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BACKGROUND: To enhance the success rate of nanocarrier-mediated chemotherapy combined with an anti-angiogenic agent, it is
crucial to identify parameters for tumour vasculature that can predict a response to the treatment of the anti-angiogenic agent.
METHODS: To apply transforming growth factor (TGF)-b type I receptor (TbR-I) inhibitor, A-83-01, to combined therapy, dynamic
contrast-enhanced magnetic resonance imaging (DCE-MRI) was carried out in mice bearing colon 26 cells using gadolinium (Gd)-
DTPA and for its liposomal formulation to evaluate changes in tumour microvasculature following A-83-01. Tumour vascular
parameters from DCE-MRI were compared with histological assessment and apparent diffusion coefficient of water in tumour
generated by diffusion-weighted MRI.
RESULTS: Contrary to evaluations reported for anti-angiogenic agents, A-83-01 treatment increased the initial area under the Gd
concentration–time curve (IAUGC60), volume transfer constant (Ktrans) and fractional plasma volume (vp) significantly within 24 h,
that was positively related to a-smooth muscle actin-positive pericyte coverage and tumour cell proliferation, and was correlated
inversely with the apparent diffusion coefficient. The vascular function of the tumour improved by A-83-01 treatment was well
assessed on post-liposomal Gd-DTPA-enhanced MR images, which predicted delivery of a liposomal drug to the tumour.
CONCLUSION: These findings suggest that DCE-MRI and, in particular, Ktrans and vp quantitation, provide important additional
information about tumour vasculature by A-83-01 treatment.
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The success of chemotherapeutic agents with solid tumours is
critically dependant on the access that these agents have to the
tumours via the so-called ‘leaky vasculature’. In particular, tumour
vasculature is crucial for the delivery of drugs encapsulated in
nanocarriers (Matsumura and Maeda, 1986). Anti-angiogenesis
effects are known to change the tumour vasculature; therefore, this
technique has been already applied to combined therapy.
Bevacizumab, an anti-vascular endothelial growth factor (VEGF)
antibody, was developed for blocking angiogenesis and it is
clinically used with other drugs to improve the efficiency of
chemotherapy.

The roles of transforming growth factor (TGF)-b in cancer
biology are complex; TGF-b can suppress or promote tumour
growth depending on the type of cancer. Small molecule TGF-b
type I receptor (TbR-I) inhibitor has a wide variety of effects
(Jakowlew, 2006; Tsuchida et al, 2006). The TbR-I inhibitor
LY364947 was reported to increase the accumulation of an anti-
cancer drug encapsulated in nanocarriers by changing the micro-
environmental vasculature (Kano et al, 2007). The TbR-I inhibitor
A-83-01 is one of more potent inhibitors of TbR-I kinase/activin

receptor-like kinase (ALK)-5 (IC50¼ 12 nM) (Tojo et al, 2005) than
a previously described ALK-5 inhibitors including LY364947
(IC50¼ 59 nM) (Li et al, 2006), although the in vivo effect has not
been made known. To estimate the tumour state after treatment
with TbR-I inhibitor is important to determine an administration
schedule for TbR-I inhibitor-combined therapy. However, it is
difficult to rationally determine whether tumour blood vessels are
amenable to nanocarrier-mediated therapy in an individualised
manner.

Dynamic contrast-enhanced magnetic resonance imaging (DCE-
MRI) is one of the evaluation methods of anti-angiogenic agents,
such as anti-VEGF antibody and tyrosine kinase inhibitor,
clinically (Morgan et al, 2003; O’Connor et al, 2007) and
preclinically (Marzola et al, 2004; Nakamura et al, 2006; Bradley
et al, 2009), by calculating pharmacokinetic parameters, including
fractional plasma volume (vp) and the volume transfer constant
(Ktrans) from the enhancement of tumour signal intensity by
gadolinium (Gd) contrast agent (Tozer, 2003; Kiessling et al, 2007).
To my knowledge, however, there are no reports to evaluate TbR-I
inhibitor by DCE-MRI. In clinical studies, small molecular weight
contrast agents, Gd chelates, have been used. Ktrans, the Gd
exchange constant between blood and tumour interstitial tissue,
depends on the balance between permeability and blood flow.
Therefore, the Ktrans parameter depends on the size of the contrast
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agent. The choice of the optimal contrast agent is considered to be
essential for a successful characterisation of tumour angiogenesis.
As macromolecule contrast media show lower permeability than
Gd cheleates, it is useful for permeability change monitoring in
tumour vasculature (Daldrup-Link et al, 2004; Turetschek et al,
2004); Liposomes are self-closed colloidal particles in which bilayer
membranes composed from self-aggregated lipid molecules encap-
sulate a fraction of the medium. Liposomes have been used as drug
carriers for anticancer drugs such as Doxil. For this reason,
liposomal Gd has a substantial potential to detect permeability-
limited conditions. There are still no reports on the use of lipo-
somes as a DCE-MRI contrast agent. Furthermore, liposomal con-
trast agents to evaluate nanocarrier behaviour in tumour directly
will be a hopeful method of examination for combination therapy.

