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Abstract: A great need exists for prediction of antibody response for the generation of antibodies
toward protein targets. Earlier studies have suggested that prediction methods based on

hydrophilicity propensity scale, in which the degree of exposure of the amino acid in an aqueous

solvent is calculated, has limited value. Here, we show a comparative analysis based on 12,634
affinity-purified antibodies generated in a standardized manner against human recombinant protein

fragments. The antibody response (yield) was measured and compared to theoretical predictions

based on a large number (544) of published propensity scales. The results show that some of the
scales have predictive power, although the overall Pearson correlation coefficient is relatively low

(0.2) even for the best performing amino acid indices. Based on the current data set, a new

propensity scale was calculated with a Pearson correlation coefficient of 0.25. The values
correlated in some extent to earlier scales, including large penalty for hydrophobic and cysteine

residues and high positive contribution from acidic residues, but with relatively low positive

contribution from basic residues. The fraction of immunogens generating low antibody responses
was reduced from 30% to around 10% if immunogens with a high propensity score (>0.48) were

selected as compared to immunogens with lower scores (<0.29). The study demonstrates that a

propensity scale might be useful for prediction of antibody response generated by immunization of
recombinant protein fragments. The data set presented here can be used for further studies to

design new prediction tools for the generation of antibodies to specific protein targets.
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Introduction

The adaptive immune system is induced by lympho-

cytes and can be classified into humoral immunity,

mediated by antibodies, and cellular immunity, medi-

ated by T lymphocytes.1 Antibodies bind to pathogens,

such as viruses or bacteria, and the binding triggers

various immunological responses, such as phagocytosis

and destruction by scavenger cells, e.g., macrophages.

Thus, the humoral response is crucial in the host

defense toward most pathogens and this makes efforts

to predict efficient immunogens for generation of spe-

cific antibodies important, both in efforts to develop

vaccines and to generate specific antibodies for use in

research and therapy.

An efficient antibody response is reliant both on

antigen recognition by the antibody presenting B-cells

(B-cell epitope) and the delivery of a proliferation

inducing T-cell signal to the B-cell (T-cell epitope).

The antigen thus has to possess regions with both T-

and B-cell epitopes for the effective generation of anti-

bodies. Both antigen fusions, fusing the antigen with

T-cell stimulatory partner proteins,2,3 and bioinfor-

matic predictions1 have been used to stimulate and

predict the T-cell response of an immunization.
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Whereas prediction of T-cell epitopes has been a field

with great improvement in later years, prediction of B-

cell epitopes has shown to be a more challenging task.1

B-cell epitopes can be classified into continuous

and discontinuous epitopes.4 A continuous epitope,

also called linear or sequential epitope, is a short

sequence of amino acids that is recognized by the anti-

body, while a discontinuous epitope, also called con-

formational epitope, is composed of amino acids that

are not adjacent in the protein primary sequence, but

are brought together by the protein folding. Early

work has suggested that most epitopes are conforma-

tional,5,6 based on antibodies mainly generated toward

native protein structures. In contrast, antibodies gen-

erated to synthetic peptides will recognize linear epi-

topes.5 As peptides sometimes, due to their limited

size, do not resemble their native folded protein, com-

plete or nearly complete antigens are preferably used

for applications where native recognition is desired,

e.g., for vaccine development.7 Similarly, recent results

from our group suggest that a large fraction of the

antibodies within a polyclonal pool generated to partly

nonfolded recombinant protein fragments (around 100

residues) are directed mainly toward linear epitopes

and the corresponding fraction recognizing conforma-

tional epitopes is relatively is low.8 The relative

amounts of linear and conformational epitopes recog-

nized by an antibody are thus dependent on the choice

of antigen used. It is in this context important that

these differences in the behavior of immunogens

should be taken into account when a particular anti-

body is generated, since some applications involve

studying the protein target in its native form, such as

live cell sorting (FACS) or serum analysis, while other

applications target the protein in a completely or par-

tially denaturated state, such as Western blot analysis,

immunohistochemistry or immunofluorescence. For

research applications, it might therefore, in many

cases be beneficial to use synthetic peptides or larger

partially unfolded protein fragments as immunogens

to generate antibodies predominately with linear epi-

topes suitable across many analysis platforms, in

which the protein may be denaturated at variable

degrees. A need therefore exists to predict antibody

response based on linear sequences to facilitate the

selection of synthetic peptides and/or recombinant

protein fragments starting with the complete sequence

of the target protein.

