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Abstract
The maintenance of immune surveillance and the generation of normal immune responses are
dependent on leukocyte migration to appropriate lymphoid and nonlymphoid tissues. The process of
leukocyte migration occurs through complex and highly regulated interactions between the
circulating leukocytes and the vascular endothelium. Multiple families of adhesion molecules as well
as specific chemoattractants and their cognate receptors function to stabilize these interactions and
induce migration into the tissue. L-selectin is a key adhesion molecule that regulates both the
migration of leukocytes at sites of inflammation and the recirculation of lymphocytes between blood
and lymphoid tissues. L-selectin-mediated lymphocyte recirculation is required for maintaining the
appropriate tissue distribution of lymphocyte subpopulations including naïve and effector subsets
such as regulatory T cells. In addition, L-selectin-mediated entry into peripheral lymph nodes is
required for optimal induction of lymphocyte homeostatic proliferation during lymphopenia.
Importantly, L-selectin has been shown to have both adhesive and signaling functions during
leukocyte migration. Specifically, L-selectin is highly efficient at capturing free-flowing leukocytes
from the blood and supporting subsequent fast rolling interactions along the vascular endothelium.
During rolling, synergistic interactions between L-selectin and integrin functions slow leukocyte
rolling velocities allowing for chemoattractant-induced activation and eventual firm adhesion of the
leukocyte to the vascular endothelium. Engagement of L-selectin by ligand generates transmembrane
signals leading to activation of intracellular signaling pathways, increased integrin binding affinity,
and enhanced chemotaxis. L-selectin has also been shown to mediate leukocyte recruitment during
chronic inflammatory and autoimmune diseases and thus is a potential therapeutic target for drug
development.
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1. Introduction
The ability of leukocytes to stably interact with the vascular endothelium is requisite to their
ability to enter sites of inflammation. Leukocytes utilize multiple adhesion molecules in a
tightly controlled and highly orchestrated process to overcome the high shear stresses
encountered within venules and enter the tissues. This process has been termed an “adhesion
cascade” and is defined as a series of overlapping and synergistic interactions among different
families of adhesion molecules and chemoattractants such as chemokines [1]. Leukocytes must
first be captured or tethered from the flowing blood allowing them to roll along the venular
wall and become activated by chemoattractants that are displayed on the endothelial surface
(Fig. 1). Leukocyte activation results in firm adhesion and arrest and ultimately transendothelial
migration into the tissue. Additional steps in this process such as slow rolling, adhesion
strengthening and spreading, intravascular crawling and the route of transmigration make this
process even more complex [2]. This migratory pathway out of the blood stream is also utilized
by lymphocytes as they undergo recirculation through the peripheral lymphoid tissues, such
as the lymph nodes and Peyer's patches. Thus, leukocyte migration at sites of inflammation,
and lymphocyte recirculation, are integral components of immune surveillance and promote
the generation of rapid and effective immune responses.

Leukocyte interactions with the vascular endothelium involve four families of adhesion
molecules: selectins, mucins, integrins and immunoglobulin (Ig) superfamily members. The
initial capture and rolling of leukocytes is primarily mediated by the selectins (L-, P-, and E-
selectin) binding to their respective mucin ligands (for example: glycosylation-dependent cell
adhesion molecule-1, GlyCAM-1; P-selectin glycoprotein ligand-1, PSGL-1; E-selectin
ligand-1) although the α4 integrins, α4β1 (very late antigen-4, VLA-4) and α4β7, can also
mediate capture [3]. The selectins all contain a unique domain structure consisting of an amino
terminal calcium-dependent lectin domain, an epidermal growth factor-like domain, and a
number of short consensus repeat domains (Fig. 2). While highly homologous in structure,
marked differences do occur between the selectins. For example, L-selectin is expressed by all
classes of leukocytes, while P- and E-selectin are expressed by inflamed endothelium with P-
selectin also being expressed on activated platelets. Unique among the selectins, L-selectin
contains a membrane-proximal enzymatic cleavage site that results in the rapid release of L-
selectin from the cell surface following leukocyte activation. Cleavage of L-selectin results in
the production of a soluble molecule that is functional in vivo [4]. Cleavage is also necessary
for the maintenance of appropriate cell-surface L-selectin expression levels and normal
leukocyte migration [5]. Furthermore, while L- and P-selectin are very efficient in mediating
leukocyte capture and support rolling at relatively fast velocities, E-selectin has very limited
capturing ability but does support leukocyte rolling at very slow velocities [6]. Leukocyte
rolling can also be influenced by integrin function. Specifically, integrins binding to their Ig
superfamily ligands can stabilize rolling interactions and mediate the transition from fast to
slow rolling. For example, αLβ2 integrin (leukocyte function-associated antigen-1, LFA-1)/
intercellular adhesion molecule-1 (ICAM-1), VLA-4/vascular cell adhesion molecule-1
(VCAM-1), and α4β7 integrin/mucosal addressin cell adhesion molecule-1 (MAdCAM-1)
interactions have all been reported to slow leukocyte rolling velocities and ultimately mediate
firm adhesion to the endothelium [3,7,8].

