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Summary
Heparin, the focus of this review, is a critically important anticoagulant drug produced from animal
sources, which was contaminated last year leading to a number of adverse side effects, some resulting
in death. Heparin is a highly acidic polysaccharide and a member of a family of biopolymers called
glycosaminoglycans. The structure and activities of heparin are detailed along with recent advances
in heparin structural analysis and biological evaluation. Current state-of-the-art chemical and
chemoenzymatic synthesis of heparin and new approaches for its metabolic engineering are
described. New technologies, including microarrays and digital microfluidics, are proposed for high-
throughput synthesis and screening of heparin and for the fabrication of an artificial Golgi.

GAG structure-activity overview
Heparin and heparan sulfate (HS) are the focus of the current review (Figure 1). Heparin is a
member of a family of polyanionic, polydisperse, linear polysaccharides called
glycosaminoglycans (GAGs), which perform a variety of critical biological functions and have
been extensively employed as therapeutic agents [1]. GAGs range from relatively simple
structures, such as hyaluronan, comprised of a repeating N-acetylglucosamine (GlcNAc)-
glucuronic acid (GlcA) disaccharide, to the extremely complex heparin/HS-GAGs made of
repeating uronic acid-glucosamine disaccharides with as many as 32 different disaccharide
building blocks comprising > 1014 possible sequences for an icosasaccharide chain. Heparin
and HS GAGs are structurally related and synthesized in the Golgi by the same biosynthetic
enzymes. While they are comprised of identical back-bone disaccharides, heparin and HS show
very different compositions with heparin containing a much higher density of N- and O-sulfo
groups [2]. Heparin/HS GAGs are covalently attached, through a tetrasaccharide linker, to
selected serine residues of a core protein and this glycoconjugate is called a proteoglycan (PG).
HS-PGs consist of one or more HS-GAG chains attached to a variety of cores, including integral
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transmembrane and glycosylphosphatidyl inositol-anchored proteins, and are generally
localized to the outer cell membrane or the extracellular matrix (ECM) of virtually all animal
cells, where they are involved in cell-cell interaction and signaling [3]. In contrast, the heparin-
PG is comprised only of the serglycin core and is localized intracellularly in the granules of a
selected group of cells, in particular mast cells [1]. Heparin is released as a GAG on mast cell
degranulation along with histamine in an allergic response. In summary, while biosynthesized
in a common pathway, heparin and HS are structurally distinctive, differentially localized, and
functionally unique.

Heparin/HS interact with a wide array of proteins, called heparin-binding proteins (Table 1),
modulating their biological activities [4]. The most studied of these interactions is between a
pentasaccharide sequence (Figure 1) in heparin and HS and the serine protease inhibitor
antithrombin (AT). This specific interaction leads to a conformational change in AT resulting
in its potent inhibition of thrombin and other serine proteases and heparin’s anticoagulant
activity [1]. Heparin, prepared from pig intestine, is currently in widespread use as an
anticoagulant drug with over 100 metric tons used annually. In 2008, a contamination of the
heparin supply caused a number of deaths in the US, leading to the introduction of sophisticated
analytical controls to secure the quality and safety of this critical pharmaceutical agent [5].
Recent studies have established specificity of HS interactions with chemokines (such as
interleukins) and growth factors and their receptors (such as fibroblast growth factor and its
receptors) [6,7]. These interactions are critical in cell migration in inflammation, metastasis,
and cell growth and differentiation in development and wound healing [6,8]. There is currently
an ongoing debate on how specific these interactions are and whether a single saccharide
sequence within heparin and HS or a collection of sequences give the appropriate spatial array
of sulfo groups responsible for protein binding and functional activity [9]. In any case it is clear
that the linear sequence of heparin/HS determines its three-dimensional structure and thus is
ultimately responsible for biological activity.

GAG structural analysis
Physicochemical properties and low abundance of naturally occurring GAGs (Table 2), and
the lack of amplification mechanism due to their non-template-dependent biosynthesis direct
the developments in GAG structural analysis. Currently, nanogram amounts of intact GAGs
can be assessed in terms of their concentration, polydispersity, charge density, and molecular
weight by capillary electrophoresis [10]. Saccharide composition of milligram amounts of
intact GAGs can be determined using multidimensional nuclear magnetic resonance (NMR)
spectroscopy [11–13]. Multidimensional NMR has been employed in elucidating the
composition and solution conformation of heparin and chemoenzymatically synthesized
[13C, 15N]-heparin, two critical parameters in understanding heparin’s structure-activity
relationship (SAR) [12].

