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Abstract
Apoptosis ensures quick death and quiet clearance of unwanted or damaged cells, without inducing
much, if any, immunological responses from the organism. In metazoan organisms, apoptotic cells
are swiftly engulfed by other cells. The degradation of cellular content is initiated in apoptotic cells
and completed within engulfing cells. In apoptotic cells, caspase-mediated proteolysis cleaves protein
substrates into fragments; nuclear DNA is partially degraded into nucleosomal units; and autophagy
potentially contributes to apoptotic-cell removal. In engulfing cells, specific signaling pathways
promote the sequential fusion of intracellular vesicles with phagosomes and lead to the complete
degradation of apoptotic cells in an acidic environment. Phagocytic receptors that initiate the
engulfment of apoptotic cells play an additional and critical role in initiating phagosome maturation
through activating these signaling pathways. Here we highlight recent discoveries made in
invertebrate models and mammalian systems, focusing on the molecular mechanisms that regulate
the efficient degradation of apoptotic cells.

Introduction
Among multiple types of cell deaths that have been identified, apoptosis stands out as a distinct
type that is executed swiftly and quietly, without inducing much, if any, immunological
responses in the organism. During an animal's life, a larger number of unwanted cells undergo
apoptosis, a genetically programmed cell suicide process; these cells display several
morphological changes including cellular shrinkage, chromatin condensation, nuclear
fragmentation, and plasma membrane blebbing, yet retain their plasma membrane integrity
and are rapidly internalized by other cells (Figure 1). The efficient demolition of apoptotic cells
is a result of the degradation activities provided by both apoptotic cells and their phagocytes.
Cell-autonomous degradation is initiated and executed by caspases, a family of cysteine-
dependent aspartate-directed proteases that play determinant roles in apoptosis, and by
caspase-activated proteases and nucleases [1]. After being swiftly engulfed by their
neighboring cells or professional phagocytes through phagocytosis, an actin-based cell
internalization process, apoptotic cells are sequestered in intracellular vacuoles referred to as
“phagosomes” where they are degraded by a lysosome-mediated digestive activities (Figure
1) [2-4].

The efficient removal of apoptotic cells plays important roles in sculpting structures,
maintaining homeostasis, and eliminating abnormal, non-functional, or harmful cells [5,6]. It
is also an efficient tool for cell competition [7]. Moreover, this process prevents potentially
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harmful inflammatory and auto-immune responses that could occur if contents from apoptotic
cells were leaked out [8]. Macrophages that engulf apoptotic cells even elicit anti-inflammatory
responses that facilitate the resolution of regional inflammation [9-12]. Inefficient engulfment
or degradation of apoptotic cells is associated with numerous chronicle inflammatory and auto-
immune diseases [13-18]. In this review, we describe recent advances in our understanding of
apoptotic cell degradation, focusing on four major topics: (1) caspase-mediated proteolysis and
cell-autonomous degradation, (2) the multi-step degradation of nuclear DNA, (3) the role of
autophagy in the removal of apoptotic cells, and (4) signaling pathways that regulate the
maturation of phagosomes. This review does not cover many related topics such as the
mechanisms that control the initiation of apoptosis, the exposure of “eat me” signals, the
recognition and engulfment of apoptotic cells, cross-presentation of apoptotic cell antigens,
and the fate of cells undergoing caspase-independent apoptosis, which are covered by other
excellent reviews [4,19-21].

Caspase-mediated proteolysis initiates cell-autonomous degradation of
apoptotic cell contents

The activation of initiator caspases by “intrinsic” or “extrinsic” apoptotic signals marks the
beginning of apoptosis [22]. Initiator caspases further cleave and activate effector caspases,
which subsequently process a large number of cellular substrates proteolytically [22]. These
cleavage events are believed to lead to the signature cellular changes observed from apoptotic
cells, which include cellular retraction, degradation of the nuclear envelope, chromatin
condensation, degradation of nuclear DNA, and the release of signaling molecules that attract
engulfing cells [1,23]. The initiation of nuclear DNA degradation by capsase-mediated
activation of caspase-activated DNase CAD (also known as DFF40) is one of the best-studied
examples (see the next section). In addition, caspase cleavage of nuclear lamins disassembles
the lamin complex and weaken the nuclear envelope [24]. This event, together with the caspase
cleavage and activation of rho-associated kinase I (Rock I) that further modifies the actin-
cytoskeleton, have been proposed to result in the fragmentation of apoptotic nuclei [25]. The
cleavage of Rock I plays an additional role in initiating membrane blebbing through
cytoskeleton rearrangement [26-28]. A number of cytoskeletal proteins, including actins,
tubulins, and actin-binding proteins, are caspase substrates [29-33]. Although the detailed
mechanism have not been revealed, the degradation of cytoskeletal proteins is likely to
contribute to cellular shrinkage during apoptosis.