To facilitate the generation of antibodies toward

continuous epitopes, a large number of algorithms, of-

ten based on hydrophilicity propensity in which each

amino acid is assigned a value based on the degree of

exposure of the amino acid in an aqueous solvent,

have been published.9 In the early 1980s, Hopp and

Woods10 developed the first linear epitope prediction

methods and this was followed by many others,

including Kyte and Doolittle11 and Zaslavsky et al.12 In

1993, Pellequer suggested that the propensity scale

should also be based on turn propensity.13 However,

in 2005 Blythe and Flowers published an extensive

study of various linear epitope prediction methods14

and they concluded that even predictions based on the

most accurate amino acids scales were only marginally

better than random, suggesting that a more sophisti-

cated approach is needed to predict linear epitopes.

Recently, position-specific scoring matrices (PSSM)

and machine-learning methods have been used15-17 to

incorporate additional information for the prediction

of linear epitopes, such as neighborhood parameters.

These methods have been used to increase the accu-

racy of the linear epitope prediction as compared to

single-parameter methods.1 Kawashima et al. pub-

lished in 2008 an amino acid index database (AAin-

dex) with 544 different indices intended for a wide

range of bioinformatics research on protein sequences,

including immunogenicity.18 The degree of predictabil-

ity of these methods and propensity scales is yet to be

determined, emphasizing the need for large sets of ex-

perimental data generated in a standardized manner

to facilitate comparative studies and to further

enhance bioinformatics development in the field.

Here, we report the evaluation of antibody

responses using 12,634 recombinant human protein

fragments, the largest test set of immunogens and

their antibody response yet reported. The generation

of the protein fragments and the immunization of rab-

bits have been performed in a standardized manner,

making comparisons of antibody response (immunoge-

nicity) possible. The antibody response was measured

as the amount of antibody obtained after immuniza-

tion and affinity purification using the antigen as

ligand. Thus, the polyclonal antibody serum was con-

verted to a monospecific antibody fraction,19 in which

all antibodies are directed toward epitopes displayed

by the antigen. In this study, Protein Epitope Signa-

ture Tags (PrESTs) have been used, comprising unique

‘‘signature’’ sequence of the protein targets and are

therefore suitable immunogens for the generation of

specific antibodies with low unwanted cross-reactiv-

ity.19 No epitope prediction method was used in the

design of the protein fragments which makes this data

set attractive for assessing which types of fragments

give the best antibody responses.

Results

Design of human recombinant immunogens

based on low sequence identity
A protein feature visualization tool PRESTIGE20 was

used to design recombinant human protein fragments

based on low sequence identity to other human pro-

teins. The fact that the human genome sequence is

known21,22 and that the coding parts of the genome

can be predicted and assembled into a list of potential

proteins23,24 has made it possible to exclude regions

within a target protein with high sequence identity to
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other human proteins. Several methods have recently

been published based on a sliding window algorithm

to determine the sequence similarity of the various

parts of a particular human protein to all the other

protein sequences of the human proteome.20,25 A cen-

tral feature of the PRESTIGE tool is the similarity

graphs showing a sliding window of 50 and 10 amino

acids, respectively, in which each part of the analyzed

protein is compared to all the human proteins pre-

dicted from the genome sequence. Based on this tool,

large numbers of antigens were designed and primers

were synthesized and used for de novo cloning of

cDNA from RNA extracted from various human tis-

sues26 into an Escherichia coli expression vector as

described earlier.27

Generation of monospecific antibodies

Recombinant PrESTs were produced in E.coli as

fusion proteins linked to immunopotenting Albumin

Binding Protein (ABP),2,3 validated by mass spectrom-

etry and used for immunizations in rabbits using a

standardized immunization protocol.19 The polyclonal

antisera were purified using the immunogen as affinity

ligand to generate monospecific antibodies.28 Here,

12,634 protein fragments from 7,231 human genes

were used as antigen to generate antibodies corre-

sponding to �35% of all the 21,000 protein-encoded

genes.29 The genes were distributed on the chromo-

somes as shown in Figure 1(A). Typically 8 mL of

serum was used for the purification and the mono-

specific antibodies were normally eluted in a 3 mL vol-

ume and stored in aliquots. The amount of the anti-

bodies after elution varied considerably, with

approximately two thirds of the samples in the range

from 0.11 mg to 0.6 mg.