2. L-selectin-mediated leukocyte adhesion and migration
L-selectin mediates leukocyte migration through both adhesive and signaling interactions.
Since L-selectin, like all selectins, is constitutively active, its function is largely regulated
through the expression of appropriate ligands. Many different ligands for L-selectin have been
identified, which are expressed in vascular as well as non-vascular sites [reviewed in 9].
Vascular L-selectin ligands predominantly expressed by specialized venules called high
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endothelial venules (HEV) located within peripheral lymph nodes (PLN) are identified by the
MECA-79 monoclonal antibody (mAb) and are collectively called the peripheral node
addressins (PNAd, Table 1). The constitutive expression of L-selectin by naïve lymphocytes
and PNAd by HEV within PLNs mediates the continuous recirculation of lymphocytes between
blood and lymph. The generation of L-selectin-deficient (L-selectin−/−) mice [10] has clearly
demonstrated the dominant role of L-selectin in mediating lymphocyte migration to the PLNs
(Fig. 3). This recirculation of lymphocytes is paramount to immune surveillance and the
generation of rapid and efficient adaptive immune responses. L-selectin also supports
lymphocyte migration to the mesenteric lymph nodes and Peyer's patches through interactions
with PNAd and/or MAdCAM-1, which can also serve as L-selectin ligands, expressed on the
HEV. In fact, virtually all lymphocyte migration across HEV in lymphoid tissues is controlled
by L-selectin and α4β7 integrin function [11].

L-selectin ligands can also be induced on the endothelium of inflamed tissues. Specifically,
vascular L-selectin ligands are expressed at cutaneous sites of chronic inflammation [12], acute
dermatitis [13], Grave's disease and Hashimoto's thyroiditis [14], rheumatoid arthritis [15],
diabetes [16], and asthma [17]. In addition, activation of endothelial cell cultures with pro-
inflammatory cytokines such as tumor necrosis factor-α (TNFα) induces L-selectin ligand
expression and increased L-selectin-dependent leukocyte adhesion [18]. Interestingly, the
cutaneous lymphocyte-associated antigen (CLA), which is a sialyl LewisX-like determinant
that is recognized by the mAb HECA-452, is upregulated on inflamed endothelium where it
serves as a vascular L-selectin ligand [19]. Leukocytes also express L-selectin ligands, the best
studied of these being PSGL-1 [20]. The expression of L-selectin ligands by leukocytes allows
for L-selectin-mediated interactions to occur between free flowing leukocytes and leukocytes
already attached to the endothelium, a process termed “secondary tethering.” L-selectin-
mediated secondary tethering has been shown to be an important mechanism for increasing
leukocyte recruitment at sites of inflammation [21]. Therefore, L-selectin ligands expressed
on both vascular endothelium and on leukocytes contribute significantly to leukocyte
migration.