An open web resource (The CASBAH: www.bioinf.gen.tcd.ie/casbah) was built in an effort
to collect a comprehensive list of caspase substrates [31]. Despite the large number of potential
caspase substrates reported, the list of caspase substrates that have been demonstrated to
directly contribute to the degradation of apoptotic cells is surprisingly short. Previously,
caspase substrates were mostly identified through in vitro cleavage assays, which were not able
to distinguish whether a protein that was cleaved by a caspase in vitro was an actual caspase
substrate during apoptosis. Recently, two research groups developed novel proteomic
techniques, using which they identified global proteolytic events occurring during apoptosis
[34,35]. Interestingly, the identities of the 261 and 333 proteolytic substrates reported by Dix
et al. and Mahrus et al. [34,35], respectively, have only a minimum overlap with the caspase
substrates previously documented in CASBAH, indicating that many more apoptotic-specific
proteolysis substrates are yet to be found. The newly reported protein substrates implicate two
surprising findings [34,35]. First, caspases do not cleave the entire proteome indiscriminately;
rather, they often target multiple proteins within the same complex or biochemical pathways,
suggesting a tendency for caspases to target specific pathways or signaling networks [35].
Secondly, many of the cleavage products are mapped to stably-folded functional domains,
suggesting that rather than complete degradation of proteins, the apoptotic proteolytic cascades
primarily generate new forms of proteins that may adapt new functions that further contribute
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to the self-killing event [34]. Future challenge resides at understanding the functional
significance of the cleavage of the newly identified caspase targets in vivo.

The degradation of apoptotic nuclear DNA is a multi-step process
The degradation of nuclear DNA into oligonucleosomal fragments is a hallmark of apoptosis
[36]. The massive cleavage of genetic materials irreversibly compromises DNA replication
and gene transcription. Early in apoptosis, accompanied by chromatin condensation,
chromosomal DNA is first cleaved into high molecular weight (HMW) fragments of 50-300
kb, which are subsequently processed into low molecular weight (LMW) fragments, the
characteristic 180-bp DNA [37]. DNA fragments are readily detected in situ by the TUNEL
(terminal deoxynucleotidyl transferase dUTP-mediated nick end labeling) assay, which labels
3′-OH end of DNA breaks [38]. After dying cells are engulfed by phagocytes, the partially
digested DNA molecules are completely degraded into nucleotides in phagosomes [37]. A
number of nucleases have been proposed to degrade apoptotic DNA, some of which act in
apoptotic nuclei, whereas others in phagosomal lumen (Figure 2) [37,39-43].

CAD/DFF40 is the major cell-autonomous nuclease that accounts for most if not all activities
for the generation of LMW DNA in apoptotic mammalian cells [44,45]. In cells in which CAD
is deleted or inactive, inter-nucleosomal DNA fragmentation is either completely abolished or
greatly reduced [18,46,47]. In living cells, CAD is in a complex with inhibitor of CAD (ICAD,
as known as DFF45), which acts as CAD's folding chaperon during protein synthesis and
subsequently inhibits its DNA cleavage activity [44,45,48,49]. During apoptosis, caspase 3
cleaves ICAD and releases CAD [44,45,50]. Initially, it was proposed that caspase cleavage
of ICAD allowed CAD to enter the nucleus [44]. Subsequent evidence indicates that the
endogenous ICAD/CAD complex resides in the nucleus of living cells; furthermore, the
cleavage of ICAD that releases CAD appears to occur inside the nucleus [51,52]. The released
CAD forms a scissors-like homodimer and cleaves double-strand DNA at nucleosomal linkers
[53,54]. In addition, histone H1 might stimulate the enzymatic activity of CAD and also
contribute to CAD's substrate specificity [55,56].

