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Summary
All aspects of transcription are controlled by complexes that modify or remodel chromatin at the
level of individual genes, gene clusters, or whole chromosomes. The MSL complex that is responsible
for dosage compensation in Drosophila is an example of complexes that operate at the whole-
chromosome level on the transcription of individual genes. Recent experiments using traditional
genetic analysis, molecular cytology, chromatin immunoprecipitation, or microarray technology
have characterized the function of the two known enzymatic components of the MSL core complex
and have identified the sequence characteristics that allow spreading of the complex along the X
chromosome and a specific histone modification of active X-linked genes to which it is attracted.
Further progress in understanding the function of this complex will benefit from biophysical
approaches.

Introduction
Dosage compensation refers to the equalization of most X-linked gene products between males
and females. In Drosophila, it is mediated by the MSL complex consisting of a core of five
proteins, as well as one of two non-coding RNAs. The complex preferentially associates with
numerous sites on the X chromosome in somatic cells of males but not of females. It is
responsible for an enhancement of the transcriptional rate of a substantial number of X-linked
genes, thereby mediating a compensatory effect for the difference in dosage of these genes
between males and females [1]. Although all of the genes that encode the MSL complex protein
subunits are transcribed in females, the complex is absent because the SXL protein that is
responsible for female differentiation prevents the translation of the msl2 gene transcript [2,
3].

The presence of the MSL complex on the male X chromosome is correlated with a significant
increase of histone H4 acetylated at lysine 16 (H4K16ac; [4]). This acetylation is the result of
the activity of MOF - a histone acetyltransferase of the MYST family [5]. In order to display
maximal activity and strict specificity, MOF must be included in the MSL complex [6] and,
in particular must associate with the MSL1 and MSL3 subunits [7]. In addition to this enzyme,
the MSL complex of Drosophila includes an ATP-dependent DEXH-box RNA/DNA helicase
(MLE) that prefers double-stranded RNA or RNA/DNA hybrid substrates with a short 3′
overhang [8].
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In Drosophila males, the complex is believed to assemble at the locus of the two roX genes
and then spread to numerous additional sites along the X chromosome for which it has a
complete range of affinity levels [9,10]. Approximately 40 of these sites were defined as “high-
affinity” because a partial complex can bind to them [11]. The nature of these sites was poorly
understood until Gilfillan et al. [12•] identified a core sequence and proposed that dispersed
along the X chromosome are clusters of several distinct but degenerated sequence motifs for
which the MSL complex exhibits a complete range of affinity. Recently, using
immunoprecipitation and microarray hybridization or sequencing, from 130 to 150 X-
chromosome sites predominantly enriched for a GA repeated sequence for which the MSL
complex has particular affinity have been identified [13••,14••].

To define the role of a chromatin remodeling complex on gene function it is necessary to
develop a detailed understanding of its association with target genes and of the mechanism that
it uses to modulate the transcription of these genes not only at the molecular but also at the
biophysical level. The purpose of this review is to set the stage for the study of the function of
the MSL complex at the level of chromatin architecture.

Spreading of the MSL complex along the X chromosome
The generally accepted model has the MSL complex initially associating with chromatin entry
sites and subsequently accessing active genes in order to enhance their transcription (Figure
1). Spreading beyond the 50 or so high-affinity sites to the numerous, newly characterized
entry sites requires the complex to be fully assembled [15] and for its two enzymatic
components - MOF and MLE - to be functional [16]. The mutation in MOF that prevents
spreading is in the acetyl-CoA binding site and it is not clear whether the effect on spreading
is caused by the loss of acetyltransferase function or by a conformational change in the protein,
due to its failure to bind the co-enzyme, that in turn affects the general conformation of the
complex.

MLE is related to the ATPases present in complexes that remodel chromatin by altering the
positioning or the architectural relationship between histone octamers and DNA [17]. In
contrast to MLE none of these enzymatic subunits have been shown to possess double-stranded
nucleic acid unwinding activity. To determine whether MLE has been subsumed by the MSL
complex just for its ATPase function or for its ATP-dependent helicase activity, we analyzed
mutations that allow MLE proteins to retain the ATPase but not the helicase activity. MSL
complexes containing these mutant proteins could not spread along polytene chromosomes
beyond the high-affinity sites but enhanced the transcription of genes immediately adjacent to
these sites [18••]. These observations clearly indicate that the ATPase activity is required for
MLE’s role in the transcriptional enhancement of a targeted gene while the helicase activity is
necessary for the spreading of the complex along the X chromosome.