3. L-selectin-mediated signal transduction
In addition to its adhesive function, L-selectin also serves as a signal transduction molecule.
Specifically, engagement of L-selectin results in the activation of intracellular signaling
pathways leading to integrin activation and increased leukocyte adhesion to the endothelium
[22,23]. L-selectin signaling also plays an important role in the subsequent chemotaxis of
adhered leukocytes. Specifically, during in vivo studies of leukocyte recruitment, L-
selectin−/− leukocytes demonstrated significantly reduced emigration away from the blood
vessel wall compared to wild type leukocytes [5,24]. In addition, ligation of L-selectin in the
presence of chemoattractants can synergistically increase leukocyte chemotaxis in vitro [25],
possibly by increasing surface expression of the corresponding receptor [26]. However, this is
unlikely to be the only mechanism since ligation of L-selectin on T cells significantly increased
their chemotaxis to secondary lymphoid tissue chemokine (SLC) without affecting surface
expression of the receptor for SLC, CC chemokine receptor (CCR) 7 [9]. Thus, L-selectin
functions at multiple points during the recruitment process to mediate the efficient migration
of leukocytes into the tissue.

4. Role of L-selectin in mediating leukocyte migration to cutaneous sites of
inflammation

It is generally considered that most leukocyte migration to cutaneous sites is regulated by the
expression of E- and/or P-selectin on dermal venules [reviewed in 27]. Importantly, E-selectin
is constitutively expressed at low levels on noninflamed skin vessels and correlates with the
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presence of large numbers of CLA+ memory T cells in the normal skin [28,29]. In addition,
the importance of the endothelial selectins in mediating cutaneous immune responses and
surveillance has been demonstrated with the production of E- and P-selectin double-deficient
mice (E/P-selectin−/−) [30]. The striking phenotype of these mice is their significantly increased
susceptibility to spontaneous mucocutaneous infections and the development of nonulcerative
skin lesions and hair loss. Furthermore, use of the E/P-selectin−/− mice in models of cutaneous
inflammation have revealed roles for the endothelial selectins that were not observed in the
single-deficient mice (Table 2).

Despite the prominent role of the endothelial selectins, a number of studies using blocking
mAbs or gene-targeted mice have also demonstrated an important role for L-selectin in
mediating cutaneous inflammation (Table 2). Specifically, skin allograft rejection was
significantly delayed and T cell migration into the graft was reduced in L-selectin−/− mice even
with the generation of equivalent cytotoxic T lymphocyte responses [31,32]. Delayed type
hypersensitivity (DTH) responses and contact hypersensitivity responses (CHS) were both
found to be significantly reduced in L-selectin−/− mice [32,33]. Similarly, immediate type
hypersensitivity responses were reduced in L-selectin−/− mice including decreased mast cell
recruitment to the skin and decreased IgE production [34]. Studies of acute cutaneous immune
complex-mediated inflammation demonstrated reduced edema and hemorrhage, decreased
neutrophil and mast cell recruitment, and reduced production of TNFα in the absence of L-
selectin expression [35]. These results are consistent with the finding of reduced chemokine-
induced neutrophil migration into the skin of L-selectin−/− animals [32]. Interestingly, a role
for L-selectin in wound healing was revealed in the absence of ICAM-1 expression.
Specifically, the additional loss of L-selectin expression in ICAM-1-deficient mice resulted in
decreased keratinocyte migration, granulation tissue formation and early neutrophil
recruitment beyond that observed for ICAM-1-deficient mice alone [36]. However, optimal
wound healing was found to require the cooperative interactions of all three selectins and
ICAM-1 [37]. Thus, multiple adhesion pathways can support leukocyte migration into
cutaneous sites of inflammation.

5. L-selectin regulates the migration of regulatory T cells
Regulatory T cells (Treg), typically identified as having a CD4+ CD25+ Foxp3+ phenotype, are
involved in regulating a broad array of immune functions including inflammatory responses,
tolerance, and T cell homeostasis. Treg cells can influence immune responses through both
direct cell contact and through cytokine production [38,39]. Like conventional CD4+ T cells,
the majority of Treg cells express L-selectin [40] and utilize its function for migration and
maintenance of normal tissue distribution [41]. By contrast, Treg cells have two-fold higher L-
selectin mRNA levels and have a higher rate of cell-surface L-selectin turnover than
conventional CD4+ T cells [41]. Interestingly, Treg cells maintain an equivalent level of cell-
surface L-selectin as conventional CD4+ T cells by having increased enzymatic cleavage. Thus,
L-selectin function is required for normal Treg cell migration.