The residual DNA degradation activity detected in CAD-deficient cells suggests the existence
of additional nuclease(s) during apoptosis [46,57]. Mammalian endonuclease G (endo G) is
such a nuclease [57]. In living cell, Endo G resides in mitochondrial intermembrane space;
upon apoptotic stimuli, it is released from mitochondria and translocated to nuclei, where it
cleaves nucleic acids [57,58]. EndoGI, a recently identified EndoG inhibitor in Drosophila, is
present in the nuclei of living cells and acts as a guardian for the accidental leakage of Endo
G from mitochondria [59]. EndoGI is translocated to the cytoplasm upon apoptotic stimuli
[59]. Additional CAD-independent DNases detected in apoptotic cells also include L-DNase
II, apoptosis-enhancing nuclease (AEN), and DNase γ, which can be activated by different
apoptotic stimuli [60-63].

The C. elegans genome does not encode any close sequence homolog of CAD. C. elegans
NUC-1 (nuclease abnormal), a homolog of mammalian DNase II, is the first nuclease identified
that drives the degradation of nuclear DNA in apoptotic cells [64,65]. In nuc-1 mutant embryos,
many apoptotic cells remain TUNEL-positive, whereas in wild-type embryos TUNEL-positive
apoptotic cells are hardly detectable [65]. Genetic and cellular characterizations of nuc-1 and
nuc-1's functional relationship with genes involved in the engulfment of apoptotic cells indicate
the presence of at least three steps of apoptotic DNA degradation: the initial digestion that
generates TUNEL-positive DNA ends, the conversion of TUNEL-positive to TUNEL-negative
DNA-ends, which depends on NUC-1 activity, and the complete digestion of nuclei DNA into
free nucleotides [65]. Although the expression pattern of NUC-1 has not been determined,
genetic evidence suggests that NUC-1 is likely to act in apoptotic cells to mediate DNA
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degradation [65]. In addition, the C. elegans Endo G homolog CPS-6 and several other exo-
and endonucleases form a DNA degradation complex named “degradosome” that acts in
parallel to NUC-1 to promote DNA degradation [42,66,67].

Mice deficient in either CAD or Endo G are viable and develop normally [47,68-70]. Apoptotic
events such as phosphatidylserine exposure, caspase activation and early-stage chromatin
condensation are also normal in CAD deficient cells, indicating that the degradation of
apoptotic DNA per se is largely dispensable for the initiation and execution of apoptosis
[46]. Several reports, however, indicate active roles of cell-autonomous nucleases in the
progression of apoptosis, especially in sensitive genetic backgrounds [67,71,72]. In addition,
in certain cases the fragmented DNA was detected on the surface of apoptotic cells and was
proposed to act as one type of the “eat me” signals that attract phagocytes [73,74].

The partially digested nucleosomal DNA is further degraded into nucleotides by other types
of nucleases, primarily DNase II α, in the phagosomes of mammalian and Drosophila engulfing
cells (Figure 2). DNase II α activity is optimal in acidic compartments such as lysosomes and
phagolysomes [41,75]. In DNase II deficient flies and mice, a large number of undegraded
DNA accumulated inside phagocytes [18,76,77]. The degradation of apoptotic-cell DNA plays
active roles in preventing antigenic DNA from eliciting improper immune responses [78].
Undegraded apoptotic cell DNA in the macrophages of DNase II deficient mice induces an
IFN regulatory factor 3/7-dependent production of IFNβ, which is cytotoxic and contributes
to the lethal anemia in DNase II null mice [18,79-81]. Conditional knock-out of DNase II gene
after birth causes adult mice to develop chronic polyarthritis that resembles human rheumatoid
arthritis [82]. In mice that lack both CAD and DNase II activities, the undegraded DNA induces
innate immunity and impairs thymic development [18]. Similarly, the innate immunity is
induced by undegraded DNA in CAD(-/-)DNase II(-/-) flies [76]. In C. elegans, other than
NUC-1, the DNase II homolog that likely acts in apoptotic cells, there must be additional
functional counterparts of DNase II that act in phagosomal lumen to conduct cell-
nonautonomous DNA degradation.

In summary, the nuclear DNA inside apoptotic cells is degraded in multiple steps by both cell
autonomous and non-autonomous means. Cell-autonomous DNA degradation is dispensable
for animal development since dying cells are subsequently engulfed by phagocytes and their
DNA is effectively degraded by nucleases in phagosomes [68]. However, when massive
apoptosis occurs and the degradation system is overloaded, the pre-cleavage by CAD may
become essential [68]. Although the role of DNA degradation in apoptotic execution is largely
elusive, the resulted DNA waste needs to be properly disposed to avoid the activation of innate
immunity.

