stimulation with apoptotic cells, but they could not document any
impairment of apoptotic cell engulfment. Therefore, one may conclude that PSR plays a
conserved role in phagocytosis of apoptotic or non-apoptotic cells in multiple organisms but
may not be the dominant receptor for phagocytosis. It also should be noted that PSR is so far
the only conserved candidate PS receptor, as the other proposed PS receptors discussed above
are not found in worms or fruit flies. Further analysis of PSR, and in particular the cellular
localization pattern of the endogenous PSR protein will be critical for understanding how PSR
is involved in phagocytosis and animal development.

Despite the prevailing view that PS exposure on the plasma membrane induces phagocytosis,
recent studies of TAT-1-deficient worms have shown that the loss of living cells with ectopic
exposure of PS appears to be random and non-exhaustive but is completely dependent on the
activity of PSR-1 and another worm phagocyte receptor CED-1, which acts in a different
engulfment pathway from PSR-1 (Darland-Ransom et al., 2008). This raises the possibility
that engagement of a single cell surface receptor for PS may not suffice to trigger phagocytosis,
and that other “eat-me” signals or multiple receptors or pathways need to be engaged for
efficient removal of apoptotic cells. This observation may also explain the weak engulfment
defect observed in PSR-deficient animals, as discussed above. Our previous studies in
mammalian model systems have suggested that oxidation of PS may be required for efficient
macrophage clearance of apoptotic cell corpses (Kagan et al., 2002). Interestingly, the murine
scavenger receptor, CD36 was shown to specifically recognize oxidized forms of PS
(Greenberg et al., 2006) and the CD36-related receptor, croquemort, is also implicated in
apoptotic corpse clearance in Drosophila (Franc et al., 1999). It is thus possible that different
macrophage receptors may have very specific preferences for certain species of lipid generated
during apoptosis (Fadeel et al., 2007). Alternatively, or additionally, other engulfment signals
or pathways may also be required for efficient engulfment of apoptotic cell corpses. We
recently reported that PS externalization alone is not sufficient for macrophage disposal of
neutrophils (Jitkaew et al., 2009). However, addition of recombinant MFG-E8, a PS-binding
protein, restored engulfment of target cells, thus enforcing the view that bridging molecules
such as MFG-E8 may activate a different signaling pathway that is required for opsonization
and efficient engulfment of target cells. Besides being a binding partner for the integrin
receptor, MFG-E8 may also bind transglutaminase 2 (TG2) on macrophages (Toth et al.,
2009). Indeed, the presence of TG2 was shown to be important for the formation of an efficient
phagocytic “portal” for internalization of apoptotic cells. Therefore, a single recognition signal
may trigger the activation of multiple pathways through different receptors, which coordinately
may lead to efficient engulfment of cells with surface exposed PS.

Novel pathways of phosphatidylserine externalization: role in the resolution
of inflammation

While the externalization of PS has been linked to the apoptotic program and is frequently
employed as a marker of apoptotic cell death (van Genderen et al., 2006), several studies have
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demonstrated that caspase-independent and/or non-apoptotic pathways of PS exposure also
exist. For instance, PS exposure is seen during B cell activation (Dillon et al., 2000) and mast
cell degranulation (Martin et al., 2000) and transient PS exposure is also observed during
stimulation of neutrophils with the chemotactic peptide formylated Met-Leu-Phe (fMLP)
(Frasch et al., 2004). Our previous work demonstrated that neutrophils possess two different
pathways of PS exposure: a caspase-dependent pathway associated with induction of
constitutive apoptosis, and a ROS-dependent, caspase-independent pathway following
neutrophil activation (Fadeel et al., 1998). More recently, we have identified an additional,
novel pathway of PS externalization in primary human neutrophils that is neither caspase-
dependent nor ROS-dependent but is induced by neighboring phagocytes in a manner that is
dependent on cell-cell contact (Jitkaew et al., 2009). In another recent study, activated
macrophages were shown to cause inhibition of aminophospholipid translocation in the plasma
membrane of neighboring, “innocent” target cells via a nitrosative stress-dependent
mechanism, resulting in PS exposure on the surface of the latter cells and subsequent
engulfment by macrophages (Tyurina et al., 2007). PS-dependent clearance of apoptotic cells
by macrophages plays an active role in the resolution of inflammation, through production of
anti-inflammatory cytokines such as transforming growth factor-β and down-regulation of pro-
inflammatory mediators such as tumor necrosis factor-α (Voll et al., 1997; Fadok et al.,
1998). The novel observation of macrophage-induced PS exposure in bystander neutrophils
(Jitkaew et al., 2009) and other target cells (Tyurina et al., 2007) suggests that activated
macrophages may engage in a PS-dependent feedback mechanism that potentially could serve
to limit excessive inflammatory responses.

Concluding remarks
Several putative lipid transporter activities have been implicated in the generation,
maintenance, and alteration of phospholipid asymmetry in the plasma membrane, which are
critical for maintaining cell integrity and physiology and for regulating multiple important
cellular events. However, it has been difficult to assign these activities to specific molecular
entities. Recent studies in the model organism C. elegans have revealed a role for the P4 ATPase
homolog, TAT-1, in the maintenance of phospholipid asymmetry in living cells, and have
unearthed a novel mitochondria-to-plasma membrane signaling pathway that promotes the
disruption of lipid asymmetry in apoptotic cells. The latter pathway involves the WAH-1 (worm
homolog of AIF)-dependent activation of SCRM-1, a homolog of the mammalian phospholipid
scramblases, in the plasma membrane (see Figure 4, for a schematic diagram). The mechanisms
of lipid asymmetry and its disruption are thus beginning to unravel. Collectively, studies in
this exciting field of research have served to elucidate how crucial biological functions are
encoded into the vectorial distribution of plasma membrane phospholipids.

