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Summary
High-content screening (HCS), historically limited to drug-development companies, is now a
powerful and affordable technology for academic researchers. Through automated routines, this
technology acquires large datasets of fluorescence images depicting functional states of thousands
to millions of cells. Information on shapes, textures, intensities, and localizations is then used to
create unique representations, or “phenotypic signatures,” of each cell. These signatures quantify
physiologic or diseased states, for example, dendritic arborization, drug response, or cell coping
strategies. Live-cell imaging in HCS adds the ability to correlate cellular events at different points
in times, thereby allowing sensitivities and observations not possible with fixed endpoint analysis.
HCS with live-cell imaging therefore provides unprecedented capability to detect spatiotemporal
changes in cells and is particularly suited for time-dependent, stochastic processes such as
neurodegenerative disorders.

Introduction
Biological research is entering a new era. Molecular biology will be combined with novel
engineering technologies and increased computational power to examine living systems in
exciting new ways. We are only beginning to understand the benefits—in fact, the necessity
—of studying biological systems with large-scale unbiased screens[1]. Here we focus on high-
content screening (HCS) and considerations needed to use this method effectively to study
normal and disease physiology in primary cells, currently the most biologically relevant
models.
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Why high-content screening?
HCS is a multiplexed, functional screening method based on extracting multiparametric
fluorescence data from multiple targets in intact cells [2,3]. By temporally and spatially
resolving fluorescent readouts within individual cells, HCS yields an almost unlimited number
of kinetic and morphometric outputs. HCS was developed to facilitate drug-target validation
and lead optimization before costly animal testing [4]. Today it is broadly used to catalog
cellular, subcellular, and intercellular responses to multiple systematic perturbations and is
applicable to basic science, translational research, and drug development. We distinguish HCS
from high-content analysis (HCA). HCA refers to extracting information from image data.
HCS is the automated, high-throughput application of HCA.

HCS can fill a gap in academic research. Our growing awareness of biological complexity
underscores the need to examine more than one variable at a fixed point in time. Traditional
low-throughput methods have severe limitations. For complex systems with many interacting
genes, measuring any single perturbation is not very informative. For gain-of-function diseases,
especially those with late onset, a toxic gain-of-function may not be related to a protein’s
normal function. Unbiased screens therefore identify potential pathogenic mechanisms faster
and more comprehensively, and the large datasets are less prone to sampling error when
analyzing stochastic events.

HCS assays capture cell-system dynamics and exploit typically confounding cell-to-cell
variability. For example, a recent study used simultaneous tracking of ~1000 proteins in lung
carcinoma cells after drug treatment to detect time-dependent proteomic changes that predicted
individual cell fate [5]. Hypotheses in HCS are used to design tracked variables and outputs
that maximize the likelihood of meaningful results. We labeled mutant huntingtin and
measured cell survival to determine the role of inclusion bodies in Huntington’s disease (HD)
[6], a question unanswered by 10 years of time-invariant, low-throughput approaches. HCS
provides large datasets that unveil multiple, often nonintuitive, correlations that seed
subsequent lines of thought. Thus, HCS accelerates the iterative process of classical hypothesis-
driven research [7].

Primary cells or cell lines?
Choosing the best cell type for a particular HCS assay is challenging. Each option comes with
inherent benefits and drawbacks (Table 1). Primary cells provide high-quality models for
several reasons. They are more physiologically relevant than immortalized cell lines [8]. They
form synapses, thus incorporating significant neuromodulatory and trophic inputs. Neuronal
physiology and disease are also notoriously cell-type specific, and neurons differentiated in
vivo best recapitulate actual neuronal subpopulations. One study found hepatoma cell lines
differ profoundly from primary hepatocytes, consistent with a shift from oxidative to anaerobic
metabolism, upregulation of mitotic proteins, and downregulation of typical hepatocyte
functions [9]. High attrition rates for candidate neuropharmacologics (Fig. 1) suggest even
more striking differences in neurons.