The contribution of autophagy to the clearance of apoptotic cells
Autophagy is a specific cellular event in which a portion of intracellular organelles and
cytosolic components are engulfed by intracellular membranes and confined in a double-
membrane vacuolar structure named autophagosomes, and are subsequently degraded by
lysosomes that fuse with autophagosomes [83]. Autophagy is a stress adaptation process that
generates energy and nutrients by degrading and macromolecules. Its relationship with
apoptosis is complex. In many cases autophagy acts to save cells from the fate of apoptosis
[84-88]; in other cases, when the swift apoptosis machinery is inhibited, starved cells or cells
receiving death stimuli undergo an alternative form of cell death via autophagy [89,90]. In
addition, during animal development, autophagic cell death has been observed to act as an
independent form of programmed cell death [91-93]. Autophagy was also reported to potentiate
caspase-dependent death [94]. The role of autophagy in the execution of cell death thus appears
to be heavily dependent on the cellular and tissue context.
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The question most relevant to this review, namely, whether autophagy contributes to the cell-
autonomous degradation of cellular contents during apoptosis, however, has not been
answered. Interestingly, recently a new function of autophagy relevant to the ultimate
degradation of apoptotic cells has been reported. In an in vitro system that mimics the cavitation
of early mouse embryos, Qu et al. found that autophagy that occurred in apoptotic inner
ectodermal cells contributed to the generation of ATP, which further promoted the exposure
of phosphatidylserine, the “eat me” signal, on the surface of apoptotic cells, as well as the
secretion of lysophosphatidylcholine, the “come-get-me” signal, to the neighborhood [95]. In
this example, autophagy enables apoptotic cells to attract phagocytes, and thus indirectly
facilitates their cell-nonautonomous degradation. A similar role played by autophagy has also
been reported in chick retina [96]. On the other hand, ES cells in culture do not seem to rely
on autophagy for the exposure of phosphatidylserine in response to apoptotic stimuli [95].
Whether the mechanism described above is commonly used by many kinds of apoptotic cells
awaits further investigation.

Novel signaling pathways that control the maturation of phagosomes
containing apoptotic cells
General knowledge about phagosome maturation

The maturation of phagosomes, a process that involves extensive remodeling of phagosomal
membrane and contents and results in the eventual degradation of the engulfed particle, has
been well characterized in mammalian phagocytes, such as macrophages, that ingest latex
beads or opsonized microbes or red blood cells [97]. Once created, nascent phagosomes
undergo sequential fusion events with intracellular organelles in the endocytic pathway,
including early endosomes, late endosomes and lysosomes [97]. These fusion events promote
the acidification of phagosomal lumen and deliver acid hydrolyses to phagosomes, which, in
an acidic environment (pH<5.0), actively digest the protein, nucleic acid, and lipids confined
in the phagosomal lumen [97]. A number of molecules, including phosphatidylinositol-3-
phosphate (PI3P) and Class III PI 3 kinase Vps34, small Rab GTPases Rab5 and Rab7, V-type
ATPase, and membrane fusion machinery components, were found to be recruited to
phagosomal surfaces and drive phagosome maturation. The synthesis of PI3P on phagosomal
surfaces, primarily conducted by Vps34, is believed to attract downstream effectors that are
PI3P-binding proteins [98,99]. Rab5 and Rab7 act as membrane tethering factors for vesicles
of different identities: Rab5 facilitates the early endosomes/phagosome fusion, whereas Rab7
facilitates the fusion of late endosomes and lysosomes to phagosomes [100-105]. V-type
ATPase catalyzes the acidification of phagosomal lumen [106-109].

Special features of the maturation of phagosomes containing apoptotic cells
Until recently, little is know about how apoptotic cell are degraded inside phagosomes. Unlike
macrophages that ingest bacteria, macrophages that engulf apoptotic cells secrete anti-
inflammatory signals and actively suppress the secretion of the proinflammatory cytokines
[9-12]. Further more, recent studies revealed that phagosomes containing apoptotic cells and
opsonized-living cells matured at different rates [110]. These observations indicate the
existence of mechanisms specific to the degradation of apoptotic cells. Recent research
conducted in invertebrate model organisms and mammalian system revealed shared and unique
mechanisms employed for the degradation of apoptotic cells.

