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Summary
Proteolysis is a key regulatory post-translational modification in diverse cellular processes including
programmed cell death, immune function, and development. Tracking proteolytic events has become
a focus of researchers assessing the downstream consequences of protease activation. In this review
we summarize unbiased methods for identifying protease substrates and tracking the extent of
cleavage, a field termed “degradomics”. These include one- and two-dimensional gel-based methods
for identifying protease substrates, N-terminal peptide identification methods for simultaneously
identifying substrates and cleavage sites, and approaches for quantitation of cleavage events during
endogenous proteolysis. Individual methods have identified more than 300 caspase-cleaved targets
during apoptosis suggesting broad future applications for these technologies.

Introduction: Proteolysis in Cellular Signaling
Proteolysis is both a catabolic process for metabolite recycling and energy generation[1] and
an essential post-translational modification (PTM) that regulates intracellular and extracellular
signal transduction.[2–4] Like other PTMs, proteolysis regulates protein function more rapidly
than is possible via transcription and translation. Thus, its use is pivotal in responsive biological
proccesses, for example in coagulation and the inflammatory response.[5–7] Site-specific
proteolysis can also rapidly degrade numerous proteins in a controlled fashion, resulting in
widespread morphological changes (e.g. in apoptosis or development).[8] In studies of other
PTMs, such as phosphorylation or glycosylation, systems-level protein profiling has linked
physiological stimuli to site-specific protein modifications.[9,10] However, while these
modifications can be targeted by affinity chromatography, proteolyzed proteins have no unique
chemical handle enabling their enrichment from complex mixtures. This review focuses on
approaches to track proteolysis in complex mixtures by defining the sequence specificity of
proteases, identifying their protein targets and sites of cleavage, and measuring the kinetics
and extent of cleavage events. Apoptosis and the proteolytic activity of the caspase family of
proteases are model systems that will be used as a semi-universal metric to compare the
techniques.
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Protease target identification: gel-based methods
Key efforts towards defining proteolytic substrates focus on the determination of primary
sequence specificities. Diverse methods including substrate phage display [11,12] and mRNA
display [13] identify small numbers of optimized cleavage sequences, while chemically- and
enzymatically-derived peptide libraries interrogate the amino acid preferences for proteases at
each subsite.[14–17] While highly successful, peptide-centric efforts suffer from an inability
to define the roll of higher-order protein structure on substrate determination. To address these
deficiencies, a number of gel-based techniques have been developed to identify proteases’
protein substrates.

Two-dimensional differential gel electrophoresis (2D-DiGE) employs orthogonal
electrophoresis methods to separate complex mixtures into resolvable spots.[18] Comparative
staining reveals differences between proteolyzed and control samples that can be analyzed by
MS (Figure 1a). A variation on this approach, diagonal electrophoresis, uses two dimensions
of SDS-PAGE with an intermediate in-gel protease treatment to identify protease targets.[19]
Proteins that migrate off the diagonal in the second, post-proteolysis dimension are likely
substrates of the digesting protease (Figure 1b). 2D gel methods have been applied to caspase
substrate identification, identifying 41, 13, and 15 putative substrates of caspases-1, -3, and -7
(Table 1).[19,20]

An alternative 1D gel-based method, termed PROTOMAP, has recently been described to
identify cleavages that occur during Jurkat cell apoptosis.[21,22] Apoptotic and control cell
lysates were separated by SDS-PAGE in adjacent lanes, and the gel lanes were sliced into bands
(Figure 1c). Proteins in each band were identified by LC-MS/MS following in-gel trypsin
digestion, and quantified by spectral counting. Proteins from apoptotic cells that decreased in
intensity or shifted from higher to lower apparent molecular weight (261 of 1648 total proteins)
were presumed to be caspase substrates. A caspase cleavage-derived peptide was detected
directly in approximately one quarter of the proteolyzed proteins, and by overlaying the
peptides of cleaved fragments onto a sequence map the authors could approximate the cleavage
site for many others. However, without direct observation of a caspase-cleaved peptide,
definitive cleavage sites cannot be assigned, and the possibility exists that non-caspase
proteases are responsible for some of the observed proteolysis. A notable advantage of
PROTOMAP is that an essentially infinite number of samples can be compared, limited only
by the size of the gel. The authors exploited this to monitor a time course of apoptotic cleavage,
and identified both early and late cleavage events during apoptosis and the relative stabilities
of the resulting proteolytic fragments. Unfortunately, this technique does not enrich for
proteolyzed proteins, and thus preferentially samples highly abundant proteins. Consequently,
extensive MS instrument time is required for comprehensive peptide identification from low
amounts (~100µg) of sample. It remains unclear whether the technique can be applied to study
sparse proteolysis within a high background of unmodified proteins.

