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Abstract

Background: Cells of monocyte/macrophage lineage are one of the major targets of HIV-1 infection and serve as reservoirs
for viral persistence in vivo. These cells are also the target of the protozoa Trypanosoma cruzi, the causative agent of Chagas
disease, being one of the most important endemic protozoonoses in Latin America. It has been demonstrated in vitro that
co-infection with other pathogens can modulate HIV replication. However, no studies at cellular level have suggested an
interaction between T. cruzi and HIV-1 to date.

Methodology/Principal Findings: By using a fully replicative wild-type virus, our study showed that T. cruzi inhibits HIV-1
antigen production by nearly 100% (p,0.001) in monocyte-derived macrophages (MDM). In different infection schemes
with luciferase-reporter VSV-G or BaL pseudotyped HIV-1 and trypomastigotes, T. cruzi induced a significant reduction of
luciferase level for both pseudotypes in all the infection schemes (p,0.001), T. cruzi-HIV (.99%) being stronger than HIV-T.
cruzi (,90% for BaL and ,85% for VSV-G) infection. In MDM with established HIV-1 infection, T. cruzi significantly inhibited
luciferate activity (p,0.01). By quantifying R-U5 and U5-gag transcripts by real time PCR, our study showed the expression
of both transcripts significantly diminished in the presence of trypomastigotes (p,0.05). Thus, T. cruzi inhibits viral post-
integration steps, early post-entry steps and entry into MDM. Trypomastigotes also caused a ,60-70% decrease of surface
CCR5 expression on MDM. Multiplication of T. cruzi inside the MDM does not seem to be required for inhibiting HIV-1
replication since soluble factors secreted by trypomastigotes have shown similar effects. Moreover, the major parasite
antigen cruzipain, which is secreted by the trypomastigote form, was able to inhibit viral production in MDM over 90%
(p,0.01).

Conclusions/Significance: Our study showed that T. cruzi inhibits HIV-1 replication at several replication stages in
macrophages, a major cell target for both pathogens.
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Introduction

Both HIV-1 infection course and outcome are determined by

the interaction between viral and host cellular factors [1], as well

as by additional agents - termed cofactors - that may have an

influence on the progression and transmission of the infection.

Since numerous tropical pathogens lead to opportunistic infections

in the context of HIV, co-infection could have significant effects on

the course of HIV infection [2,3]. Some of these pathogens are

able to infect the same cells as HIV; thus, they may be considered

as putative cofactors in the course of HIV infection. Cells of

monocyte/macrophage lineage are among the first cells to be

infected with HIV-1 and may also persist in tissues for long periods

of time and contribute to the spread of viral infection [4–6]. It has

been demonstrated in vitro that macrophage co-infections with

Mycobacterium tuberculosis [7] or Leishmania infantum [8,9] may

modulate the expression of certain factors that are able to modify

HIV-1 replication.

The parasite Trypanosoma cruzi (T. cruzi) causes Chagas disease,

one of the most important endemic protozoonoses in Latin

America. Chagas disease is characterized by an acute phase, with

high, generally self-limited parasitemia followed by an undeter-

mined phase that can last for years without signs or symptoms.

After this phase, between 20 and 30% of the patients advance to a

chronic phase, where different events of cardiopathy or mega-

viscera may occur. There are approximately 16–18 million

infected individuals, representing the largest burden of vector-

borne parasitic diseases in the continent, with around 50,000

deaths per year and 100 million subjects at risk of infection

[10–12]. Largely considered as a rural entity, Chagas disease has

become an urban public health concern due to the massive

migration of rural populations to big cities, including cities in
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America and Europe [13]. These changes in the epidemiology of

Chagas disease facilitate co-infection with HIV-1 in areas with

high viral prevalence. In endemic and epidemiologic areas, T. cruzi

infection occurs at an early age and HIV co-infection mostly

happens when the patient goes through the undetermined or

chronic phase, where the parasite is confined mostly to non-

phagocytic cells [14,15]. Data from T. cruzi-HIV co-infected

patients indicate reactivation of parasite infection with exacerba-

tion of clinical signs and unusual clinical manifestations when the

patient is undergoing immunosuppression [16–18].

Cell infection with T. cruzi begins with the uptake of infective

trypomastigotes within phagosomes and their release into the

cytosol, where they are transformed into replicating amastigotes;

the latter, in turn, differentiate into trypomastigotes and are

released during cytolysis. The parasite invades and multiplies

inside inactivated macrophages and dendritic cells in early

infection and can be carried by these cells to targeted tissues.

Activated macrophages are involved in early parasite killing [10].

T. cruzi expresses and/or secretes effector molecules that control

cell entry and intracellular targeting or modulate host cell

functions required for survival, multiplication, and dissemination

in the host [19–22]. Among them, cruzipain - the major lysosomal

cysteine proteinase [23,24] - proved to play a crucial role in

Chagas disease, including the process of parasite internalization

within mammalian cells [25].

Recently, we described the inhibition of HIV replication by T.

cruzi in a human placental model [26]. However, no in vitro studies

have described the interaction between T. cruzi and HIV-1 in a

relevant cell type for both pathogens to now. Since both of them

are able to infect and replicate within macrophages, we analyzed

whether T. cruzi affects the HIV-1 replication cycle in human

monocyte-derived macrophages. Our study shows that T. cruzi

trypomastigotes and the soluble factors shed by them impair HIV-

1 replication in MDM at different stages.