The small nematode C. elegans has been a successful model for studying apoptotic cell death
and apoptotic-cell engulfment [111,112]. Recently, owing to the establishment of multiple
novel techniques, including the live-cell imaging in developing embryos and the genome-wide
RNAi screen, and through the combined usage of these techniques with traditional genetic
approaches, researchers have described in detail the different steps of the maturation process
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of phagosomes that contain apoptotic cells and identified a novel signaling pathway controlling
phagosome maturation (Figure 3). It has been observed that the degradation of apoptotic cells
in C. elegans also requires fusions of endosomes and lysosomes to phagosomes [113,114]. The
recruitment of a series of key molecules, some of which previously unknown to be involved
in phagosome maturation, to phagosomal surfaces drives these fusion events [113-117]. Below
we summarize these new findings made in C. elegans as well as in other systems.

New executors of phagosome maturation that drive lysosomes/phagosome fusion
The Rab family small GTPases and their protein complexes are known to act as tethering factors
that bring vesicles together for fusion [118]. Three C. elegans Rab GTPases, RAB-5, RAB-7,
and RAB-2, have been found to play distinct roles during the degradation of apoptotic cells
(Figure 3) [114-117]. Knocking out or down the activity of each of the three results in the
accumulation of undegraded apoptotic cells. C. elegans RAB-7 is specifically required for the
incorporation of lysosomes to phagosomes [114]. It mediates the extension of lipid tubules
from phagosomes to recruit lysosomes, like mammalian Rab7 [105,114], and further promotes
the fusion between these two compartments after docking of lysosomes on phagosomal
surfaces [114]. In rab-7(RNAi) treated worms, phagosomes containing apoptotic germ cells
are arrested as RAB-5-labeled phagosomes, suggesting that RAB-7 may act downstream or
independent of RAB-5 [115]. The homotypic fusion and vacuole protein sorting (HOPS)
complex is known to act as both an exchange factor and an effector for Rab7 during yeast
endocytosis [119]. RNAi knockdown of each of all seven HOPS complex components causes
persistent apoptotic cells in C. elegans gonads; further more, phagosomes are arrested at a
RAB-7-positive stage, suggesting that the HOPS complex is likely to act downstream of RAB-7
[115]. In a separate study, Xiao et al independently discovered the function of the HOPS
complex component VPS-18 in the degradation of engulfed apoptotic cells [120]. However,
Xiao et al proposed that the major cause of the observed phagosome maturation defect is due
to defects in lysosomal biogenesis caused by the vps-18 mutations [120]. Whether and how
the HOPS complex plays a direct role on phagosomal surfaces for lysosomes/phagosome fusion
needs to be further investigated.

Unlike RAB-5 or -7, RAB-2 is a less-studied Rab GTPase whose function in phagosome
maturation has not been revealed previously. C. elegans RAB-2 was identified from genetic
screens for mutants that contain un-removed apoptotic cells [116,117]. Like RAB-7, RAB-2
plays an important role in the recruitment and fusion of lysosomes to phagosomes; however,
unlike RAB-7, RAB-2 is also required for the acidification of phagosomal lumen [116]. RAB-2
and RAB-7 may control lysosome-phagosome fusions in parallel; alternatively, they may each
contribute to a different subset of events. Proteomic studies in Drosophila and mammals have
identified Rab2 as a component of phagosomes [121,122]. It remains to be elucidated whether
mammalian or Drosophila Rab2 plays a conserved role in the maturation of phagosomes.

In addition to Rab GTPases, a novel function of the V0-ATPase in lysosomal/phagosomal
fusion during the clearance of zebrafish apoptotic neurons has been identified through in
vivo imaging [123]. This fusion activity is separate from the proton pump activity of the V-
type ATPase [123], and is consistent with the membrane fusion activity reported for the fusion
of yeast vacuoles [124]. In the near future, components of the membrane fusion machinery
such as the SNARE complex and the regulators of this machinery are likely to show up on the
list of novel apoptotic-cell degradation factors.