To date nothing is known of the in vivo substrate of MLE or of the mechanistic basis of its
function in dosage compensation. A biophysical approach using single-molecule microscopy
assays based on tethered particle motion and magnetic tweezers techniques [19] could
determine whether MLE is capable of altering the torsional stress of DNA molecules or of
translocating along a nucleic acid substrate.

Targeting genes for dosage compensation
Several years ago, we showed that the MSL complex is attracted to activated genes [20]. The
questions that remained were: (1) What attracts the MSL complex to a transcribing gene? (2)
How does the complex manage to acetylate H4K16 throughout the transcriptional unit?
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Furuhashi et al. [21•] used RNAi in flies to knock down supercoiling factor (SCF) - a protein
that generates negative supercoils in DNA in conjunction with topoisomerase II. They noted
a lethal effect in males more pronounced than in females. They showed that depletion of SCF
inhibits dosage compensation of X-linked genes but, surprisingly, does not prevent the complex
from an apparently normal distribution along the X chromosome in salivary gland nuclei.
Interestingly, in Drosophila SCF is present predominantly at promoter regions (Susumu Hirose,
personal communication) where it may facilitate the loading of the MSL complex onto active
genes. From the promoter region, the MSL complex would proceed towards the 3′ end, perhaps
in association with the transcribing RNA polymerases II.

An alternative, possibility is that the complex associates with the nucleosomes of a transcribed
region in an opportunistic manner, for example between successive elongating polymerases
and from whatever neighboring locus where it may be concentrated (upstream or downstream
of the transcribing gene). The rationale for this possibility is as follows. The presence of the
MSL complex is increased at the 3′ end of transcriptional units [22,23] as we had predicted by
mapping the level of H4K16ac [24]. In contrast, following activation, the density of RNAPII
on most actively transcribing genes remains skewed towards the 5′ end; this may interfere with
the association of the MSL complex in this region of X-linked genes. In the body and towards
the 3′ end of genes, elongating polymerases are relatively more sparsely spaced and there may
be a greater opportunity for complex association. In addition, we had shown that when the
MSL complex is recruited to a GAL4-induced promoter construct inserted in a region of the
X chromosome normally deprived of the complex, the immunofluorescence signals generated
by the GAL4 and MSL antisera do not overlap. In all cases where the site of insertion had been
sequenced, the MSL protein was in a downstream position, relative to the GAL4 protein. These
observations had led us to conclude that the MSL complex is localized on the transcribed
portion of the region activated by the inserted promoter [20]. Evidence for this contention was
provided by Larschan et al. [25•] who reported that the absence of H3K36me3, a mark of active
transcriptional units, while lethal to both females and males leads to a reproducible reduction
in the level of MSL binding in males and to a concomitant change in transcript levels of MSL
target genes. They suggest that recognition of H3K36me3 is one contributing factor to MSL
complex targeting that involves additional features of transcribed genes.

What is the function of the H4K16 acetylation mediated by MOF?
The undisputed correlation between enrichment in H4K16ac in the X chromosome and the
enhanced transcription of X-linked genes in males has been known for a number of years. As
is true in regard to most epigenetic events described to date, the mechanistic link between this
particular histone modification and its effect on transcription – the link between cause and
effect – was a proverbial black box. The basis for beginning to understand its content is Karoline
Luger’s seminal description of the structure of the nucleosome (Figure 2) and of a probable
inter-nucleosomal interaction involving the acidic patch formed by an H2A/H2B dimer in one
nucleosome and the basic tail of histone H4 from a neighboring nucleosome [26,27]. These
observations led us to the hypothesis that the acetylation of lysine 16 on the tail of histone H4
lessens inter-nucleosomal interactions thereby facilitating nucleosomal eviction by the
RNAPII complex, thereby enhancing the rate of elongation [24]. In support of this hypothesis,
Dorigo et al. [28] first reported the effect of histone tails on electrostatic interactions between
neighboring nucleosomes. More recently, the acetylation of H4 at lysine 16 was shown to
prevent the conversion of reconstituted nucleosomal arrays into 30 nanometer fibers that are
thought to represent a level of compaction of native chromatin unfavorable to transcription
[29••].