Treg cells also play a significant role in the control of cutaneous inflammation. Treg cell
populations found in the skin express a unique phenotype with high levels of L-selectin and
CLA, along with the chemokine receptors CCR4 and CCR6 [42]. Numerous reports have
indicated that Treg cells control inflammation in CHS reactions [43-45]. Treg cells can regulate
inflammation in the skin through multiple mechanisms including cutaneous cytokine
production [45,46], the suppression of mast cell degranulation [47], and/or through a Fas-
ligand-dependent mechanism [43]. Importantly, Treg cell migration into inflamed skin is
required for the proper resolution of inflammation during CHS responses [44]. In addition,
Foxp3-deficient scurfy mice reconstituted with non-skin homing Treg cells developed severe
cutaneous inflammation, even though Treg cells were found in normal frequencies and could
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function in all other tissues examined [48]. Therefore, Treg cells are important in the control
of cutaneous inflammation, and Treg cell migration to, and residency in, the skin is necessary
for normal cutaneous homeostasis.

6. L-selectin-mediated lymphocyte migration is maintained and required for
optimal induction of acute homeostatic proliferation

The maintenance of sufficient lymphocyte numbers is attained through the regulation of cell
proliferation and death. Under lymphopenic conditions, both naïve and memory T cells can
undergo homeostatic proliferation to boost T cell numbers. Murine models of lymphopenia
such as recombination activating gene-1 deficiency (RAG-1−/−), CD3ε deficiency, or
irradiation have been widely used to study homeostatic proliferation. Importantly, in humans,
lymphopenia can be caused by viral infections such as HIV, exposure to radiation, and
chemotherapy. The regulation of T cell homeostatic proliferation is dependent on accessibility
to and interaction with a number of factors including cytokines such as interleukin (IL)-7 and
IL-15, as well as major histocompatibility complex (MHC)-self peptides [reviewed in 49].
However, the dependence of CD4+ or CD8+ T cells on these factors varies. Interestingly,
CD4+ T cells proliferate less efficiently than CD8+ T cells, which may be due to the
downregulation of MHC class II expression on dendritic cells induced by increased systemic
IL-7 concentrations present during lymphopenia [50]. T cells that have undergone homeostatic
proliferation acquire an effector/memory phenotype, including the upregulation of CD44 and
IL-2Rβ, and increased memory-like function including the ability to respond to lower antigen
doses, the capacity to rapidly secrete interferon γ and become cytotoxic upon cognate antigen
stimulation, and the ability to mediate accelerated allograft rejection [51-53]. Furthermore,
these cells also show modest decreases in CCR7 expression and chemotaxis to SLC, while
upregulating expression of CXCR4 and chemotaxis to stromal cell-derived factor (SDF)-1α
[54] However, homeostatically proliferated T cells retain L-selectin expression and preserve
the ability to migrate through HEV into PLNs [54]. Therefore, homeostatically proliferated T
cells display traits of both naïve and antigen-activated cells. Importantly, recurrent periods of
lymphopenia-induced homeostatic proliferation may be linked to the development of
autoimmunity presumably due to the selection and proliferation of high-affinity MHC-self
peptide reactive T cells [55,56].

T cell homeostatic proliferation is dependent upon migration into secondary lymphoid tissues
to gain access to homeostatic growth factors. Specifically, mice that lack the CCR7 ligands
SLC and ELC show a 50-70% reduction in T cell homeostatic proliferation [57]. Current work
in our lab indicates that L-selectin-mediated migration into lymph nodes is crucial for optimal
induction of homeostatic proliferation. Specifically, intravenous injection of wild type T cells
into RAG-1−/− mice resulted in robust homeostatic proliferation while the loss of L-selectin-
mediated migration reduced the number of homeostatically proliferated T cells in the spleen
and blood by 50-70% (Fig. 4). Interestingly, while few L-selectin−/− transferred T cells were
found within the PLN, they demonstrated a similar degree of homeostatic proliferation as the
wild type control cells. Furthermore, L-selectin−/− T cells injected subcutaneously (non-HEV-
mediated PLN entry) eliminated the defect in homeostatic proliferation observed with
intravenous injection. Taken together, these results indicate that homeostatic proliferation
occurs primarily in lymph nodes, and that migration to lymph nodes is crucial for access to
homeostatic growth factors.

