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Abstract

We performed a genome-wide association study (GWAS) in 1,713 Caucasian patients with 

Parkinson’s disease (PD) and 3,978 controls. After replication in 3,361 cases and 4,573 controls, 

two strong association signals were observed: in the α-synuclein gene(SNCA) (rs2736990, 

OR=1.23, p=2.24×10−16) and at the MAPT locus (rs393152, OR=0.77, p=1.95×10−16). We 

exchanged data with colleagues performing a GWAS in Asian PD cases. Association at SNCA was 

replicated in the Asian GWAS1, confirming this as a major risk locus across populations. We were 

able to replicate the effect of a novel locus detected in the Asian cohort (PARK16, rs823128, 

OR=0.66, p=7.29×10−8) and provide evidence supporting the role of common variability around 

LRRK2 in modulating risk for PD (rs1491923, OR=1.14, p=1.55×10−5). These data demonstrate 

an unequivocal role for common genetic variability in the etiology of typical PD and suggest 

population specific genetic heterogeneity in this disease.

Advances in genotyping technology have allowed rapid genome-wide screening of common 

variants in large populations launching a new era in the investigation of the genetic basis of 
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complex diseases. So far GWAS have contributed little in the field of PD2–4; likely because 

previous studies lacked power to detect effects of the size expected in these diseases.

The present study was designed as a two-stage GWAS. Characteristics of the cohorts are 

shown in Table 1. For stage I, genotyping was performed using Infinium BeadChips 

(Illumina, Inc.). Following quality control 463,185 SNPs were analyzed in 1,713 PD cases 

and 3,978 controls. To assess the homogeneity of our cohort, pair-wise Identity by State 

distances (IBS) were calculated using HapMap data as a reference. These analyses revealed 

that our samples share common Caucasian ancestry (supplementary figures 1 and 2). We 

chose not to use genomic control as false positive association, possibly caused by population 

substructure (lambda=1.17), would be controlled for by our two-stage design. Power 

calculations showed our sample had 80% power to detect variants conferring an odds ratio 

(OR) of 1.3 with an allele frequency of 10% (supplementary figure 3).

Each SNP was tested for association using a Cochran-Armitage genotypic trend model. Four 

SNPs on chromosome 4q22 within the SNCA locus exceeded Bonferroni corrected genome-

wide significance threshold in stage I (most significant p=5.69×10−9, rs2736990; Figure 1, 

Table 2). Three SNPs at the MAPT locus on chromosome 17q21 also surpassed genome-

wide significance in stage I (most significant p=5.05×10−8, rs199533). A logistic regression 

analysis adjusted for the two first components of the multidimensional scaling values 

following calculation of pair-wise IBS distance suggests that the significant results obtained 

are not biased by population substructure (supplementary material).

Replication comprised genotyping of 384 SNPs selected based on the p-value observed in 

stage I (supplementary table 1). Genotyping was performed in an independent cohort of 

3,452 cases and 4,756 controls from the US, Germany and Britain. Taking into account the 

results obtained from pairwise Identity by State distances calculations and considering that 

genetic heterogeneity and allelic heterogeneity are not likely to produce type I and type II 

errors when pooling white North American and white North European populations, we 

decided to analyze all Stage II samples together. Following quality control filtering, 345 

SNPs were analyzed in 3,361 cases and 4,573 controls. Twenty-one SNPs within the SNCA 

and MAPT loci surpassed Bonferroni threshold for significance (p<0.000145; Table 2; 

supplementary table 2).

Three hundred and forty five stage II SNPs passed our quality control procedures 

(Supplementary table 1). Notably, we observed clusters of SNPs showing improved 

association signals when combining our stage I and stage II datasets (supplementary figure 

4). Although some of these SNPs are at loci that contain biologically plausible candidate 

genes for PD, they do not reach genome-wide significance and thus we have resisted 

drawing conclusions from these data; however, of particular note is a cluster of 7 SNPs in 

chromosome 10q24.32, with p-values below 1×10−3 (Supplementary figure 5). These and 

other variants showing a consistent, moderate association across stages warrant independent 

replication.

To further delineate the signals on SNCA and MAPT, allelic association of significant SNPs 

was tested, conditioned on alleles of other significant SNPs at the same locus. No 
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independent signals were identified, suggesting that a single detectible pathogenic variant 

exists at each locus (supplementary table 3); however without complete sequence data 

across these loci we cannot rule out independent effects. We did not find evidence for 

epistasis between SNCA and MAPT risk alleles (supplementary material).

Analysis of the linkage disequilibrium (LD) structure across the SNCA locus revealed two 

blocks of LD (Figure 2A). The 3′ block contains three of the four significantly associated 

SNPs, suggesting that the causal variant is located in the 3′ region of the SNCA gene. This is 

strengthened by analysis of the haplotype frequencies at this locus (supplementary figure 6) 

and previous studies5. The REP1 microsatellite in SNCA was previously associated with 

PD5 and its pathological effect has been suggested to be mediated by gene expression6. 