High-resolution Fourier-transform ion cyclotron resonance mass spectrometric (MS) analysis
of intact GAG component of bikunin PG has been reported [14]; however, the MS structural
analysis of intact single chain in a mixture remains a challenge. In most studies, GAGs are
depolymerized to oligosaccharides prior to analysis under controlled enzymatic or chemical
conditions. MS coupled with on-line or off-line separation is the method of choice for structural
characterization of GAG oligosaccharides [15] providing femtomole sensitivity in the analysis
of underivatized oligosaccharides [10,15]. Multiple-stage MS oligosaccharide analysis is
useful in determining the saccharide modification pattern and C5 uronic acid epimerization
[16] and can differentiate structural isomers of the same molecular mass. [17] Novel ion-
activation methods effecting information-rich saccharide fragmentation have recently been
applied in the structural analysis of GAG oligosaccharides [16,18,19] and hold great potential
in microsequencing GAGs.
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GAG biological evaluation
Interactions between heparin/HS GAGs and numerous heparin-binding proteins mediate such
diverse biological processes as blood coagulation, cell growth and differentiation, host defense
and viral infection, lipid transport and clearance/metabolism, cell-cell and cell-matrix
signaling, inflammation, and cancer [4,20–23]. Thus, an understanding of GAG-protein
interactions at the molecular level is of fundamental importance to biology and to the design
of highly specific therapeutic agents [4,24]. Parameters that provide both qualitative and
quantitative information about heparin/HS-protein interactions include binding affinity and
kinetics (KD, on-rate, off-rate), thermodynamic parameters (ΔH, ΔS), binding stoichiometry,
and structural specificity characterized using affinity chromatography, isothermal titration
calorimetry, NMR, fluorescence spectroscopy, surface plasmon resonance, affinity
coelectrophoresis, equilibrium dialysis, competitive binding techniques, analytical
centrifugation, circular dichroism, and x-ray crystallography [25]. These studies suggest
several guiding principles behind protein-GAG interactions including: shallow binding sites
on the surface of the protein, ionic and hydrogen bonding interactions between arginine and
lysine residues of the protein and sulfo and carboxyl groups of the GAG, fast binding,
multivalent binding, and some but not all binding events being accompanied by conformational
changes in protein and GAG.

The knowledge of physicochemical parameters of protein-GAG interactions alone is
insufficient for determining GAG biological activity, and biological evaluation is required to
develop effective GAG-based drugs. In the case of anticoagulant activity, for example, while
binding to AT is important, in vitro blood coagulation assays and in vivo pharmacokinetic and
pharmacodynamic profiles, assessed using animal models, are required before clinical
evaluation of a new agent is possible [26].

GAG synthesis
Biosynthesis of GAGs

The biosynthesis of HS involves a series of specialized enzymes, including glycosyl
transferases, an epimerase, and sulfotransferases, essentially all of which have been cloned
[27]. Both the enzymes involved in the synthesis of linkage region tetrasaccharide and
polysaccharide backbone and the modifying enzymes impart high functional selectivity to the
HS. The modification reactions are carried out on the unsulfated polysaccharide backbone
consisting of GlcA-GlcNAc repeat (Figure 2). The glucosaminyl N-deacetylase/N-
sulfotransferase (NDST) converts a GlcNAc unit to N-sulfoglucosamine (GlcNS). After the
N-sulfonation, C5-epimerase converts some GlcA units to iduronic acid (IdoA). The
polysaccharide is then modified by the 2-O-sulfotransferase (2-OST), 6-O-sulfotransferase (6-
OST), and 3-O-sulfotransferase (3-OST), incorporating sulfo groups at the 2-position of IdoA
and GlcA and the 6- and 3-positions of the glucosamine (GlcN), respectively. Although the
modifications do not necessarily follow the sequence shown in Figure 2, NDST action on
GlcNAc dictates the levels of O-sulfonation and epimerization. The modifications in vivo are
typically incomplete, resulting in structurally heterogeneous polysaccharide products.

Chemical synthesis of GAGs
Despite major advances in carbohydrate chemistry, the chemical synthesis of heparin is still
not possible. Twenty five years ago a major effort resulted in the multistep chemical synthesis
of the heparin AT-binding site pentasaccharide [28]. This synthesis was critical in confirming
the structure of the AT-binding pentasaccharide and in understanding its SAR. Improvements
in this synthesis led to the successful introduction of the synthetic pentasaccharide drug,
Arixtra, a specific anti-factor Xa inhibitor [29]. This drug is expensive and has failed to capture
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more than a very small portion of the heparin market. Because of the difficulties inherent to
the chemical synthesis of carbohydrates, it is unlikely that heparin having an average of 40
saccharide units will ever be successfully synthesized.