The content of amino acids in the test set of

antigens
To check for bias of certain amino acids in the design

of the PrESTs compared to the amino acid distribution

of the human proteome, an analysis of the amino acid

content of the selected antigens was carried out. Alto-

gether, 1,353,235 amino acid residues of antigens cor-

responding to the 12,634 antibodies were evaluated.

The distribution of the amino acids is shown in Figure

1(B) together with a comparison of the total distribu-

tion of amino acids in the human predicted proteome

according to Ensembl.29 The analysis shows that the

distribution of amino acids used in the study is similar

to the naturally occurring. This demonstrates that the

antigen selection, based on low sequence identity, has

not introduced any major bias for certain amino acids

in the data set.

Analysis of the antibodies

A comprehensive way of validating antibodies is to use

protein array technology. This allows for multiplex

analysis in which the binding to the protein target

antigen is compared to the binding against other inde-

pendent protein targets. We used a planar microar-

ray19 including the protein target together with 383

other arbitrarily selected human protein fragments. A

validation30 was carried out to score the antibodies as

supportive (pass) and nonsupportive (fail). To evaluate

if the amount of antibodies obtained after the affinity

purification also has bearing on the quality (specificity)

of the antibody, the 12,634 antibodies were divided

into five classes depending on amount obtained after

affinity capture. All classes were selected to have equal

number of antibodies, spanning from the lowest group

with amounts less than 0.11 mg to the top group hav-

ing amounts higher than 0.60 mg, respectively. The

results of the protein array for all 12,634 antibodies

are shown in Figure 2(A) stratified into the five classes

based on antibody amount. An average success rate of

90% was obtained and interestingly the antibodies

with a lower amount showed considerably lower suc-

cess rate (73%) despite the fact that all antibodies

were titrated to similar assay concentrations. The

Figure 1. The distribution of selected genes and PrESTs

regarding human chromosomes and amino acid content. A:

The number of genes on each of the human chromosomes

was calculated. Altogether, 7231 genes were analyzed and

the number of genes on each chromosome is shown (black

bars), as well as the total number of genes on each

chromosome (white bars) predicted by Ensembl version

50.36.29 B: The amino acid compositions were calculated

for all of the protein-encoded genes (black bars) based on

Ensembl version 50.36 and all the 9107 PrEST fragments

used to generate antibodies (white bars).
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results show that most of the antibodies obtained after

the affinity purification pass the quality assurance

based on microarray, but a tendency can be observed

for better quality (specificity) of antibodies with higher

amounts purified. The low success rate for the anti-

bodies with moderate amounts could be due to an

immune response with a high level of residual anti-

bodies with weak affinity to the immunogen and pro-

miscuous behavior to other targets or the result of an

immune response favoring less unique parts of the

target.

To validate the variation between immunizations,

a data set consisting of 2456 PrESTs immunized twice

in two separate rabbits and their corresponding anti-

body amounts after purification were analyzed and

compared [Fig. 2(B)]. The immunizations were

grouped in the same way as aforementioned based on

five equally sized classes. The results show that the

majority (63%) of the immunogens gave an antibody

amount within the same class or the closest neighbor-

ing class. and only 15% of the antibody fractions

obtained after purification differed three classes (11%)

or four classes (4%). This suggests that, although var-

iations between immunizations exist, the majority of

the antigens yield a similar immune response during

repeated immunizations.

