Skip to main content
. 2009 Dec 3;10(Suppl 3):S34. doi: 10.1186/1471-2164-10-S3-S34

Table 8.

Evaluation results of AMD-Neov dataset using different sampling strategies with three metrics across ten classification algorithms.

Method Metric Classifier

J48 3NN NB RF5 LOG 1NN 7NN SMO RF10 RBFNet R. Avg.
PSO AUC 0.681 0.659 0.661 0.662 0.678 0.656 0.694 0.628 0.686 0.672 0.668
FMeasure 0.549 0.557 0.537 0.566 0.545 0.556 0.572 0.559 0.552 0.559 0.555
GMean 0.622 0.628 0.619 0.643 0.626 0.630 0.648 0.637 0.631 0.631 0.632

C. Avg. 0.617 0.615 0.605 0.624 0.616 0.614 0.638 0.608 0.623 0.621 0.618

RU AUC 0.652 0.627 0.625 0.622 0.635 0.649 0.622 0.619 0.663 0.631 0.635
FMeasure 0.549 0.526 0.524 0.534 0.519 0.531 0.543 0.529 0.561 0.539 0.536
GMean 0.637 0.602 0.601 0.609 0.596 0.615 0.615 0.604 0.636 0.612 0.613

C. Avg. 0.613 0.585 0.583 0.588 0.583 0.598 0.593 0.584 0.620 0.594 0.595

RO AUC 0.643 0.643 0.646 0.659 0.635 0.655 0.638 0.632 0.660 0.657 0.647
FMeasure 0.507 0.542 0.491 0.516 0.498 0.516 0.521 0.506 0.534 0.531 0.516
GMean 0.602 0.629 0.589 0.610 0.599 0.612 0.612 0.598 0.624 0.623 0.610

C. Avg. 0.584 0.605 0.575 0.595 0.577 0.594 0.590 0.579 0.606 0.603 0.591

Cluster AUC 0.656 0.624 0.627 0.629 0.625 0.652 0.644 0.594 0.642 0.638 0.633
FMeasure 0.551 0.524 0.502 0.538 0.506 0.521 0.546 0.504 0.536 0.537 0.527
GMean 0.641 0.605 0.587 0.624 0.591 0.610 0.630 0.585 0.620 0.621 0.611

C. Avg. 0.616 0.584 0.572 0.597 0.574 0.594 0.607 0.561 0.599 0.599 0.590