The very act of transcription is associated with alterations in the chromatin organization of
transcriptional units. Are there features of chromatin reorganization that are uniquely
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associated with the enhanced level of gene expression mediated by the MSL complex? This
question could be addressed by determining differences in restriction enzyme sites accessibility
and nucleosome positioning on compensated and control genes. Unfortunately, given the
average transcription enhancement of two-fold, these approaches may not yield meaningful
signal to noise ratios. In contrast, the faithful reproduction of dosage compensation of a reporter
gene carried on a plasmid introduced into S2 cultured cells by transfection [30••] provides the
opportunity to investigate the effect of H4K16 acetylation on chromatin structure by probing
for topological changes (Box 1). The type of results that can be obtained are illustrated in Figure
3.

Does the MSL complex act by reducing the level of pausing of RNAPII on X-
linked genes?

Since the seminal observation by John Lis that uninduced heat shock genes carry a
transcriptionally engaged polymerase that has stalled after synthesizing a very short RNA
transcript [31] evidence has accumulated that numerous genes in the genome display paused
polymerases [32–34]. Surprisingly, a number of active genes have a greater concentration of
RNAPII in their promoter region than within their body indicating that pausing is not just used
to shut off uninduced genes but is also used to regulate the transcriptional output of active
genes. These observations lead to the hypothesis that the chromatin modifications mediated
by the MSL complex may exert their effect on transcription by reducing the pause of X-linked
genes thereby increasing the number of polymerases that are engaged in elongation.

A characteristic of gene promoters with stalled or pausing polymerases is a significant
enrichment in GAGA factor binding sites [35]. The GAGA factor exerts both positive and
negative effects on gene transcription by facilitating chromatin remodeling and maintaining
promoters in a conformation accessible to other regulatory factors. A reduction in the level of
this factor affects the viability of males to a greater extent than females [36]. In addition, the
small number of autosomal sites that are normally targeted by the MSL complex (5 to 7) is
approximately doubled. These effects could be simply a reflection of the general role played
by the GAGA factor on transcription: the necessity for males to hyper-transcribe their X-linked
genes would render them more sensitive to general transcription disturbances than females.
Yet, the similarity of the GAGA factor binding sites with the GA-rich X-chromosome binding
sites of the MSL complex reopens the question of a functional role for this factor in dosage
compensation [13••,14••].

Interactions of the MSL complex with general chromatin assembly and
nucleosome positioning complexes

The X chromosome in males responds dramatically to the loss-of-function of the general
chromatin assembly complexes ACF and CHRAC and the nucleosome repositioning complex
NURF. In vitro, ACF and CHRAC establish regularly ordered arrays of nucleosomes [37,38]
while NURF disrupts nucleosome periodicity [39]. Loss-of-function mutations in ISWI, the
ATPase common to all three complexes, or in a subunit unique to the NURF complex [40]
transform the male X chromosome in salivary gland polytene chromosome preparations into
a chromatin mass that has lost all morphological features. X-chromosome morphology can be
rescued in males by preventing the occurrence of H4K16ac. In vitro, the interaction of purified
ISWI with nucleosomes is abrogated if H4 is acetylated at lysine16 [41]. Recently, Bai et al.
[42] reported that in a mutant nurf background, loss-of-function mutations in either roX1 or
roX2 lead to a more normal appearance of the polytenic X in the general region of the mutation;
conversely, a wild type roX transgene relocated to an ectopic autosomal location nucleated a
region of disorganization at its site of insertion. These authors also provided evidence that the
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NURF complex inhibits the synthesis of the roX RNAs in wild type females and prevents the
over-transcription of roX2 in males. Grau et al. [43] have reported that mutations in the
dAda3 gene cause a defect in the banding organization of polytene chromosomes in both males
and females; once again, the X chromosome in males is more severely affected. Finally, Carre
et al. [44] have shown that mutations in the histone acetyl transferase Gcn5 and the ATAC
complex component Ada2a induce a specific decondensation of the X chromosome in mutant
males. In contrast, the Drosophila RSF (remodeling and spacing factor) complex consisting of
dRsf1 and ISWI does not affect the appearance of polytene chromosomes in either sex [45].