Antigen amino acid composition for the
different antibody fractions

The variation in antibody amounts of the different

PrESTs prompted us to investigate if a correlation

could be observed between the amino acid composi-

tion of the immunogen used for immunization and the

resulting antibody amount. In Figure 3, the difference

of the amino acid composition relative the normalized

composition [Fig. 1(B)] is shown for the two classes

with the highest (white bars) and lowest (black bars)

antibody amount. The results demonstrate a clear pat-

tern with penalty for hydrophobic amino acids, such

as tyrosine (Y), tryptophan (W) and phenylalanine (F)

Figure 2. Specificity failure rate of antibodies grouped by

antibody amount (A) and variation in antibody amount

between re-immunizations (B). (A) The 12,634 antibodies

were classified into five families based on the amounts

obtained after affinity purification with the same number of

antibodies in each class. Each antibody was evaluated

using a standardized scoring system19,30 and the success

rates (pass) and failure rates for the various classes were

estimated. A supportive score (pass) was obtained if the

specific binding of the antibody to the target antigen was

obtained with no signal above 15% of the specific signal to

all other antigens on the protein array. A nonsupportive

validation score (fail) was given if the antigen has more than

40% of the signal obtained for the target protein or three

antigens showing more than 15% signal as compared to

the signal of the binding to the target antigen. (B) A

comparison of 2456 PrESTs immunized twice in separate

rabbits and their corresponding antibody amounts after

purification, grouped in five equally sized groups. The

majority (63%) of the immunogens gave an antibody

amount within the same or closest neighboring class. 15%

of the antibody fractions obtained after purification differed

remarkably varying as much as three (11%) or four classes

(4%).
Figure 3. The amino acid composition for the two classes

of antibodies with the lowest and highest antibody

concentrations after affinity purification. The amino acid

composition for all antibodies was calculated based on the

20% of antibodies with lowest (below 0.11 mg) and highest

amounts (above 0.60 mg). The resulting amino acid

composition was compared with the average amino acid

composition for all the PrESTs corresponding to the 12,634

antibodies as shown in Figure 1(B) and the difference were

calculated and shown for the class of antibodies with a low

amounts (white bars) and high amounts (black bars).
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and benefit from hydrophilic residues, with glutamic

acid (E) and glutamine (Q) as the most beneficial

amino acids. Cysteine (C) was shown to be negatively

contributing, with a high representation in antibody

purifications with low antibody amount and conversely

underrepresentation in purifications with high anti-

body amount.

Correlation between prediction algorithms and
antibody response

The comprehensible collection of 544 published pro-

pensity scales18 was evaluated. Theoretical grand aver-

age propensity values were calculated for each PrEST

using all 544 methods and compared to the amount of

antibodies obtained after affinity purification. Approxi-

mately 6.9 million data points were obtained and the

theoretical values were compared with corresponding

experimental antibody amount. The Pearson correla-

tion coefficients and trend line slope values were cal-

culated and plotted for each method (Fig. 4). Alto-

gether eight methods, described in Table I, are high-

lighted in the figure, including the methods with the

highest correlation (B by Parthasarathy-Murthy, C by

Vihinen, D by Wimley-White and E by Zaslavsky) and

two of the earliest methods for prediction of antigenic

regions10 Hopp-Woods (G) and protein hydropathy11

by Kyte-Doolittle (F). Method A by Qian-Sejnowski,31

based on scores for predicting the secondary structure

of globular proteins is shown as an example of a

method that is not useful for the prediction of antige-

nicity (Pearson correlation 0.00). The best performing

propensity scales are those based on the distribution

of normalized flexibility parameters (B values)

(method B and C) and the hydrophobicity scale experi-

mentally calculated by the free energies required to

transfer peptides from bilayer interfaces to water

(method D). Also the method (E) by Zaslavsky based

on relative hydrophobicity of amino acids by partition-

ing in aqueous two-phase polymeric systems gives rel-

ative good (although negative) correlation. Interest-

ingly, the propensity scales described already in 1981

by Hopp and Woods10 performs well (method G). The

Pearson correlations for the best methods including

(G) Hopp and Woods10 are �0.2 (Table I).

Determination of a new propensity scale based
on the experimental values in this study

A propensity scale was determined using a least square

fit algorithm based on the results from the 12,634

PrEST antibodies. The Pearson correlation for the new

propensity scale (method H) is somewhat higher

(0.25) than the previously published scales (Table I).