Thus, the purpose of this study was to evaluate changes in
tumour vasculature as parameters using DCE-MRI to monitor
responses in mice following A-83-01 administration. In addition to
DCE-MRI, diffusion-weighted imaging was used to estimate the
apparent diffusion coefficient of tissue water (Koh and Padhani,
2006; Patterson et al, 2008). TbR-I inhibitor activity was also
evaluated in representative experiments through tumour vascu-
larity, the proportion of endothelial cells associated with pericytes,
and microvessel density from histological slices.

MATERIALS AND METHODS

Animals

All animal experiments were carried out in accordance with the
guidelines of the Guiding Principles for the Care and Use of
Laboratory Animals of Hoshi University. Colon 26 cells (1� 106)
were inoculated subcutaneously into the right back at the side of
the heart in CDF1 female mice (6-weeks old, Sankyo Labo Service,
Tokyo, Japan). When the tumour size reached approximately
100 mm3, A-83-01 (Sigma Chemical, St. Louis, MO, USA)
(Supplementary Figure S1A) dissolved in DMSO/saline¼ 3 out of
2 (v/v) was injected intraperitoneally. The tail vein was cathe-
terised post-injection of contrast agent during the DCE-MRI
experiment. Mice were anaesthetised with 1.5% isoflurane (Abbott
Japan, Tokyo, Japan) throughout the MRI experiment during their
insertion into a 9.4T vertical type MRI (Varian, Palo Alto, CA,
USA). For a single treatment of A-83-01, mice (N¼ 4) were
injected with A-83-01 at a dose of 1 mg kg�1 at ‘0 h’ (Supplemen-
tary Figure S1B). In this experiment, 0 h was the time of the first
A-83-01 intraperitoneal injection and the number of hours
represents time after the first injection of A-83-01. For repeated
treatment, mice (N¼ 4) were injected with A-83-01 at 0 and 21 h at
the same dose as for the single treatment.

Preparation of liposomal Gd-DTPA

For the preparation of liposomal Gd-DTPA (Gd-L), mixture of egg
phosphatidylcholine (Q.P. Company, Tokyo, Japan), cholesterol
(Wako Pure Chemical Industries, Osaka, Japan), and polyethyle-
neglycol 2000-distearoyl phosphatidylethanolamine (NOF, Tokyo,
Japan) in a molar ratio of 5 : 2 : 0.35 was dissolved in ethanol at
601C, hydrated with Gd-DTPA (Magnevist, Bayer-Schering Pharma
AG, Berlin, Germany), stirred, and evaporated under a vacuum to
remove ethanol. This mixture was exposed to ultrasound until the
particle diameter was about 120 nm, followed by exhausted dialysis
against phosphate buffered saline (pH 7.4) solution. The particle
size of the liposomes was determined at 251C using an ELS-Z2
instrument (Otsuka Electronics, Tokyo, Japan). The Gd concentra-
tion was determined using inductively coupled plasma with an
SPS7800 apparatus (SII NanoTechnology, Tokyo, Japan).
T1 relaxation times of Gd-L and Gd-DTPA were measured over
the concentration range of 0 –0.25 mM Gd at 9.4 T1 at room

temperature. Relaxivity (R1) was then determined from the slope
of the linear regression fits of 1/T1 vs the Gd concentration:
1/T1¼R1 � [Gd]þ 1/T10, where T10 represents T1 of 0 mM Gd
solution. R1 of Gd-L was 4.48 mM

�1s�1, which was similar to that of
Gd-DTPA (4.39 mM

�1s�1).

MRI

Apparent diffusion coefficient was estimated and mapped from
diffusion-weighted imaging using the following parameters:
repetition time (TR)¼ 2000 ms, echo time (TE)¼ 45 ms, slice
thickness 3 mm, 64� 64 data matrix, axial orientation, and field-
of-view of 3� 3 cm2. Three slices through the centre of the tumour
were acquired. Diffusion gradients equivalent to b-values of 0, 200,
400, and 800 s mm�2 were employed using gradient pulse widths of
d¼ 7 ms and D¼ 20 ms.