Key factors that regulate the phagosome maturation executors
Dynamins are conserved large GTPases that play pivotal roles in multiple membrane
trafficking processes [125]. Dynamin's membrane fission activity underlines its essential
function in driving endocytosis [125]. In other cellular context, dynamin and dynamin-related
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proteins are also known to promote membrane fusion [126-130]. In a genetic screen for mutants
that are defective in both embryonic development and apoptotic-cell removal, fourteen loss-
of-function alleles of dyn-1, the C. elegans dynamin gene, were identified [113]. Subsequent
characterizations indicate that the function of DYN-1 is essential for both the engulfment and
degradation of apoptotic cells [113,114]. DYN-1 drives the recruitment and fusion of early
endosomes to phagocytic cups, an event that provides membrane material to support pseudopod
extension around apoptotic cells [113]. Moreover, DYN-1 controls the recruitment and fusion
of both endosomes and lysosomes to maturing phagosomes, a process critical for the delivery
of multiple digestive enzymes and the V-type ATPase to phagosomes [113,114]. Specifically,
DYN-1 acts as a mediator in a signaling pathway leading to phagosome maturation – it
promotes the recruitment of RAB-7 to phagosomal surfaces and the synthesis of PI3P on
phagosomal membranes [114]. DYN-1 thus acts as an upstream regulator of phagosome
maturation effectors (Figure 3). In a genome-wide RNAi screen, Kinchen et al. also identified
the function of dyn-1 in phagosome maturation [115].

PI3P is generated on the phagosomal surfaces primarily owing to the activity of Class III PI-3
kinase Vps34 and functions there to recruit downstream factors, such as proteins with Phox
(PX) or Fab1-YOTB-Vac1-EEA1 (FYVE) domains [97]. In C. elegans engulfing cells, PI3P
is synthesized on nascent phagosome surfaces immediately after the internalization of apoptotic
cells and remains present throughout phagosome maturation [114]. RNAi-mediated
inactivation of C. elegans vps-34 results in a mild increase in the number of apoptotic germ
cells and vps-34 was proposed to function under the control of DYN-1 to synthesis PI3P
[115]. Given that vps-34 RNAi, unlike dyn-1 mutations or RNAi, only causes mild apoptotic-
cell retention phenotype, there might be additional PI 3 kinases that act in parallel to generate
phagosome-specific PI3P in response to DYN-1.

The role of Rab5 GTPase appears to be more complex. During the maturation of phagosomes
containing microbes or opsonized particles, Rab5 is proposed to act as a tethering factor
between early endosomes and phagosomes [102,131,132]. In both C. elegans and mammalian
cells, recent studies found that Rab5 also promotes the maturation of phagosomes containing
apoptotic cells [115,133]. Since the incorporation of early endosomes to phagosomes is a
crucial step during the degradation of apoptotic cells [113], it is likely, although proof is still
needed, that the tethering factor function of Rab5 is conserved during apoptotic-cell
degradation. Besides this executor function, Rab5 also regulates downstream signaling events.
In the endocytic pathway, Rab5 was known to activate Vps34 and promote PI3P synthesis on
the target membranes [134-136]. Recently, Kinchen et al propose a different model in which
Vps34 activates Rab5 by mediating the interaction between Rab5 and dynamin 2, based on
protein-protein interaction studies in mammalian cells and genetic studies in C. elegans
[115]. Whether this model can be reconciled with the observations made in the endocytic
pathway and the model proposed by Kitano et al [133] in Rab5 activation requires further
investigation.

Kitano et al observed that the activation of Rab5 on the surface of nascent phagosomes
containing apoptotic cells is dependent on EB1, a microtubule-tip-associating protein that also
interacts with Gapex-5, a guanine nucleotide exchange factor (GEF) for Rab5 [133]. Kitano et
al thus propose that the recruitment of Gapex-5 to phagosomes through the microtubule
network leads to the subsequent recruitment and activation of Rab5 [133]. The identification
of Gapex-5 and EB1 as essential factors provides a molecular mechanism that involves the
novel and critical role of microtubules for the regulation of Rab5.

Phagocytic receptors acting as the initiators of phagosome maturation
As an essential regulator of phagosome maturation that controls the recruitment and activity
of multiple downstream regulators and executors, how is DYN-1 regulated? First of all, the
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association of DYN-1 to extending pseudopods and nascent phagosomes is critical for its
function in the removal of apoptotic cells [113]. Furthermore, the recruitment of DYN-1 to
pseudopods and nascent phagosomes is dependent on the phagocytic receptor CED-1 and its
adaptor protein CED-6 [113]. Lack of DYN-1 enrichment to the surfaces of pseudopods and
nascent phagosomes, as a consequence of ced-1 or ced-6 mutations, causes severe defects in
engulfment and degradation of cell corpses [113,114]. Consistent with this mechanism,
epistasis analysis places dyn-1 in the signaling pathway composed of ced-1 and ced-6 [113].
These results indicate that vesicle trafficking is a novel event regulated by the CED-1 pathway;
they further imply that CED-1, by controlling DYN-1 activity, also regulates phagosome
maturation [113,114].