The values for each amino acid are shown in Support-

ing Information Table 1 with high negative values for

tryptophan (�1.9), tyrosine (�1.6), phenylalanine

(�0.7) and cysteine (�0.5). Positive values were

obtained for glutamic acid (2.2), aspartic acid (1.4)

and glutamine (1.2). In Figure 5, the propensity scales

of five of the methods from Table I have been normal-

ized and plotted to allow comparisons between the

contributions from each amino acid residue. The tend-

ency from hydrophobic to hydrophilic residues can be

seen for all methods, but individual differences for

particular amino acids can be observed. Proline has a

larger positive value for method B by Parthasarathy-

Murthy,32 somewhat higher than other methods such

a method D by Wimley-White,34 and method G by

Hopp-Woods.10 The basic residue lysine (K) was found

to have a relatively low positive contribution as com-

pared to earlier propensity scales, such as methods B32

and G10, while the amino acids isoleucine and leucine

showed a relatively high positive contribution in the

new scale (Fig. 5).

Prediction of antibody response for some

selected propensity scales
To investigate the predictive value of the various pro-

pensity scales further, a comparison of the five classes

of antibodies stratified according to amounts was

made. The theoretical grand average value obtained by

the eight propensity scales described in Table I was

Figure 4. The correlation of 544 propensity scales with the

12,634 antibody amounts obtained by immunizing

recombinant PrESTs. For each PrEST, the theoretical

propensity value was calculated using each of the 544

propensity scale methods18 and compared with the amount

of antibodies obtained. The theoretical values were

compared with corresponding experimental antibody

amounts and Pearson correlation coefficients and trend line

slope values were calculated and plotted for each method.

Eight selected methods are indicated by color and letter

and are described in more detail in Table I. The top-

performing methods, as measured by highest positive and

negative Pearson correlation, were colored in green (B–D).

Early methods for prediction of antigenic regions10 (G) and

protein hydropathy11 (F) were colored in red. A least square

fit of all antigen sequences to their corresponding antibody

amounts yielded a new propensity scale (Supporting

Information Table 1), which was used to predict antibody

amounts analogously to the other methods and was plotted

in yellow (H).
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calculated for all the 12,634 antibody PrEST antigens

and the antibodies were divided into five bins of equal

size (�2500 antibodies in each group) based on the

obtained score. The fractions of antibodies in each

class were thereafter calculated and the frequency was

plotted for each method (Fig. 6). Method A by Qian-

Sejnowski, based on prediction of globular proteins

and with a poor Pearson correlation, showed as

expected a close to random frequency of 20% in each

class. In contrast, all the other seven methods showed

good correlations (positive and negative correlation)

between the theoretical predicted value and the anti-

body amounts, and the correlations were around 30%

and 10% for the high and low group, respectively, as

compared to a random 20% value. Based on our pro-

pensity scale, 31% of the antigens scored to be in the

lowest immunogenicity group were verified experimen-

tally as poor immunogens with amounts of antibodies

less than 0.11 mg. Similarly, 33% of the PrESTs calcu-

lated to be in the highest antigenicity group were

indeed verified to give antibody yields exceeding 0.60

mg. Hence by choosing antigen regions with a higher

score (>0.48) over a region with a lower (0–0.29) the

fraction of antibodies with highest quality and amount

will increase from 8% to 33% (Fig. 6).

Discussion
Here, we show comparisons between 12,634 experi-

mentally measured antibody responses of recombinant

protein fragments and corresponding theoretical pre-

dictions based on a large set of propensity scales. The

Pearson correlation coefficient for the propensity

scales calculated from the current data set is 0.25 and

�0.2 for the best prediction methods published previ-

ously. Although rather low, the correlation coefficient

Table I. Some Examples of Propensity Scales and Their Correlation to the Antibody Response of this Study

Index Author Publication Description Slope
Pearson

correlation

A Qian and
Sejnowski31

J Mol Biol 202,
865–884 (1988)

Predicting the secondary structure of
globular proteins using neural network.
Weights for alpha-helix at the
window position of 3.

0.001 0.000

B Vihinen et al.38 Proteins 19,
141–149 (1994)

Accuracy of protein flexibility predictions.
Normalized flexibility parameters (B-values),

0.754 0.213

C Parthasarathy
and Murthy32

Protein Eng 13,
9–13 (2000)

P-Values of mesophilic proteins based
on the distributions of B values

0.860 0.207

D Wimley and
White33

Nature Struct Biol 3,
842–848 (1996)

Experimentally determined hydrophobicity
scale for proteins at membrane interfaces.
Free energies of transfer of AcWl-X-LL peptides
from bilayer interface to water

�1.051 �0.222

E Zaslavsky et al.12 J Chromatogr 240,
21–28 (1982)