Box 1 Examples of human diseases associated with defects in lipid
transporters

Mutations in the Atp8B1 gene encoding a putative member of the flippase family are the
cause of progressive familial intrahepatic cholestasis type I (Klomp et al., 2000), originally
described as “Byler disease” in an Amish kindred. The disease primarily manifests itself as
a chronic intrahepatic cholestasis, which progresses to severe, end-stage liver disease before
adolescence. The patients display impaired hepatobiliary bile salt secretion and normal
serum cholesterol. Overexpression of Atp8B1 was shown to result in energy-dependent PS
translocation in a model cell line (Ujhazy et al., 2001). However, it is not known whether
the absence of the putative aminophospolipid translocase activity is related to the
pathogenesis of this severe disease.

Mutations in the ATP-binding cassette (ABC) transporter, ABCA1, a candidate floppase,
are responsible for Tangier disease (Bodzioch et al., 1999; Brooks-Wilson et al., 1999; Rust
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et al., 1999), an autosomal recessive disorder characterized by the absence of high-density
lipoprotein (HDL), reduced levels of low-density lipoprotein (LDL), and mildly elevated
triglycerides. Tangier patients are at high risk for developing premature coronary artery
disease (atherosclerosis). Mice with a targeted inactivation of ABCA1 are unable to load
cholesterol and phospholipids to apoA-1, implicating ABCA1 in the efflux of these lipids
from cells (Orso et al., 2000; McNeish et al., 2000).

Scott syndrome is a rare congenital bleeding disorder, characterized by an impaired ability
of the patients' platelets to promote blood coagulation (Weiss et al., 1979). Platelets from
these individuals are deficient for Ca2+-induced phospholipid scramblase activity in the
plasma membrane, resulting in a reduced exposure of procoagulant PS on the outer surface
of the cell (reviewed in Zwaal et al., 2004). The molecular lesions responsible for the
underlying genetic defect have yet to be determined.
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Figure 1.
Phospholipid asymmetry and related lipid-translocating enzymes. In the plasma membrane of
normal eukaryotic cells, phosphatidylcholine (PC) and sphingomyelin (SM) are present
predominantly in the outer leaflet. Phosphatidylethanolamine (PE) and phosphatidylinositol
(PI) reside mainly in the inner leaflet, while phosphatidylserine (PS) is located almost
exclusively in the inner leaflet of the plasma membrane. Phospholipid asymmetry may be
maintained or altered through the action of three classes of proteins, as discussed in the present
review: phospholipid scramblases, ATP-binding cassette (ABC) transporters, and
aminophospholipid translocases. The graph shows the transbilayer distribution of
phospholipids across the human erythrocyte membrane (adapted from Daleke 2008).

Fadeel and Xue Page 18

Crit Rev Biochem Mol Biol. Author manuscript; available in PMC 2010 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Exposure of PS on the surface of C. elegans germ cells in tat-1-deficient worms. Exposed
gonads of the following hermaphrodite adult worms were stained with the PS-binding protein,
annexin V: (A) wild-type, (B) tat-1(tm1034), and (C) tat-3(tm1275), as described in Darland-
Ransom et al. (2008). Images of differential contrast interference (DIC), annexin V staining,
Hoechst 33342 staining, and the merged image of annexin V plus Hoechst 33342 staining are
shown. The data show that reduction of tat-1 activity, but not of related tat-3 activity is
sufficient to disrupt asymmetrical PS distribution on the surface of C. elegans germ cells. Scale
bars correspond to 6.5 μm.

Fadeel and Xue Page 19

Crit Rev Biochem Mol Biol. Author manuscript; available in PMC 2010 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
wah-1 and scrm-1 promote PS exposure on the surface of apoptotic germ cells in C. elegans.
(A, B) The exposed gonad of a ced-1(e1735) (A) hermaphrodite animal or a ced-1(e1735);
ced-3(n717) (B) animal was stained with annexin V and Hoechst 33342. Germ cell corpses
were identified by their raised-button-like morphology under Nomarski optics and the
condensed Hoechst 33342 staining pattern, as detailed in Wang et al. (2007). Germ cell corpses
stained with both Hoechst and annexin V are indicated by white arrows, and those that were
stained with Hoechst but not with annexin V are indicated with red arrows. The scale bar
represents 6.5 μm. (C, D) SCRM-1 localizes to the plasma membrane. Images of FITC
(SCRM-1 antibody staining) and FITC-DAPI C. elegans 16-cell stage wild-type (C) or scrm-1
(tm805) (D) embryos are shown. The scale bars correspond to 1 μm.
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Figure 4.
Plasma membrane lipid transporters regulate the distribution of the phospholipid, PS. In
quiescent cells, energy (ATP)-dependent translocation of PS from the outer to the inner leaflet
of the plasma membrane serves to maintain the absolute asymmetry of PS distribution. Upon
activation of the cell death program, the mitochondrial apoptogenic factor, WAH-1 (worm
homolog of AIF) exits from mitochondria and activates the lipid scrambling activity of the
plasma membrane phospholipid scramblase, SCRM-1. The bi-directional scrambling of
phospholipids destroys the asymmetrical distribution of PS. Externalized PS serves as a signal
to trigger engulfment by phagocytes through its binding to the PS receptor, PSR-1 (not shown).
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