CED-1 and CED-6 are members of one of the two previously identified C. elegans signaling
pathways that are believed to specifically control the engulfment of apoptotic cells
[137-139]. The novel functions of CED-1 and CED-6 in phagosome maturation were
overlooked previously because strategies that distinguish engulfed vs. unengulfed apoptotic
cells in real time were not established [114]. With the aid of the newly developed live-cell
imaging technique, Yu et al discovered that like dyn-1 mutations, ced-1 mutations not only
greatly reduce the efficiency of engulfment but also impair the degradation of those apoptotic
cells that are engulfed inside phagosomes [114]. Signaling events that require CED-1 activity,
including the recruitment of DYN-1 and RAB-7 to and the synthesis of PI3P on the surface of
phagosomes, also require CED-6 [114]. As a consequence, ced-1 and ced-6 mutants are both
defective in the recruitment and fusion of early endosomes and lysosomes to phagosomes
[113,114]. Although CED-1 is only transiently localized to phagosomal surfaces, it co-exists
with DYN-1 for a period of time [113,114]. Thus, through CED-6, CED-1 recruits DYN-1 to
phagosomes, which promotes a downstream signaling cascade that leads to apoptotic cell
degradation (Figure 3) [113,114].

Previously, phagocytic receptors were only known to recognize phagocytic targets and initiate
their engulfment. The above finding reveals that in addition to this well-known function,
CED-1 plays a novel role in phagosome maturation. It further indicates that phagosome
maturation is not a process that occurs spontaneously once a phagosome forms, rather,
signaling from the phagocytic receptor is needed to initiate this process. Moreover, this finding
suggests that different phagocytic receptors may promote different phagosome maturation
modes and subsequently induce phagocytes to elicit different responses, including different
immune responses. CED-1 belongs to a family of transmembrane proteins whose extracellular
domains are of large sizes and contain an N-terminal emilin (EMI)-like domain followed by
tandem repeats of an atypical EGF like repeat motif [140]. Draper, the Drosophila ortholog of
CED-1, like CED-1, is known to be essential for the engulfment of apoptotic cells as well as
pruned axon fragments [141-144]. Interestingly, Kurant et al [145] recently observed that in
draper mutants, apoptotic cells are retained inside phagosomes for a prolonged period of time.
Based on their genetic and cell biological characterizations of single mutants of draper and
simu, which encodes another EMI-domain and EGF-repeats containing transmembrane
protein, and of draper; simu double mutants, Kurant et al. further propose that SIMU is
primarily involved in the recognition and uptake of apoptotic cells whereas Draper is primarily
required for the degradation of apoptotic cells [145]. These findings indicate a conserved role
of the CED-1 family of phagocytic receptors in phagosome degradation in worms and flies. It
remains to be elucidated whether mammalian homologs of CED-1, such as human mEGF10
[138,146], and other phagocytic receptors for apoptotic cells also provide the initiation signal
for phagosome maturation in addition to promoting the engulfment of apoptotic cells, and
furthermore, whether the initiation of phagosome maturation is a common function performed
by all phagocytic receptors.
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Cytoskeleton reorganization might also play a role in the degradation of apoptotic cells
CED-5, the C. elegans homolog of mammalian protein Dock180, is a component of a bipartite
nuclear exchange factor for CED-1/Rac1 GTPase, and acts in a signaling pathway together
with CED-10 but in parallel to CED-1 to promote the engulfment of apoptotic cells [112].
Recently, it was observed that CED-5 acted in a distinct pathway to control phagolysosome
formation during the degradation of apoptotic cells [114]. During engulfment, the pathway led
by CED-5 was known to regulate cytoskeletal reorganization [112]. Cytoskeletal
reorganization also plays an active role in phagosome maturation in mammalian cells [110,
147]. CED-5 and other members of its pathway thus might contribute to phagosome maturation
through remodeling the cytoskeleton.