Chemoenzymatic synthesis of GAGs
A promising alternative to chemical synthesis of HS/heparin is the enzyme-based approach,
which takes advantage of extremely high regioselectivity of HS biosynthetic enzymes. This
approach is particularly effective in synthesizing sulfated polysaccharides and large
oligosaccharides, where chemical synthesis often fails [30]. The chemoenzymatic synthesis
mimics the biosynthetic pathway of HS (Figure 2) affording a variety of HS structures with
desired biological activities, for example structures comparable to the heparin from natural
sources [12,31,32]. By selecting the appropriate combination of biosynthetic enzymes, a library
of sulfated polysaccharides has been prepared and employed in the identification of a novel
heparin structure with anticoagulant activity [33]. The structural diversity of the
chemoenzymatically synthesized HS can be expanded using enzyme engineering. Structurally-
guided site-directed mutagenesis has been used successfully to alter the substrate specificities
of 3-OST and 2-OST, thereby resulting in polysaccharide products that are not biosynthesized
by wild-type enzymes [34,35].

GAG synthesis through metabolic engineering of Chinese hamster ovary (CHO) cells
Health safety issues associated with the use of porcine heparin encouraged work on heparin
production through metabolic engineering. CHO cells are capable of biosynthesizing HS but
not heparin; however, CHO mutants defective in HS biosynthesis demonstrate the similarity
of CHO cell HS biosynthesis and heparin biosynthesis in connective tissue type mast cells
[36,37]. The selective expression of the NDST isoforms apparently determines whether HS or
heparin is synthesized [38]. Indeed, > 80% of the GlcN residues in mast cell heparin are GlcNS,
while > 50% of the GlcN residues in CHO cell HS are GlcNAc [39]. Wild-type CHO cells
express two out of the four NDSTs, one out of the three 6-OSTs, and none of the seven 3-OSTs
found in human, which explains structural simplicity of HS produced by these cells [37]. Thus,
the CHO-cell HS lacks some of the biological activities observed in HS produced by other cell
types. Biosynthesis of heparin-like HS in CHO cells would require: 1. Over-expression of an
appropriate core protein for carrying the CHO heparin outside the cell and releasing it into the
culture supernatant; 2. Controlled expression of the NDST isoforms; 3. Co-localization of
sufficient amounts of C5 epimerase and 2-OST; 4. Maintaining sufficient levels and the correct
Golgi localization of the appropriate 6-OST isoforms; and 5. Expression and the correct Golgi
localization of 3-OST isoforms. While challenging, such steps do not require inventing new
methodologies, thus the potential for metabolically engineered cell culture for HS synthesis is
high, particularly for the generation of HS analogs.

High-throughput synthesis and screening of bioactive GAGs
Microfluidics and lab-on-a-chip technologies have received considerable attention for their
reduced reagent consumption and analysis time, increased reaction control and throughput,
and amenability to full automation associated with the microscale reaction format [25,40,41].
Both microarray- and microfluidic-based platforms allow rapid synthesis seamlessly coupled
with bioactivity screening. This flexibility is ideally suited for the rapidly expanding field of
glycomics, a study of expression, SAR, and biological mechanisms of glycans, as well as for
designing unnatural glycans that may serve as new therapeutics [42]. Glycomics-on-a-chip
approaches have been advanced, primarily involving high-throughput microarray-based
screening of glycan-protein interactions [43,44]. For example, a heparin glycan chip with a
4800-fold enhanced signal-to-noise ratio, as compared to the control without heparin, has been
developed for high-throughput analysis of heparin-AT interactions for potential therapeutic
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applications [45]. Enhanced interactions of complex glycans with cells may be facilitated by
advances in the design of three-dimensional human cell culture microarrays [46], enabling a
combination of cell-based and biomolecular assays to be performed in very high throughput.

Microfluidic systems lack the immediate high-throughput character of microarrays; however,
they may provide environments that more accurately mimic biological synthesis and can be
manipulated leading to new biosynthetic and biological screening designs. Currently, two types
of microfluidic systems have been developed: 1. Channel microfluidics, consisting of fluid
flow in patterned channels; and 2. Digital microfluidics, consisting of open droplet movement
on a two-dimensional grid-like platform, which eliminates many of the constraints associated
with fixed channels. Since digital microfluidics manipulates samples and reagents in the form
of discrete droplets and due to the geometry of the array, it is more easily reconfigured than a
channel device, allowing for a greater number of paths through the system and droplet size
tailored from nanoliter to microliter volumes [41]. This permits a variety of functions without
the need to redesign the device expanding the range of applications from assays to sample
preparation [40,47].