Most screenings have involved cell lines, but future screenings will use primary and stem cells
[10,11]. Embryonic stem (ES) cells can be differentiated into motor neurons in large numbers
[12]. Mouse and human induced pluripotent stem (iPS) cells [13,14] may better predict in vivo
drug side effects and are particularly attractive for disease-focused HCS [15-17]. For example,
iPS cells from patients with spinal muscular atrophy differentiated into motor neurons retained
pathological deficits and drug responses consistent with the disease. More work is needed to
characterize iPS cell lines, and better dedifferentiation protocols will avoid viral vectors and
oncogenes [17-20]. Ultimately, HCS will place additional demands on dedifferentiation and
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redifferentiation, including high efficiency and reproducibility. High throughput screens are
already helping to address these needs [21,22].

Despite technical challenges in isolating, culturing, and transfecting primary neurons, their use
decreases false negatives and saves time and money wasted on pursuing false positives. Until
protocols are improved for differentiating ES and iPS cells into many neuronal cell types,
primary cells will remain the most physiologically relevant model for large-scale screens.

HCS planning for live-cell imaging
Assay development encompasses selecting fluorophores and proteins to label, choosing a
transfection method, migrating to 96- or 384-well formats, upgrading automation, and
completing preliminary experiments to determine robustness of readouts. None of these steps
are trivial. Migrating to a new format alone requires re-optimizing labware, intra- and inter-
well cell distributions, and transfection and image-acquisition protocols. During this time, a
lab data management system must also be integrated.

Fluorophores
Excellent reviews describe fluorophores for HCA [23,24]. Notably, mKate [25] (now mKate2),
mOrange2 and TagRFP-T [26], and EBFP2 [27] provide improved brightness and
photostability. After balancing these features, the best options for live-cell imaging are listed
in Table 2. HCS allows up to four fluorophores with sufficient spectral separation to avoid
crosstalk. In the future, more channels will be simultaneously acquired with spectral imaging
[28].

Transfection
Lipid-based methods, Ca2+-phosphate co-precipitatation, viral infection, electroporation, and
nucleofection all have benefits and drawbacks [29]. Primary neurons pose additional
challenges: they are susceptible to transfection toxicities and plagued by low transfection
efficiency [30]. We found Lipofectamine 2000 (Invitrogen) best for efficiency, cell viability,
and automation in assays that require transfection after cell plating. With this reagent, most
transfection variability results from cell-plating density, total mass of DNA, and ratio of
transfection reagent to DNA. These factors must be optimized for specific cells and DNAs.
Reverse transfection with this reagent now makes arrayed libraries of transfection-ready DNA
and siRNA a reality for HCS [31,32]. Although biochemical assays of large numbers of pooled
cells rely on high transfection efficiencies, this actually complicates microscopy-based
screening of individual cells. Identifying the same cell over time can be confounded by cell
movement. The researcher must strike a balance between maximizing transfected cell number
per field and verifying the ability of image-analysis algorithms to accurately track the cells.

Automation
Automation can be applied to each step of HCS, including sample preparation, image
acquisition and analysis, quality-control measures, and data reporting. Highly capable liquid-
handling robots are increasingly affordable for individual labs. They represent scalable options
for liquid aspiration and dispensing of large and small volumes. Multiple high-content
microscopy systems are now available [33]. The most popular use confocal or wide-field
microscopes, and all offer hardware autofocus, options for environmental control, and data
management and image-analysis software. They provide out-of-the-box access to HCS for
many scientific applications. Downsides to these solutions include expense, proprietary image
formats and algorithms, and the inability to write ground-level scripts for true user
customization. Lab automation upgrades should be integrated early into low-throughput assay
development so quality measures are determined from datasets reflecting the automation.
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Robustness
Minimizing assay variability is essential for HCS. The Z’-factor is a useful way to estimate
assay quality and is calculated as a signal detection window between positive and negative
controls scaled by the dynamic range [34]. It is an excellent measure of single-output assays.
Since HCS allows powerful multiparametric analyses with potentially hundreds of quantified
parameters, a Z’-factor can be calculated individually for each parameter [35]. Alternatively,
multivariate criteria without informational losses due to averaging can be instituted from the
beginning [36]. In either case, large data sets from positive and negative controls should be
used to determine assay quality before initiating screening.