7. L-selectin-directed therapies
The role of L-selectin in mediating the aberrant migration of leukocytes has been demonstrated
in numerous autoimmune and inflammatory disorders. Thus, the potential to block L-selectin-
mediated adhesion makes it an attractive therapeutic target. However, while both biological
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and small-molecule L-selectin functional inhibitors have shown great promise in animal
models, few of these successes have translated to the effective treatment of human diseases.
In fact, only one selectin-directed therapy has so far demonstrated clinical success, the pan-
selectin antagonist bimosiamose. Bimosimose is a low molecular weight nonoligosaccharide
selectin inhibitor, and was reported to prevent P-, E-, and L-selectin-mediated adhesion in vitro
[58,59]. However, further studies in vivo have indicated that bimosiamose functions primarily
by blocking E-selectin-mediated adhesion [60]. Clinical trials using bimosiamose have shown
some promise, albeit limited. When bimosiamose was administered via inhalation in asthmatic
patients, there was a 50% reduction in late asthmatic reactions following challenge [61].
However, in a separate trial, a single i.v. administration of bimosiamose in asthmatic patients
did not attenuate early or late asthmatic responses in response to allergen challenge [62].
Importantly, psoriatic patients treated with bimosiamose showed a reduction in epidermal
thickness and lymphocyte infiltration [63]. Therefore, pan-selectin antagonists have shown
promise as potential therapeutics for human diseases.

In contrast to pan-selectin antagonists, specific L-selectin-directed therapies have had limited
success. Specifically, humanized anti-L-selectin mAbs (aselizumab) were found to
significantly increase survival time and decrease mortality in a baboon model of hemorrhagic-
traumatic shock [64]. However, in a phase II trial of traumatized patients, treatment with
aselizumab resulted in a trend toward higher infection rates, and no significant improvements
for any efficacy variables measured [65]. The targeting of Lselectin ligands is another possible
therapeutic strategy currently being explored. Importantly, blocking L-selectin ligands using
mAb treatment in a sheep asthma model resulted in decreased late phase airway responses and
airway hyperresponsiveness following airway challenge [17]. Therefore, it remains to be
determined how effective selectin-based therapies will be for the treatment of human disease.

8. Conclusions
L-selectin plays an important role in the complex process of leukocyte recruitment. By
functioning as both an adhesion and signaling molecule, L-selectin contributes to both the early
adhesive events as well as the later stages of chemotaxis and cell migration. L-selectin ligand
expression at sites of inflammation results in L-selectin playing an important role in the
development of autoimmune and chronic inflammatory diseases. However much remains to
be defined concerning L-selectin function. For example, despite the identification of numerous
different ligands recognized by L-selectin, little evidence for a physiologic role for any of these
molecules exists. While additional signaling functions for L-selectin are still being described,
understanding the role of these functions in vivo is largely lacking. Furthermore, the full
contribution of L-selectin to the recruitment of T effector cell populations (e.g., Th1, Th17,
Treg) during normal immune responses and disease conditions remains to be determined. As
the in vivo function of L-selectin is better understood it is likely that additional roles for this
versatile molecule in human health and disease will be described.
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Figure 1.
L-selectin-mediated leukocyte recruitment. The initial capture of free-flowing leukocytes is
mediated by L-selectin on leukocytes binding to endothelial ligands constitutively expressed
on HEV, inflamed vessels, or on previously adhered leukocytes (secondary tethering). L-
selectin alone mediates fast rolling, but synergistic interactions between L-selectin and integrin
functions slow the rolling velocity of the leukocyte, facilitating activation by chemoattractants
(e.g., chemokines) presented on the endothelium. Leukocyte activation (through L-selectin
ligation and chemokines) induces high affinity integrin-mediated firm adhesion. Ultimately,
the leukocyte transmigrates through the vascular endothelium and into the tissue. PAF, platelet-
activating factor; CXCR4, CXC chemokine receptor 4.
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Figure 2.
Structure of the human selectins. L-, P-, and E-selectin share a unique structure consisting of
the lectin, epidermal growth factor (EGF)-like, short consensus repeat (SCR), transmembrane
(TM), and cytoplasmic tail domains. Note the different number of SCR domains among the
selectin molecules. a.a., amino acid.
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Figure 3.
L-selectin mediates lymphocyte migration into PLN. Splenocytes isolated from wild type or
L-selectin−/− mice were labeled with carboxyfluorescein diacetate succinimidyl ester (CFSE;
0.5 μM, CFSEhigh or 0.05 μM, CFSElow) and injected (40 × 106 cells total) intravenously into
recipient mice. Thirty minutes after transfer, the spleen and PLNs from recipient animals were
harvested, cryosectioned, and immunostained for fluorescence light microscopy. In the left
column, all the injected cells were wild type. Both CFSEhigh (bright green, arrowheads) and
CFSElow (dull green, arrows) cells were observed in equivalent numbers in the spleen and PLN
of the recipient mice. In the right column, L-selectin−/− cells were labeled CFSEhigh and wild
type cells were labeled CFSElow. While both CFSEhigh and CFSElow cells were observed in
the spleen, only CFSElow cells (wild type) were found within the PLN. Red staining indicates
PNAd expression on the HEV.
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Figure 4.
L-selectin mediates optimal T cell homeostatic proliferation during lymphopenia. Wild type
or L-selectin−/− splenocytes were labeled with CFSE (0.25 μM) and injected (5 × 106 cells)
intravenously into RAG-1−/− recipient mice. Four days after transfer, the recipient spleen was
harvested, immunostained to detect T cells, and analyzed by flow cytometry. CFSE
fluorescence is decreased by one half with each cell division thus allowing proliferation to be
assessed in vivo. The transfer of wild type cells yielded robust homeostatic proliferation of T
cells, while the transfer of L-selectin−/− cells (i.e., excluded from entering the PLN) exhibited
much reduced proliferation.
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Table 1