Analysis of REP1 genotype data in 1,774 samples from the US cohort revealed the risk 

allele of REP1 is in LD with the 3′ risk alleles identified here (r2=0.365 with rs3857059; 

supplemental figure 7A), thus the association identified at the REP1 locus and the SNPs 

identified here may be the result of residual LD between these loci. This is supported by 

logistic regression analysis conditioned on REP1 genotypes, showing that association at 

REP1 is not independent from the association identified here (supplementary material). We 

recently reported a significant association of SNCA SNPs with another synucleinopathy, 

multiple system atrophy (p=5.5×10−12, MSA)7; comparison of these data reveals disparate 

SNCA risk SNPs in MSA and PD, a finding that may shed light on the exact pathogenic 

substrate and molecular etiology of these disorders (supplementary table 4).

As expected, one large highly inter-correlated block of high LD was observed across the 

MAPT locus (Figure 2B). Available genotype data of the H1/H2 haplotypes in this region 

showed that the risk alleles of the associated SNPs are in LD with the H1 haplotype 

(r2=0.761 with rs393152; supplementary figure 7B). It is unclear from the current data 

whether the MAPT risk haplotype identified here corresponds to the subhaplotype associated 

with corticobasal degeneration (CBD) and progressive supranuclear palsy (PSP)8. Because 

of the LD structure we cannot rule out other genes at this locus as the pathogenically 

relevant genes; however, MAPT is biologically the most plausible candidate.

Following data exchange with colleagues performing a PD GWAS in Japan we chose to 

study two loci implicated in Asian PD on chromosomes 1q32 and 4p15. In our stage I data, 

the most significant p-values at these 12 SNPs were 1.3×10−4 and 6.5×10−3 (1q32 and 

4p15.3 respectively). The signal at 1q32 was significant enough to carry through to stage II 

replication, but this SNP had been excluded because of the low minor allele frequency in 

controls (0.03). Genotyping of these 12 SNPs was performed in an available subset of our 

replication cohort comprising 2,816 cases and 3,401 controls. The signal on chromosome 

1q32 was replicated in this cohort (rs823128, p=1.9×10−4; Table 2). While this failed to 

surpass Bonferroni correction, the p-value across stages was highly significant (rs823128, 

p=7.3×10−8) and it is worth noting that the significance improved for all SNPs at this locus 

when combining stage I and II results (Figure 2C). For these reasons and because the 

association at this locus was consistently detected in the Asian cohort1 we are confident this 

signal represents a true association and this has been designated PARK16. Although we 

failed to replicate the signal on chromosome 4p15, which included only one gene, BST1, the 
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low minor allele frequency of the associated SNPs in Caucasian individuals may have 

affected our ability to observe association.

Mutations in SNCA and MAPT have been associated with autosomal dominant forms of 

parkinsonism9,10. Given this, it is interesting that we observed association proximal to 

LRRK2, which also contains mutations causing autosomal dominant PD11,12. In stage I 23 

SNPs upstream of LRRK2, and 12 SNPs within LRRK2 were associated with PD (lowest 

p=5.03×10−6 in rs2896905, located in SLC2A13, 0.27Mb from LRRK2). Of these, 3 SNPs 

surpassed our threshold for replication and were analyzed in stage II. Only one SNP, 

0.17Mb upstream of LRRK2, remained associated with PD after stage II (rs1491923, p=0.01; 

supplementary material; Figure 2D). While this did not surpass our threshold for multiple 

testing, the combined stage I and II p-values revealed a compelling association 

(p=1.6×10−5). Interestingly, the other 2 replicated SNPs at this locus were also nominally 

associated with PD after combining stage I and stage II datasets (p-values of 9.5×10−5 and 

7.8×10−3; rs11564612 and rs2896905 respectively). Data from the Asian cohort also 

revealed a significant association with PD at this locus1. SLC2A13, neighboring LRRK2, 

cannot be ruled out as the gene of effect at this locus, however, LRRK2 is clearly a more 

plausible candidate.

Although mutations and copy number variants of SNCA are the cause of rare familial forms 

of PD10,13, association of common variants has been more controversial. This study 

provides unequivocal evidence that variation in SNCA contributes to the etiology of sporadic 

PD. The clustering of associated SNPs in the 3′ UTR suggests that the causal variant might 

affect post-transcriptional RNA processing or RNA stability, possibly mediated by miRNA 

binding sites or by alternative splicing.

Association of the H1 haplotype at the MAPT locus with PSP and CBD has been described 

and replicated8; however, association studies of variants at MAPT in PD have produced 

conflicting results14,15. Our data provide unequivocal evidence for an association of the 

MAPT locus with PD. This is surprising given the classic separation of synucleinopathies 

and tauopathies, although a cross-talk between molecular pathways characterized by 

different aggregating proteins has been repeatedly suggested. While there are additional 

genes at the MAPT locus, the role of MAPT in neurodegenerative diseases is well established 

and this association is biologically plausible.