Data Management
HCS datasets are large. Live-cell imaging of a single 96-well plate with three channels and
nine images per well yields ~30 GB of raw image data. A reliable informatics infrastructure is
needed. Data should flow seamlessly from acquisition to storage on a server where it can be
accessed for offline image analysis. Initially, hierarchal file structures can be used, but optimal
management should include a central database for storing images and metadata that can be
accessed by both acquisition and image-analysis software.

Image analysis, the new bottleneck
Automation advancements have been valuable for HCS, but extracting meaningful data from
complex image sets poses major challenges. These challenges arise from a combination of
microscopy and image-processing limitations and the need for new statistical tools.
Neuroscience poses particular difficulties due to complexities in neuronal morphology and
subcellular trafficking. Most laboratories use image-analysis algorithms and manual labor to
analyze images, but the throughput is too low for HCS. More robust and accurate image-
analysis algorithms that can be applied to entire data sets with minimal user intervention are
necessary[37]. Zhang et al. published a neurite extraction algorithm [38] for HCS, and multiple
commercial packages quantify neuronal bodies and neurites. To understand HCS informatics
problems more fully, we refer you to excellent reviews [39-41].

HCA uniquely provides multiplexed quantification of individual cell features with temporal
and spatial resolution. Image analysis comprises image segmentation and cell tracking,
extraction of individual cell features, and data modeling and classification [41]. Image-analysis
programs routinely measure size, shape, intensity, texture, moments, and subcellular
localization that, when combined, yield hundreds of parameters that characterize a specific cell
phenotype [42]. For example, Loo et al. used ~300 unbiased parameters and a multivariate
clustering algorithm to determine separation between drug-treated HeLa cells and controls
[36]. The redundancy of this parameter set was reduced, resulting in a minimal phenotypic
signature of the treated cells at various drug dosages. With the signatures, a drug class could
be predicted, and therapeutic windows could also be deduced. The close relationship of
neuronal morphology and functional state [43] holds promise for similar phenotypic signatures
to emerge from HCS focused on neuronal development, physiology, and disease. For instance,
an HCS study of cultured rat primary cortical neurons identified Aβ1-42 induced reduction in
neurite outgrowth with no apparent effect on neuron number, pointing to more subtle
morphological changes that can precede cell death. These studies used fixed-cell imaging,
however, the full potential of HCS will be realized with imaging live cells over time[44].

HCS and live-cell imaging of primary neurons: putting it all together
HCS with live-cell imaging in relevant neuronal models promises to elucidate physiologic and
pathophysiologic processes with unprecedented sensitivity and correlative power. Live-cell
imaging captures cell phenotype changes. Thus, previously static features are transformed into
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dynamic features where timed occurrences and rates of change generate more informative
phenotypic signatures. Imaging in live cells also permits cause-and-effect relationships to be
determined. We use this novel approach to investigate pathogenic mechanisms of
neurodegenerative disorders, including HD, Parkinson’s disease, and frontotemporal dementia.
Our system (Fig. 2) allows us to correlate events in thousands of neurons to individual cell
fates—enabling us to determine if the events are adaptive, maladaptive, or incidental to disease
progression [45]. For instance, we used live-cell imaging in a primary neuron model of HD to
establish a mitigating role for inclusion bodies [6] and reveal the interplay between ubiquitin-
proteasome system function and inclusion body formation [46]. Such studies necessitate large
sample sizes and the ability to follow individual neurons over time. They highlight the power
of HCS, when coupled with live-cell imaging, to reveal causal relationships in biological
processes.