Microfluidic GAG synthesis – development of an artificial Golgi organelle
The Golgi is the organelle responsible for the posttranslational protein glycosylation, a
multistep non-template-dependent process resulting in the synthesis of glycoproteins and PGs.
The structural microheterogeneity of HS originates in the complex organization of the Golgi
that, in a simplified view, acts as a network of nanofluidic channels and membranes containing
a number of enzymes. GAG synthesis through the Golgi is the result of precise control of the
fluid flow and biocatalytic transformations (Figure 3). As the first step toward the construction
of the artificial Golgi, HS has been successfully modified by 3-OST on a digital microfluidic
platform[48]. Biotinylated HS, immobilized on streptavidin-coated magnetic nanoparticles,
has been brought in contact with 3-OST-1 in a digital microfluidic device (Figure 3). Analysis
of the 3-OST-modified HS showed 70-fold greater amount of 3-O-sulfation compared with the
unmodified control. This approach may aid in the design of biosynthetic heparin, rendering
current unsafe methods of heparin production from animal tissue obsolete [49].

Conclusions
The remarkable therapeutic and biological importance of heparin/HS ensures a continued
interest in advancing new technologies for their synthesis and to understand their SAR. The
future should bring an improved understanding of Golgi-based heparin/HS biosynthesis, its
control and scale-up, and the rapid, microscale analysis of heparin/HS leading to the production
of bioengineered anticoagulant heparin and a novel array of designer heparin-based
therapeutics.
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Figure 1.
Heparin and HS. A. The prominent trisulfated disaccharide-repeating unit in heparin represents
80–90% of its structure. B. HS has a more variable structure and primarily consists of
monosulfated and unsulfated disaccharide units. It has a domain structure in which the more
highly sulfated repeating units are clustered. C. An AT-binding pentasaccharide site is shown.
There is some variability both within this AT-binding site and in surrounding residues, but all
contain the critical 3-O-sulfo group in the central saccharide residue. Both heparin and HS can
contain this site or one of its structural variants.
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Figure 2.
Biosynthetic pathway and chemoenzymatic synthesis of HS. The polysaccharide backbone
synthesis is omitted for clarity. The recombinant biosynthetic HS modifying enzymes are
obtained from bacterial expression. To improve cost-efficiency, a low-cost sulfo donor, p-
nitrophenol sulfate is coupled with the 3′-phosphoadenosine-5′-phosphosulfate regeneration
system for use with HS sulfotransferases
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Figure 3.
The Golgi and artificial Golgi. A. Cartoon of the Golgi: The direction of flow (pink arrow) in
posttranslational modification is from the endoplasmic reticulum (red) to the cell membrane
(yellow), where PGs and glycoproteins are released into the extracellular environment. B. The
design of an artificial Golgi for the HS biosynthesis: Yellow squares are the reagent and enzyme
reservoir electrodes, blue squares – electrodes for droplet movement, mixing, and
sequestration. C. A fabricated artificial Golgi based on the design in panel B: Thin gold wires
lead from square reservoir electrodes to pads connecting them to a power source.
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Table 1

Selected examples of heparin-binding proteins and their biological activity

Class Examples Physiological/Pathophysiological Effect of Binding

Enzymes Coagulation proteases, complement esterases,
extracellular superoxide dismutase,

topoisomerase

Multiple

Enzyme inhibitors AT, heparin cofactor II, secretory leukocyte
proteinase inhibitor, C1INH

Coagulation, inflammation, complement regulation

Cell adhesion proteins P-selectin, L-selectin Cell adhesion, inflammation, metastasis
Extracellular matrix proteins Laminin, fibronectin, collagens,

thrombospondin, vitronectin, tenascin
Cell adhesion, matrix organization

Chemokines Platelet factor 4, interleukins Chemotaxis, signaling, inflammation
Growth factors Fibroblast growth factors, hepatocyte growth

factor, vascular endothelial growth factor
Mitogenesis, cell migration

Morphogens Hedgehogs, transforming growth factor-β Cell specification, tissue differentiation, development
Tyrosine-kinase growth factor receptors Fibroblast growth factor receptors, vascular

endothelium growth factor receptor
Mitogenesis

Lipid-binding proteins Apolipoprotein E, lipoprotein lipase, hepatic
lipase, annexins

Lipid metabolism cell membrane functions

Plaque proteins Prion proteins, amyloid protein Plaque formation
Pathogen and viral surface proteins Malaria cirumsporozoite protein, herpes

simplex virus, dengue virus, human
immunodeficiency virus, hepatitis C virus

Pathogen infections
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Table 2

Examples of natural abundance of HS

Tissue Amount Reference

human liver 80 μg/g wet tissue Vonchan et al., Biochim. Biophys. Acta, 2005, 1721: 1–8
mosquito 11 ng/mosquito Sinnis et al., J. Biol. Chem., 2007, 282: 25376–25384

murine embryonic stem cell 12–94 ng/106 cells Nairn et al., J. Proteome Res., 2007, 6: 4374–4387
murine liver 30 μg/g wet tissue Warda et al., Glycoconj. J., 2006, 23: 555–563

zebrafish (HS and CS) 30 μg/adult fish Zhang et al., Glycoconj. J., 2009, 26: 211–218
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