Concluding remarks
Studies focusing on the degradation of apoptotic cells provide a wonderful platform for
investigating a number of fundamental biological processes, including, but not limited to, how
apoptotic execution machinery coordinates the multiple cellular demolishing events, whether
and how autophagy, another fundamental cellular activity, is involved in the clearance of
apoptotic cells, how the initiation and completion of apoptotic cell degradation in two different
cell types are coordinated, and the identity of the components and organization of the signaling
pathway(s) for recruiting intracellular vesicles to support phagosome maturation. The usage
of model organisms further places the clearance of apoptotic cells in a whole animal context.
However, what we know currently, as summarized in this review, is only the tip of an iceberg.
Without repeating the questions for future exploration that have already been spelled out in the
text, here I would like to list several interesting questions that have not been well explored.
First, what is the exact role of cell-autonomous degradation of apoptotic cells? It seems that
the caspase-initiated DNA degradation is dispensable under physiological conditions since
DNA degradation occurring inside phagosomes provides a backup activity. However, other
events, such as the exposure of “eat me” signals, cell retraction and detachment from the
surrounding tissue, which are essential for ensuring that apoptotic cells are to be engulfed by
phagocytes, may rely on caspase-mediated cleavage of multiple substrates. Exploring this
aspect will lead us to further understand the relationship between apoptotic cells and there
neighbors. Secondly, autophagy was associated with phagosome maturation in recent studies
[148,149]. A comprehensive study of the contribution of autophagy in both apoptotic cells and
phagocytes to the degradation of apoptotic cells will shed light on the relationship between
autophagy and apoptosis. Last but not least, the cell-non-autonomous degradation of apoptotic
cells has established a new model for studying the mechanism of phagosome maturation. The
finding that phagocytic receptors for apoptotic cells are crucial in initiating phagosome
maturation provides a new clue to understand the distinct immune responses phagocytes
generated against different phagocytic targets. The detailed molecular mechanisms behind each
step of phagosome maturation, such as how dynamin serves as a mediator of phagosome
maturation, what the PI3P effectors are, and the functional relationship among Rab GTPases
2, 5, and 7 all await to be explored in worms, flies and mammals.
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Figure 1.
The process of apoptotic cell removal including cell autonomous and cell nonautonomous
degradations. (i) When cells adapt the apoptotic death fate, activated caspase family proteolyses
are responsible for the degradation of cytoskeleton, releasing and exposure of signals that
attract phagocytes and induce DNA fragmentation by activating DNases. (ii) Apoptotic cells
are recognized and engulfed by phagocytes. (iii) Inside the phagocytes, apoptotic cell
containing phagosomes fuse with different intracellular organelle species. This fusion process
dramatically changes the membrane and lumen component of the phagosome and facilitates
the complete degradation of apoptotic cells.
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Figure 2.
In living cells, the activity of CAD is inhibited by ICAD and the Endo G is sequestered in
mitochondrial intermembrane space. During apoptosis, the activated caspases cleave ICAD
and release CAD, which forms homodimer and cleave linker DNA between necleosomes. The
activation of caspases also triggers the release of Endo G from mitochondria into nucleus to
cleave chromosomal DNA. B. After engulfed by phagocytes, the apoptotic cell resides in
phagosome. Through phagosomal maturation, the phagosome acquires different digestive
enzymes including DNase II α from lysosomes and its lumen is gradually acidified. In acidic
condition, the active DNase II α further degrades nucleosomal DNA into nucleotides.
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Figure 3.
Cell non-autonomous degradation of apoptotic cells. In C. elegans, the signal cascade of
apoptotic cell degradation start from phagocytic receptor CED-1 and followed by CED-6, large
GTPase DYN-1, small GTPases (RAB-5, RAB-7 and RAB-2), class III PI3 kinase Vps-34 and
members of HOPS complex. DYN-1 and RAB GTPase localize on phagocytic cup or
phagosome surface to regulate the sequential fusion of intracellular organelles, including early
and late endosomes and lysosomes, to phagosome. PIP3 are syntheses on the phagosome
surface mainly by Vps-34 and serve to recruit downstream effectors. Members of HOPS
complex are RAB-7 effectors and function mainly downstream of RAB-7. It is not know
whether Vps-34 and HOPS complex also localize on phagosome surface. During phagosome
maturation, its lumen pH level drop from near neural to below 5, which activate the capthesin
family proteases and DNase II to complete degrade phagosome contents.
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