The MSL complex also interacts specifically with structural heterochromatin components Su
(var)3–7 and Su(var)2–5/HP1, with the histone H3K9-specific methyltransferase Su(var)3–9
and with the tandem kinase JIL-1. Over-expression of Su(var)3–7 results in morphological
effects in the larval salivary gland polytene chromosomes of both males and females, but the
male X is most affected as it assumes a very small and highly compacted shape [46]. Loss of
this heterochromatin protein or loss of HP1 results in a polytene X chromosome phenotype in
males that is similar to the one induced by ISWI knockdown [47]. In their most recent paper,
Spierer et al. [48••] report that the distribution of the MSL complex is abnormal on male
polytene X chromosomes when the latter are enriched in heterochromatin by over-expression
of Su(var)3–7. JIL-1 localizes to all polytene chromosomes but is substantially more abundant
on the X chromosome in males [49]. Loss-of-function alleles result in global changes in the
morphology of polytene chromosomes: the X chromosomes of females and the autosomes of
both sexes exhibit some abnormal coiling, while the male X is once again shorter, fatter and
without any evidence of banding [50].

The general similarity of the effects of very different complexes, remodeling activities or
structural proteins strongly suggests that the common denominator may be the unique
characteristic of the chromatin of the male X chromosome which renders it more sensitive to
disturbances than autosomes or X chromosomes in females. These effects have been described
by means of genetic and cytological experiments; their molecular basis should be sought at the
biophysical level, using reconstituted chromatin fibers and approaches pioneered by Jeffrey
Hansen and used effectively, for example, by Shogren-Knaak et al. [29].

Conclusions
In this review, I have highlighted the progress that has been made recently in understanding
the function of the two known enzymatic components of the MSL complex, as well as in
characterizing some of the parameters that allow the complex to spread along the X
chromosome. A complete definition of these features and of the mechanism used by the
complex to achieve transcriptional enhancement will rely increasingly on biophysical
approaches.

Box 1

Topoisomers distribution

The wrapping of DNA around a histone octamer, induces one negative supercoil in the DNA
molecule (a linking number change of −1) that is protected from relaxation by topoisomerase
I. As the plasmid is extracted, endogenous topoisomerase I activity relaxes the linker DNA
between nucleosome cores and the number of negative supercoils that remain is an
indication of the level of protection conferred to the DNA by its association with
nucleosomes. The difference in linking number of two plasmids of equal size can be resolved
by either one-dimensional or two-dimensional electrophoresis in the presence of
chloroquine. Binding of chloroquine unwinds the DNA helix and results in the loss of
negative supercoils. At different chloroquine concentrations, each plasmid can be resolved
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as a normal distribution of topoisomers whose center reflects the plasmid’s linking number.
A chloroquine concentration that gives the best distribution of topoisomers for both
plasmids is chosen to carry out the linking number comparison.
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Figure 1. Spreading of the MSL complex along the X chromosome
The MSL complex assembles at the loci of the two roX genes that are located on the X
chromosome. This is necessary because the roX RNAs are unstable unless they associate with
some of the protein subunits of the complex. Assembled complexes then access the many sites
along the X chromosome for which they have different levels of affinity. Ultimately the MSL
complexes associate with those X-linked genes whose transcription is thereby enhanced.
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Figure 2. Structure of a chromatin fiber
The interaction of neighboring nucleosomes via the N-termilal tails of their core histones can
be modified by covalent modifications such as the acetylation of histone H4 at lysine 16
(Reprinted with permission [51]).
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Figure 3. Example of a topological analysis of a plasmid subjected to dosage compensation
(a) Topoisomers are resolved in a chloroquine-containing gel. (b) Histogram representation of
the topoisomers. Upper panel corresponds to the compensated plasmid; lower panel is a non-
compensated control plasmid. The height of a bar represents the intensity of the corresponding
bands in the gel. NC is the position of the nicked plasmid in the gel. The difference in the
relative position of the two topoisomer distributions indicates a difference in the nucleosomal
organization in the two plasmids.
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