N-terminal identifications: Negative selections
Several groups have taken advantage of the semi-unique nature of protein N-termini to identify
both the proteolyzed protein and the site of cleavage. Full-length proteins have a limited number
of reactive nitrogen atoms corresponding to lysine ε-amines and N-terminal α-amines. Upon
digestion with a residue specific protease (e.g. trypsin), C-terminal and internal peptides gain
an additional α-amine. Two teams of researchers have used this additional functionality to
remove internal peptides and identify sites of proteolysis. One approach, termed COmbined
FRActional DIagonal Chromatography (COFRADIC), treats full-length proteins with N-
hydroxysuccinimide acetate to acetylate all lysines and N-termini (Figure 2a–b).[23–28]
Subsequently, the proteins are trypsinized and the N-termini of internal peptides are capped
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with trinitrobenzenesulfonyl chloride, greatly increasing their hydrophobicity. The N-terminal
peptides elute far earlier than the modified internal peptides on RP-HPLC, enabling their
selective analysis by MS. By using an isotopically enriched amine-blocking group (e.g.
trideuteroacetate) it is possible to differentiate blocked N-termini from endogenous N-terminal
acetylation.[23] COFRADIC has identified 58 caspase-cleaved peptides from apoptotic Jurkat
T lymphocytes,[23] 11 putative caspase-1 and 9 putative caspase-7 cleaved peptides in a
caspase-1 treated lysate,[27] and 585 direct human granzyme B substrates from a granzyme
B-treated lysate.[26] In a similar approach, Beynon and colleagues incubated an acetylated and
trypsinized cell lysate with amine-reactive N-hydroxysuccinimide-activated beads, to capture
internal peptides (Figure 2b).[29,30] Each of these techniques identifies proteins based on a
single peptide. Inappropriate lengths (i.e. peptides that are too long or short) or poor ionizability
make ~50% of tryptic peptides unsuitable for unambiguous identification via MS and thus limit
the number of possible substrate identifications. Furthermore, incomplete capture of internal
peptides can lead to a high background of false positives. On average, there are ~25 internal
peptides for each N-terminal peptide in an acetylated lysate, so even small inefficiencies in
their removal are highly problematic.

N-terminal identifications: Positive selections
An alternative to removing internal peptides for N-terminal peptide identification is to
positively enrich for the peptides of interest. Salvesen and colleagues have developed a method
for enrichment based on selective guanidinylation of lysine residues using O-methylisourea
(Figure 2c). O-methylisourea inefficiently modifies protein α-amines, leaving them available
for subsequent chemical biotinylation. After digestion with trypsin, N-terminal peptides can
be isolated with immobilized streptavidin.[31] In contrast to the two previous methods for N-
terminal modification, this approach discards endogenously N-acetylated N-termini (~80% of
all N-termini)[32] and thus increases the sensitivity for detecting proteolytic cleavages. The
authors used their technique to investigate mitochondrial transit peptides from yeast, mouse,
and human cells. They found a total of 34 transit peptides from 27 proteins, only 10 of which
had been previously annotated, demonstrating the utility of this method for N-terminal
discovery. It should be noted that this method depends on highly efficient modification of
lysine residues and highly selective biotinylation of the remaining α-amines. Biotinylation of
serine, threonine, or histidine side chains could lead to false identifications. In principle,
database matching in the MS-analysis should distinguish real N-terminal peptides from
spurious identifications, but incomplete peptide coverage, particularly close to the N-terminus,
can introduce false positives.

We have employed subtiligase, an engineered variant of the bacterial protease subtilisin BPN’,
to selectively label N-terminal peptides in a single step without lysine derivatization. Created
by mutating the catalytic serine to a cysteine and modifying the geometry of this active site
residue with a second point mutation (P225A), subtiligase has negligible amidase activity but
remains active as an esterase.[33–35] The thioester-enzyme intermediate formed with peptide
ester substrates during the catalytic cycle is slowly hydrolyzed by water, but can be rapidly
intercepted by N-terminal amines, allowing transfer of the N-terminal portion of the ester onto
free amines. We have never observed transfer onto peptide or protein side chains, suggesting
an enzymatic specificity thus far unachievable via small molecule approaches. Identification
of N-terminal peptides was accomplished by treating cell lysates with subtiligase and a
biotinylated-peptide ester (Figure 2c).[36,37] The resulting peptide mixture was trypsinized,
N-terminal peptides were captured on streptavidin beads, and the desired peptides were
released by cleavage of a TEV protease site in the original biotinylated peptide. TEV protease
cleavage leaves a dipeptide tag that can be used to confirm true positives. In typical runs, >95%
of identified peptides contain this tag. Using this method on apoptotic Jurkat cells, we identified
333 caspase-like cleavage sites on 292 protein substrates.[36] The broad scope of these
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substrates enabled the discovery of unexpected caspase enzymatic activities- most notably
cleavage within helices and systematic cleavage of proteins within protein-protein complexes.
Though highly specific, the efficiency of subtiligase N-terminal labeling is low, and thus this
technique requires large amounts of material (typically 50–100 mg of a complex mixture per
experiment) to identify numerous substrates. However, the highly enriched set of N-termini
that result can be routinely analyzed in a single day via LC-MS/MS. Like all N-terminal
identification procedures, the identification of one peptide per protein systematically excludes
proteins with N-terminal peptides not readily identifiable via MS.