Dynamic contrast-enhanced magnetic resonance imaging was
carried out with Gd-DTPA and Gd-L before (‘pre’) and after
treatment in each animal. With the use of Gd Gd-L, injected lipids
containing Gd-L were retained in the tumour; therefore, different
mice were used to compare pretreatment with treatment of
A-83-01. Before DCE-MRI high spatial resolution, two-dimensional
T2-weighted spin –echo axial images were acquired to detect the
tumour position. Pre-contrast tumour T1 was determined using an
inversion recovery-prepared spoiled gradient-recalled echo
(SPGR) sequence. The inversion-recovery was carried out using
a 1801 hard RF pulse followed by a gradient crusher pulse.
Inversion times were 0.2, 0.4, 0.8, 1.4, 2, and 3 s. The other MRI
parameters were: TE¼ 3 ms, field-of-view¼ 3� 3 cm2, slice thick-
ness¼ 4 mm, and matrix size¼ 64� 64. Both RF and gradient
spoilers were applied. In DCE-MRI acquisition, it was applied
repeatedly to acquire the axial slice SPGR images through the
tumour and left ventricle with a second temporal resolution over
6 min: TR¼ 7.8125 ms, TE¼ 2.06 ms, matrix resolution¼ 64� 64,
field-of-view¼ 3� 3 cm2, slice thickness¼ 4 mm, flip angle¼ 301,
number of slices¼ 1, and two signal averages. Approximately 20 s
of baseline DCE-MRI images were acquired. Gd-DTPA or Gd-L was
administered at 20ml g�1 (0.1 mmol Gd kg�1) as a bolus with
heparinized saline (total volume B0.4 ml) via manual injection
over 2–3 s.

Quantitative evaluation of MRI

Tumour regions-of-interest (ROI) covering the whole tumour was
segmented on the T2-weighted axial images, using ImageJ software
(NIH, Bethesda, MD, USA), and the tumour ROI was transferred to
the apparent diffusion coefficient map calculated from diffusion-
weighted imagings.

A T1 map of tumour was prepared by the imaging of the
inversion-recovery method to quantitate tumour Gd concentra-
tions. The concentration of Gd at each imaging time point in each
voxel was estimated using the formula Bradley et al (2009) used.
T1 in blood plasma at 9.4 T was 2.2 s, as reported previously
(Tsekos et al, 1998) and T1 in tumour was from the T1 map. 1/T1

(t) was calculated for every time point for the blood and tumour
Gd concentrations . The initial area under the Gd concentration–
time curve over 60 s (IAUGC60) was calculated. The tumour
haemodynamic parameters Ktrans and vp were calculated using a
two-compartment model (Ewing et al, 2003). The plasma
concentration over time was calculated from the left ventricle
data, which were averaged for all mice in the Gd-DTPA and Gd-L
groups for this value.

Histological and immunohistochemical analysis

For the histological assessment of A-83-01 effects on tumour
vasculature, tumour sections were observed at 24 h after repeated
injection of A-83-01. Each of four tumours from A-83-01 treated
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and untreated mice was resected and fixed with 10% formalin.
Paraffin-embedded samples were sliced into 3 mM sections for
hematoxylin and eosin staining and immunostaining. Antibodies
against a-smooth muscle actin (SMA) (DAKO, Glostrup, Denmark)
were used to identify the pericyte and anti-CD31 (Abcam, MA,
USA, USA), endothelial cell marker and anti-Ki67 (Labvision,
Fremont, CA, USA) antibodies to recognise the growth state cells
(G1, S, and M phase). Vascular areas within the tumours were
measured as the index of tumour vascularity by stained with anti-
CD31. Five fields of tumour sections were analysed at low
magnification using a computerised image analyser (Image-Pro
Plus, Media Cybernetics, MA, USA). The ratio of vessel area
against tumour area without necrosis was calculated.

Statistical analysis

Values were expressed as the mean±s.d. A two-tailed Student’s
t-test was used comparison between the pre- and post-treatment
groups. ANOVA analysis, followed by Dunnett’s test, was used for
multi-group comparisons. Pearson’s correlation coefficients were
used for determination between a significant positive and negative
relationship. Correlations between 0.4 and 0.6 were considered
moderate, whereas correlations from 0.7 to 1.0 were considered
strong. Significant differences were accepted when the P-value was
below 0.05.