Dependence of partition coefficient on ionic
strength. Measurement of relative hydrophobicity
of amino acid side-chains by partition in an
aqueous two-phase polymeric system: Hydrophobicity
scale for nonpolar and ionogenic side-chains

�0.949 �0.217

F Kyte and
Doolittle11

J Mol Biol 157,
105–132 (1982)

Hydropathy index. A simple method for displaying
the hydropathic character of a protein

�0.626 �0.150

G Hopp and
Woods10

Proc Natl Acad
Sci USA 78,
3824–3828 (1981)

Prediction of protein antigenic determinants
from amino acid sequences

0.813 0.196

H This study Antigen composition correlated with purified
antibody amount

0.943 0.252

The slope and Pearson correlation as a result of comparing the theoretical prediction using a particular propensity scale and the
experimental values of antibody concentrations for the 12,634 recombinant protein fragments are shown. The references to
the various propensity scales are A (Qian),31 B (Parthasarathy),32 C (Vihinen),33 D (Wimley),34 E (Zaslavsky),12 F (Kyte and
Doolittle),11 and G (Hopp and Woods).10

Figure 5. The value for each amino acid for the top

performing propensity scales. The scales have been

normalized from lowest (0) to highest (100) score and each

residue is plotted. The methods are according to Table I,

with exception for inversely correlated scales by method (D)

Wimley34 (blue) and method (E) Zaslavsky12 (yellow) which

have been inverted for clarification. The order of the amino

acid residues is according to the propensity scale of this

study (turquoise).
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shows unambiguously that some of the antibody

responses can be predicted using propensity scales. In

addition, the classification into five groups of the anti-

body response and prediction score, respectively,

showed a good correlation between experimental and

predicted values, as exemplified by the fact that the

fraction of antibodies with low antibody response can

be decreased 50% (from 20% to 10%) by choosing

PrEST sequences with high values calculated using the

new propensity scale. The results somewhat contra-

dicts the conclusion in 200514 that even predictions

based on the most accurate amino acids scales are

only marginally better than random, although it is im-

portant to point out that the earlier results were based

on epitope prediction of a smaller experimental data

set (50 proteins) generated in a nonstandardized

manner. The data set used here is the largest so far

published and more importantly, all antibodies have

been generated with the same standard operating

procedure.

In this study, we have used the amount of

obtained affinity purified polyclonal antibody as an in-

dicator of antibody response, although the true speci-

ficity toward the native protein target or cross-reactiv-

ity of the antibody toward other proteins is unknown.

It is reassuring that the protein array experiments

show a tendency for better specificity for antibodies

with higher antibody amounts and similar results have

been obtained also for the functionality of the antibod-

ies in immunohistochemistry, Western blot analysis

and immunofluorescence analysis using confocal mi-

croscopy (data not shown). These results therefore

suggest that antibody amounts is a relevant indicator

for specific antibody response, although more special-

ized validation must be done to investigate the final

quality of each antibody. A comparison of repeated

immunizations with the same immunogen showed that

the majority (63%) of the antibodies purified stayed

within the same or the closest neighboring class in

both immunizations.

To explain the process of antibody-antigen recog-

nition a detailed view of the paratope-epitope complex

is required. Focused studies of paratope surfaces have

previously revealed prevalence for tyrosine (Y) and

tryptophan (W) in the antigen combining site, both

possessing a mixture of hydrophilic, hydrophobic and

aromatic character, suitable for interactions with a va-

riety of targets.7,35,36 A complication with the present

data set for analogous comparisons of epitope surfaces

is that relatively large recombinant protein fragments

Figure 6. The correlation between theoretical propensity values and experimental antibody amounts stratified into five groups

of equal sizes. The theoretical value obtained by the eight propensity scales described in Table I was calculated for all the

12,634 PrESTs and the PrESTs were divided into five bins of equal size. Similarly, the antibody amounts were sorted and

classified into five bins with 20% of the data points each. The fractions of antibodies in each class were thereafter calculated

and the frequency was plotted for each method.
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have been used as immunogens. The average size of

the PrESTs in this study was 107 amino acids and the

immunogens will therefore contain several independ-

ent epitopes and the relative contribution of these for

the antibody response cannot be directly calculated.