We provide evidence for an association of PD with variability proximal to LRRK2 and at a 

novel locus at 1q32 (PARK16). The kinase activity of lrrk2 is an attractive therapeutic target; 

our data suggests that this protein is also relevant to the etiology in sporadic PD patients 

without mutations. The PARK16 locus spans 5 transcripts, SNORA72, NUCKS1, RAB7L1, 

SLC41A1 and PM20D1. It will be important to define the immediate biological 

consequences of all four risk loci identified here. It is notable that three of the most 

significant loci identified here contain genes known to be mutated in Mendelian forms of 

parkinsonism. This supports the notion that rare familial disease is etiologically related to 

typical sporadic PD, and suggests that genes that contain common risk variants are excellent 

candidates to contain rare disease causing mutations. One might also predict that deep 

sequencing of these loci will reveal rare mutations that alter risk for, rather than cause, 
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disease. It is also interesting that two of the four loci discussed here, are risk factors for other 

neurodegenerative diseases, including MSA (SNCA), PSP (MAPT) and CBD (MAPT).

The combined population attributable risk associated with the identified loci, considering the 

genotypic counts of those most associated SNPs in our cohort, is approximately 25% 

(supplemental methods). Our study was a retrospective case-control study and the frequency 

of the risk variants detected might not reflect the frequencies of true causal variants; thus 

these values should be interpreted with caution.

In an attempt to define a biological consequence of risk variants, we mined data produced 

within our laboratory. In this work genome wide genotyping and expression profiling of 

>22,000 transcripts was performed in 133 human frontal cortex samples, allowing us to 

determine SNPs significantly associated with expression level. These data revealed a strong 

association between genotype at the risk alleles of the MAPT locus and expression levels of 

both MAPT and LRRC37A (figure 3), in addition to less significant association with 

expression levels of other transcripts at this locus, but did not reveal association between 

risk SNPs and expression levels of proximal genes at the SNCA, LRRK2 or PARK16 loci 

(Supplementary table 5, figure 8). Notably the alleles at the MAPT locus associated with 

increase risk of PD are associated with increased expression of MAPT in the human brain.

We show for the first time a clear role for common genetic variability in the risk of 

developing PD. Further we describe a possible population specific genetic heterogeneity in 

this disorder, since the association to MAPT was absent in the Asian cohort. This 

observation has potential implications for the analysis of complex traits across populations; 

such genetic heterogeneity, particularly at minor risk loci, has the potential to mask true 

associations when analyses are performed across populations. With the discovery of the 

PARK16 locus in the Asian population, this highlights the power of comparing GWAS 

across different populations. A further increase in the number and size of cohorts for GWAS 

in PD will likely reveal additional common genetic risk loci and these, in turn, will improve 

understanding and ultimately treatment of this devastating disorder.

METHODS

Methods and associated references appear online. Note: Supplementary information is 

available on the Nature Genetics website.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Graphical representation of p values in stage I and stage II. A) In stage I, p values are log 

transformed (y-axis) and plotted against chromosomes (x-axis). The red line indicates the 

Bonferroni threshold. Signals indicated in red are on chromosome 4 and chromosome 17 

and surpass Bonferroni threshold for genome wide significance. B) log transformed p-values 

of Stage II SNPs (y-axis) are plotted against chromosomes (x-axis). Signals indicated in red 

are on chromosome 4 and chromosome 17 and surpass Bonferroni threshold for multiple 

testing
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Figure 2. 
Association and recombination rates across SNCA, MAPT, PARK16 and LRRK2. −log10 p 

values are shown for stage I and II analyses, annotated transcripts are shown across the top 

of each plot. Red dotted line indicates threshold for genome wide significance in stage I and 

orange line indicates threshold for significance of stage II.
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Figure 3. 
Expression quantitative trait loci across the MAPT locus measured in 133 human frontal 

cortex samples; panel A shows association between genotypes and transcript levels across 

the MAPT locus. In this analysis the allelic load at genotyped polymorphisms across the 

locus is tested for association with transcript levels of each gene across the locus. The results 

of the analysis are shown as log transformed p values color-coded to match the transcript of 

interest. Notably genotypes across this locus are associated with MAPT (pink) and LRRC37A 

(blue) levels. Boxplots in panels B and C illustrate a dose relationship between allele load at 

the most significantly associated PD SNP (rs393152) and expression of MAPT (B) and 
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LRRC37A (C), p values 4.1×10−6 and 1.7×10−13 respectively. Notably, the allele associated 

with higher risk for PD, A, is associated with high levels of MAPT expression and low levels 

of LRRC37A expression.
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