Quantitation of proteolysis
To date, the primary focus of protease-substrate classification techniques has been on
identifying substrates and their cleavage sites. Efforts to understand the dynamics and extent
of proteolysis could make significant contributions to our understanding of proteolysis in
vivo. Simple, two-plex-quantitation can be metabolically, chemically, or enzymatically
introduced into these techniques to evaluate relative levels of proteolysis in two samples
(Figures 3a–b).[2,23,26,28,38] TMT-[38] and iTRAQ-based[39] quantitation allows for
relative comparison of up to eight samples, enabling more detailed kinetic measurements or
observations of proteolytic efficiency across multiple biological conditions (Figure 3c).[40]
Application of these methods to N-terminal peptides, however, monitors only the appearance
of new N-termini, leaving the extent of cleavage undetermined. PROTOMAP and other gel-
based methods can theoretically analyze every peptide in the protein and thus can monitor both
appearance of new peptides and the extent of cleavage.

Conclusion
Recent technological developments have revolutionized the process of protease substrate
identification. These advances have provided facile means to categorize a protease’s sequence
specificity, in vitro substrates, and the in vivo proteolysis that results from biological stimuli.
The two main approaches, gel-based methods and N-terminal identification, provide
complementary information: gel-based methods do not enrich for the peptides of interest and
thus may miss low abundance substrates, while protein identification based on enrichment of
single peptides is more sensitive, but inherently limited by the nature of MS-database matching.
The introduction of MS-based quantitation into these analyses will enable comprehensive and
high-throughput profiling of substrate proteolysis. These advances should reveal the full scope
of proteolysis in both normal and disease states.
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Figure 1. Gel-based methods for identifying protease substrates
A. 2-D DIGE: A control and proteolyzed lysate are labeled with fluorescent dyes, mixed, and
analyzed by 2-D gel electrophoresis. Spots with unequal fluorescence ratios are picked as
proteolyzed proteins for MS analysis. B. 2-D SDS-PAGE: A lysate is resolved by SDS-PAGE,
proteolyzed, and electrophoresed perpendicular to the initial migration. Spots occurring below
the diagonal are identified as substrates. C. PROTOMAP: Control and proteolyzed cell lysates
are analyzed side-by-side via SDS-PAGE. The gel is cut into bands, trypsinized, and peptides
are identified by LC-MS/MS. For each protein, peptides are analyzed by peptographs (analysis
tools that display the sequence coverage and intensity in each band), revealing the approximate
site(s) and extent of cleavage.
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Figure 2. Methods for isolating N-terminal Peptides
A. Lysates are treated with chemical reagents or enzymes to modify protein amines. Subsequent
trypsinization reveals N-terminal peptides with derivatized N-termini and internal peptides
with free amines. B. In negative enrichment methods, internal peptides are removed by reaction
with an amine-reactive reagent followed by chromatography or solid phase extraction. The
remaining peptides are analyzed by LC-MS/MS. C. In positive enrichment methods, N-
terminally labeled peptides are isolated by bead capture, and chemically or enzymatically
released for analysis by LC-MS/MS.
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Figure 3. Methods for relative peptide quantification
A. SILAC. Duplicate cell cultures are grown in media containing light/heavy amino acids,
proteolyzed separately, mixed, and then the N-termini are isolated. Relative peptide intensities
are determined by comparing MS intensities. B. MS-based peptide quantification. Cells are
lysed, protelyzed, and their N-termini are isolated and derivatized with isotopically labeled
reagents. The modified peptides are mixed and quantified based on MS intensities. C. MSMS-
based peptide quantification. Isolated N-termini are labeled with isobaric iTRAQ reagents,
each with distinct isotopic compositions, and mixed. At the MS level of analysis each peptide
is identical. At the MS/MS level the isobaric tag fragments to reveal the relative intensities of
the four samples.
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