Recently, we have mapped the epitopes of eight PrESTs

using a bacterial surface display method and the results

demonstrated that each PrEST gave rise to an ‘‘oligoclo-

nal’’ response of one to five epitopes spanning together

less than half of the available antigen sequence.37 The

recombinant protein fragment thus contains regions,

which are highly immunogenic, while other regions are

epitope ‘‘silent’’ and yields no specific antibodies. The

values used here are therefore average antibody

responses of protein fragments, most likely harboring

several distinct epitopes, and firm predictions of specific

linear epitopes cannot be made from this data set. A

systematic mapping of the specific epitopes would make

the data set even more valuable, but large-scale epitope

mapping methods are lacking, making such efforts tech-

nically and economically difficult.

A new propensity scale was calculated based on

the results of the 12,634 immunizations. This scale

might be useful as a design tool when selecting

recombinant protein fragments as immunogens. For

example we show that by selecting a protein region

with a higher score (>0.48) over a region with a

lower (0–0.29) the fraction of experimentally obtained

antibodies with highest quality and amount will

increase from 8% to 33% (Fig. 6). The new propensity

scale, listed in Supporting Information Table 1, dis-

plays several interesting differences from previously

published propensity scales, such as the relatively low

positive contribution of basic amino acids (arginine

and lysine) as compared to some of the other propen-

sity scales. In general, the values for many of the dif-

ferent amino acid residues are similar across the vari-

ous methods, as exemplified by the negative

contribution of hydrophobic residues and cysteines

(Fig. 5). The negative contribution of cysteine is strik-

ing and it can be speculated that this might be due to

the formation of local disulfide-bridges, which might,

in some cases, interfere with antibody-antigen interac-

tion. In this context, it is also possible that some of

the cysteines react to various reactive sulfide-groups

during the immunization to hide the epitope from the

immune system.

In conclusion, the results presented here show

that many of the previously published prediction

models are, to some extent, relevant for the estima-

tion of antibody response. A new amino acid propen-

sity scale was calculated to fit the large data set of

polyclonal antibody responses. The question arises if

this propensity scale also may be used to design anti-

gens for the generation of conformational epitopes or

to predict antibody response using other types of

antigens, such as synthetic peptides. To facilitate

such bioinformatics studies, the data set correspond-

ing to more than 10,000 antigen immunizations are

available for download (www.proteinatlas.org/

publ.php). This data may constitute a valuable

resource for further studies to define the epitope

space of the human proteome and to support the

generation of new bioinformatics tools enhancing the

generation of antibodies to be used for research,

diagnostics or therapy.

Materials and Methods

Antibody generation and validation

9107 PrEST regions to be used as antigens were

selected based on low sequence similarity25 followed

by cDNA synthesis, cloning and recombinant protein

production in E.coli as previously described.28 Mass

spectrometry validated PrESTs were subsequently used

as immunogens in New Zeeland rabbits and the anti-

sera obtained were purified using a Äktaxpress system

(GE Health Care AB) using the PrEST as ligand.19

Concentrations were determined automatically using

online absorbance measurements. The antibodies were

tested for specificity using protein arrays with 384

PrEST proteins, as previously described.19,30

Data analysis
Amino acid sequences for the 9107 PrEST antigens

corresponding to 12,634 monospecific antibodies were

obtained from the production database. Antibody

amounts measured were normalized based on volume

raw serum purified. Grand average scores for the

whole PrEST sequences were calculated based on 544

different propensity scales18 implemented in-house

using Java programming language. All prediction

scores were scaled between zero and one without

changing the distribution patterns. The statistic envi-

ronment R38 was used for the calculation of Pearson

correlations and linear slope coefficients. MatlabTM

(MathWorks, Natick, MA) was used to solve an over

determined equation system using least square fit of

the 12,634 antibody amount values to their corre-

sponding antigen amino acids frequencies. The

resulted propensity scale was evaluated in the same

way as the other methods and plotted together with all

methods using the statistic environment R. Eight cho-

sen methods were investigated in more detail by sepa-

rately grouping their prediction scores into five uni-

formly sized bins, resembling 20% of the data points

each and plotting these against antibody yield (also

grouped in five uniform bins).

Acknowledgments
The authors are grateful to Per-Åke Nygren, Lisa Ber-
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