L-selectin ligands
Name Expression Comments
GlyCAM-1a HEV PNAd subgroup, secreted
Sgp200 HEV PNAd subgroup, membrane bound and

secreted forms
CD34 Vascular endothelium

(including HEV)
PNAd subgroup, non-reactive forms in non-
HEV and non-inflamed vessels

Podocalyxin Vascular endothelium
(including HEV)

PNAd subgroup, non-reactive forms in non-
HEV and non-inflamed vessels

Endomucin Vascular endothelium
(including HEV)

PNAd subgroup, non-reactive forms in non-
HEV and non-inflamed vessels

Nepmucin HEV, some leukocytes PNAd subgroup, can also mediate binding
through Ig domain

MAdCAM-1 HEV, intestinal lamina
propria

Primarily mediates α4β7 integrin binding
through Ig domain, L-selectin binding
mediated by tissue-specific glycosylation

Endoglycan Leukocytes, vascular
endothelium

Selectin binding similar to PSGL-1

PSGL-1 Leukocytes Binds L-, P-, and E-selectin through
overlapping regions, mediates secondary
tethering

CLA Inflamed endothelium,
lymphocyte subsets

Defined by HECA-452 mAb, expressed on
skin-homing lymphocytes

a
GlyCAM-1, glycosylation dependent cell adhesion molecule-1; HEV, high endothelial venule; PNAd, peripheral node addressins; Ig, immunoglobulin;

MAdCAM-1, mucosal addressin cell adhesion molecule-1; PSGL-1, P-selectin glycoprotein ligand-1; CLA, cutaneous lymphocyte-associated antigen.
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Table 2

Selectin-deficient mice and cutaneous inflammation
Molecule Gross abnormalities of

deficient mice
Role in skin inflammation

L-selectin None [10] L-selectin-deficiency causes delayed
skin allograft rejection, reduced DTH
reactions, and delayed wound healing
[31-34,36].

P-selectin None [66] P-selectin-deficiency has no effect on
skin allograft rejection and wound
healing, but exhibits variable effects
on DTH reactions [31,67-70].

E-selectin None [71] E-selectin-deficiency has no effect on
DTH reactions or wound healing [67,
 70,71].

P/E-selectin Spontaneous mucocutaneous
infections, development of
nonulcerative skin lesions and hair
loss, hypergammaglobulinemia,
highly elevated leukocyte counts
[30]

P- and E-selectin double-deficiency
significantly reduces DTH reactions
and wound healing [67,68,70].
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