Repeated measures of individual cells by automated microscopy facilitates use of powerful
statistical techniques, such as Cox proportional hazards (CPH) analysis[47]. CPH integrates a
user-defined number of parameters to determine whether they explain time-to-event outcomes,
for instance cell survival. Much as in a prospective cohort study, we allow cells, through
stochastic diversification, to “take on” certain traits and then retrospectively determine how
significant these traits are in predicting outcomes. Our goal is to find robust, disease-specific
phenotypic signatures for screening small-molecule pharmacological agents and genome-wide
siRNA libraries. CPH takes advantage of inherent cell-to-cell heterogeneity, and the increased
sensitivity resulting from temporal analysis permits fewer cells to be analyzed. We therefore
avoid two main drawbacks of screening in primary cells—decreased transfection efficiency
and lack of cell homogeneity.

Conclusion
HCS is a technology with vast potential for academic researchers and particularly neuroscience.
Large-scale screens are strategically essential in understanding complex biological systems
and gain of function diseases. HCS can be applied to an incredible diversity of assay types
depending on the experimental conditions and labeled proteins. Challenges still remain in
image analysis and data interpretation, and new statistical tools will be necessary to analyze
time-dependent processes of millions of cells across thousands of conditions. Advances in HCS
will result from new microscopy techniques, such as spectral imaging, better fluorescence
proteins, and the maturation of stem cell technology. Greater knowledge of what proteins to
probe for particular physiologic and disease processes will increase HCS sensitivity. HCS with
live-cell imaging in primary neurons is practical and will likely contribute to some of the most
elusive questions in neurobiology and related disease.
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Figure 1. Success rates and millions of dollars spent from first-in-man to registration by therapeutic
area
The overall clinical success rate is 11% with ~900 million dollars spent. However when the
analysis is carried out by therapeutic area, big differences emerge with central nervous system
(CNS) and oncology trailing far behind cardiovascular diseases in the % success rate compared
to the dollars spent [48,49].
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Figure 2. Workflow of our second generation high content screening system for live-cell imaging
Our system uses primary neurons from embryonic mice. A Microlab STARlet (Hamilton,
Reno, CA) automated pipetting workstation prepares and transfects cells in 96-well plates,
which are then transferred to the plate stacker of a KiNEDx 4-axis robot (Peak Robotics,
Colorado Springs, CO). The plates are loaded onto an MS-2000 stage (Applied Scientific
Instruments, Eugene, OR) fixed to a Nikon TE-2000 (Nikon, Melville, NY) microscope. The
robot and microscope are enclosed in an environmental chamber (InVivo Scientific, St Louis,
MO) to enable around-the-clock imaging for 6-7 days. Widefield images are acquired
according to in-house scripts written in Image-Pro Plus (MediaCybernetics, Silver Spring,
MD). At each time point, montage images are generated for each well and fluorophore channel.
Image analysis algorithms then extract cell-based information. Metadata generated from image
acquisition and analysis flows into a central database for data modeling, mining and
classification.
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Table 1
Neuronal cell models for HCS

The advantages and disadvantages of different cell types are summarized for their use in HCS. Adapted from
Eglen et al [10].

Property Immortalized cells Primary Neurons Embryonic stem cells Induced pluripotent stem cells
Current use in HCS Ubiquitous Limited Differentiation screens Differentiation screens
Ready for HCS Yes Yes No No

Source Specific to cell line

Animal tissue

• Specific brain
regions

Established or new cell line

• From human or animal
embryos

Established or new cell line

• From human or animal
fibroblasts (most common)

Freeze/Thaw Yes Once Yes Yes

Proliferative capacity Very High Post-mitotic
High

• Murine better than human

High

• Murine better than human

Differentiation required In some cases No Yes Yes

Population type Clonal or
Heterogeneous Heterogeneous Clonal → Heterogeneous Clonal → Heterogeneous

Handling Durable Sensitive Sensitive Sensitive
Ability to be engineered High Limited Medium to high Medium to high
Cost Low High Medium Medium
Physiologic relevance Low High Medium to high Medium to high

Major challenge for HCS • Physiologic
 relevance

• Limited human
 source
• Labor intensive

• Limited human source
• Differentiation
• Quality control

• Dedifferentiation
• Differentiation
• Quality control

Major benefits for HCS • Quantity
• Engineering

• Physiologic
 relevance

• Quantity
• Diversity of cell types

• Quantity
• Diversity of cell types
• Patient-specific screening
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