RESULTS

Figure 1A shows change of the Gd concentrations in DCE-MRI
acquisition using Gd-DTPA at pretreatment, at 3-h, and 24-h post-
injection of A-83-01. A progressive accumulation of Gd in the

tumour was observed during the first 60 s followed by a plateau
phase. The group treated with a single injection of A-83-01 showed
the highest accumulation at 3 h post-injection of A-83-01 (1.7-fold
the IAUGC60, Figure 1B) associated with a larger s.d., and a similar
level to those with pretreatment at 24 h (0.9-fold the IAUGC60). At
24 h after repeated injection, the tumour accumulation increased a
similar level to that at 3 h after the single injection (1.8-fold the
IAUGC60). Next, we observed changes of the tumour vasculature
repeat-treated by A-83-01 using Gd-L. The Gd concentration in
DCE-MRI acquisition of untreated mice was very low (Figure 1C).
The Gd concentration with Gd-L in repeat-treated mice increased
during the first 200 s, and reached the same plateau value as with
that of the Gd-DTPA repeat-treated mice. Eventually the repeated
A-83-01 treatment increased 3.8-fold the IAUGC60 of Gd-L
(Figure 1D), indicating a dramatic improvement in liposomal
contrast agent delivery to the tumour.

From the data obtained above, vp and Ktrans values were
calculated (Figure 2). With Gd-DTPA at 3 h after the single
treatment, vp and Ktrans were high values accompanied with great
variability, whereas at 24 h, vp and Ktrans were similar to those of
the respective pretreatment values, suggesting that A-83-01
induced a transient change in the vasculature at around 3 h.
On the other hand, at 24 h after repeated treatment, all mice
showed increased vp and Ktrans with Gd-DTPA (Po0.05) and Gd-L.
At 3 h after the first treatment, vp and Ktrans did not show
significantly elevated values with Gd-DTPA, therefore, it can be
concluded that the repeated administration schedule changed the
tumour state positively for better liposomal contrast-agent
distribution. The most characteristic point of the vp and Ktrans

changes was the large dispersion of vp and Ktrans values after
repeated A-83-01 treatments with the use of Gd-L. The diversity
of local permeability of treated tumours may lead to large
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dispersion of Gd-L. The mouse tumour core showed an increase in
the Gd concentration, as shown in Figure 1C, whereas the tumour
rim showed a high peak concentration at about 1 min post-
injection of Gd-L that then decayed (data not shown). In contrast,
Gd-DTPA increased tumour Gd concentration homogeneously.
This finding suggests that Gd-L could detect small changes in
tumour micro-environments and brought about a big dispersion of
vp and Ktrans values among treated mice.

Figure 3 shows histological observations of the tumours with or
without the repeated A-83-01 treatment. Two distinct changes were
observed, although there was no difference in tumour cell shape or
necrosis. The first was intra-tumoural bleeding, which was
exclusively configured at the periphery of the A-83-01-treated
tumours with 200–300 mm width and 100 mm depth (Figure 3A).
The bleeding lesions were not accompanied with tissue oedema,
suggesting minute rupture of tumour vessels. This means that
hyper-permeability had not occurred. The localised bleeding state
may correspond to the accumulation site of Gd-L. The second
observation was morphological changes of the tumour vasculature.
Abnormal blood vessels with irregular dilation were seen in the
untreated tumours, whereas the vasculature in A-83-01-treated
mice was smaller, and its shape was more round, suggesting the
vascular normalisation (Figure 3A). Tumour vascularity, the
percentage of vascular area (1.2%) in the treated tumours (post)
was not significantly lower than in the untreated tumours (pre,
2.9%, P40.05), as the change was very diverse within a tumour
(Figure 3D). The abnormal tumour vessels were not accompanied
with pericytes, which were identified because of SMA reactivity
(Figure 3B). It is interesting to note that the normalised vessels in
tumours treated with A-83-01 were surrounded by pericytes
(Figure 3B). The Ki67 index (58.5%) was significantly higher in the
perivascular region of the A-83-01-treated tumours compared with
the untreated tumours (41.4%, Po0.05) (Figure 3C, E). These
findings suggested that the repeated A-83-01 treatment allowed the
recovery of blood flow during 24 h.

In the evaluation of apparent diffusion coefficient value, single-
treated groups at 3 and 24 h did not show a difference compared
with the pretreatment, but the repeat-treated group at 24 h showed
a significant difference (Po0.01, Figure 4). Alteration of extra- and
intracellular fluid volume balance in repeat-administrated protocol
may occur in the tumour because the diffusion rate of intracellular
water is 1 order of magnitude smaller than that of the extracellular
water (Van Zijl et al, 1991; Gass et al, 2001).

Next, the relation of DCE-MRI parameters with Gd-DTPA to
tumour apparent diffusion coefficient was investigated (Figure 5).

There was a moderately negative correlation between the IAUGC60

(Figure 5A),Ktrans(Figure 5B),vp, and apparent diffusion coefficient
(Figure 5C). This suggests that these parameters may be of value in
the assessment of tumour behaviour.

DISCUSSION

In this study, effects of a TbR-I inhibitor was firstly evaluated by
means of DCE-MRI with Gd-DTPA and Gd-L in mice bearing
colon 26 tumours. The effect of A-83-01 exhibited high IAUGC60,
vp, and Ktrans values at 24 h after repeated treatment.

An increase in Ktrans by the use of Gd-L could conceivably
increase the permeability and surface area of the capillary
endothelium. The Ktrans value estimated with Gd-L
(Ktrans¼ 0.076±0.048 min�1) after the repeated A-83-01 treatment
was higher to that with Gd-DTPA (Ktrans¼ 0.035±0.009 min�1)
(Figure 2B). Liposomal contrast agents are promising for
characterising the tumour vascularity and the angiogenesis status
through DCE-MRI method.

Anti-angiogenic agents such as anti-VEGF antibody and
tyrosine kinase inhibitor were reported that decrease both Ktrans

and IAUGC (O’Connor et al, 2007; Bradley et al, 2008; Bradley
et al, 2009), and the decrease in Ktrans in solid tumours is
concerned with the anti-tumour effect (Morgan et al, 2003;
Marzola et al, 2004; Nakamura et al, 2006; Flaherty et al, 2008).
In this study, Ktrans, IAUGC60, and vp were increased significantly
24 h after the A-83-01 treatment. This increase may be explained
by different treatment protocols, different tumour models, and the
different signal inhibition between anti-angiogenic agent such as
kinase inhibitor and TbR-I inhibitor. Similar to A-83-01-treated
colon 26 solid tumours, LY364947-treated M109 solid tumours
increased IAUGC60 at 3 h and recovered fully by 24 h post-injection
(Supplementary Figure S2).

It was reported that in a limited situation, anti-angiogenic
agents work to deliver more drugs into tumours through the
induction of vascular normalisation (Jain, 2001). Untreated colon
26 tumours showed low permeability, in spite of the absence of
pericytes or the leaky vessel state (Figure 2B, 3B). The increased
Ktrans and IAUGC60 values were related to the increased number of
growth state cells around the tumour vessel, and were correlated to
the decreased apparent diffusion coefficient value. Because of no
significant difference in tumour cell shape after treatment
(Figure 3A), intra-cellular volume did not change. Decreased
apparent diffusion coefficient, therefore, reflected a decrease in
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extra-cellular fluid, suggesting that the recovery of delivery may be
related to vessel normalisation.

Furthermore, similar to negative correlation between tumour
interstitial fluid pressure and permeability of tumour (Haider et al,
2007), IAUGC, Ktrans, and vp showed a moderate negative
correlation to apparent diffusion coefficient, suggesting that these
parameters may be providing similar information. As apparent

diffusion coefficient is acquired in clinic widely to detect and
diagnose a tumour, it could apply conveniently to examine the
permeability of tumour in patients.

Although there is room for improvement, DCE-MRI using
liposomal contrast agents such as Gd-L could be an important
method to anticipate the extravasation of the liposomal anti-cancer
drug during TbR-I inhibitor-combined therapy.
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In summary, we found that DCE-MRI parameters,
Ktrans, IAUGC60, and vp were positively related to tumour
vasculature by the treatment of A-83-01. Thus, TbR-I inhi-
bitor has the potential to enhance the delivery of liposomal
anti-cancer drugs and contrast agents. DCE-MRI forms a
capable tool to determine the administration schedule of
combination therapy with TbR-I inhibitor by Ktrans and vp

quantitation.
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Figure 5 IAUGC60, transfer constant volume transfer constant (Ktrans), and fractional plasma volume (vp) with gadolinium (Gd)-DTPA vs tumour apparent
diffusion coefficient (ADC). There was a moderately negative correlation between the IAUGC60 and ADC (r¼ –0.4774, P¼ 0.0451, N¼ 18) (A), between
Ktrans and ADC (r¼ –0.5333, P¼ 0.0227, N¼ 18) (B), and between vp and ADC (r¼�0.5253, P¼ 0.0252, N¼ 18) (C).
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