Results

T. cruzi Inhibits HIV-1 Replication in Different Cell Types
The effect of T. cruzi blood trypomastigotes on HIV replication

was evaluated for PBMCs, MDM and the T-lymphoblastoid cell

line SupT-1 using R5 (BaL), X4 (HXB2) and dual tropic (A204)

isolates. Preliminary experiments showed that a parasite/cell ratio

of 5:1 or greater equally inhibited p24 antigen production, while a

lower number of parasites per cell inhibited less than 100%.

Accordingly, the 5:1 parasite/cell ratio was chosen for all the

experiments in this study. Cells were infected overnight with a

parasite/cell ratio of 5:1 and virus at the same time. P24 antigen

production was evaluated in culture supernatant 8 days p.i.

(Fig. 1). Viral production was significantly reduced in the three

cell types used (p,0.001). These results show that T. cruzi inhibits

HIV-1 replication in different cell types. Since macrophages are

among the most relevant cells involved in HIV-1 and T. cruzi

infection, the analysis of the steps affected by co-infection was

conducted on MDM.

T. cruzi Trypomastigotes and Parasitic Soluble Factors
Inhibit HIV-1 Production in MDM

To begin to elucidate which steps of the HIV-1 replication cycle

were affected by the parasite, MDM were infected with HIV-1BaL

and blood trypomastigotes using three different schemes: HIV 24

h before T. cruzi (HIV-T. cruzi), HIV 24 h after T. cruzi (T. cruzi-

HIV), or HIV at the same time as T. cruzi (HIV+T. cruzi). P24

antigen production in culture supernatants was measured at days

4, 8 and 12 post-viral infection. The results indicate that HIV

replication is inhibited by T. cruzi trypomastigotes nearly by 100%,

regardless of the infection scheme (p,0.001) (Fig. 2A). To

determine whether active infection of MDM with T. cruzi was

necessary for viral replication impairment, co-infections were

carried out in the same schemes as described above using

excreted/secreted antigens (TcSn), obtained as described in

Material and Methods. Results showed that TcSn were also able

to inhibit p24 production (p,0.001), regardless of the scheme used

(Fig. 2B). However the inhibition tended to be lost with time, as

the p24 production began to increase at day 8, whereas in the

presence of live trypomastigotes no production of p24 was detected

throughout this study (Fig. 2A). This could be attributed to the

fact that cells were treated with the TcSn at the beginning of the

experiment, while the trypomastigotes were present throughout

the experiment, as they replicate in the cultures.

T. cruzi Inhibits Pseudotyped Virus Replication
To evaluate the consequences of co-infection in the early steps

of viral cycle, MDM were infected with single round VSV-G and

BaL pseudotyped HIV-1, following the infection schemes

described above, and luciferase activity was evaluated. T. cruzi

trypomastigotes induced a significant reduction of luciferase level

for both pseudotypes in all the infection schemes (p,0.001), being

T. cruzi-HIV (.99%) stronger than HIV-T. cruzi (,90% for BaL

and ,85% for VSV-G) infection (Fig. 3A). No inhibition was

detected when blood from T. cruzi uninfected mice was used as

control (data not shown). When BaL pseudotyped virus was used

and TcSn replaced T. cruzi trypomastigotes, no luciferase activity

was detected (.99% inhibition) regardless of the scheme used

(Fig. 3B). However, levels of inhibition for VSV-G in the presence

of the TcSn were weaker compared with those obtained from the

parasite. Differences were also observed with the scheme used.

The highest inhibition was obtained when TcSn was administered

24 h earlier than HIV (,90%), and the weakest inhibition when

HIV was administered 24 h earlier than TcSn (p,0.001) (Fig. 3B).

Taken together, these results show that T. cruzi trypomastigotes

as well as soluble factors excreted/secreted by them are able to

inhibit HIV-1 on the early steps of the replication cycle, suggesting

that this effect may occur both at entry and post-entry steps of

HIV-1 in MDM.

In order to discard possible effects of mouse blood products

remaining in the blood trypomastigote suspension, luciferase

activity experiments were carried out with tissue-culture-derived

trypomastigotes, grown in Vero cells and harvested from the

second passage. Since similar viral inhibition was obtained with

blood and tissue-culture-derived trypomastigotes (.99% for VSV-

G and ,93% for BaL) (Fig. 3C), the effect on HIV-1 replication

induced by T. cruzi was confirmed. To rule out any possible effect

on cell viability that might interfere with the evaluation of HIV-1

replication, single-infected and co-infected MDM cell viability was

evaluated by flow cytometry, using PI and Annexin-V at day 4, the

same time in which luciferase activity was assayed. Percentages of

PI and Annexin-V positive cells were 9.5% for control MDM,

11% for viral infected MDM, 15.6% for trypomastigote infected

MDM and 10.7% for co-infected MDM (Fig 3D). These results

demonstrate that viability was not affected by infections or co-

infections.

Inhibition of HIV-1 Replication Does Not Depend on the
T. cruzi Strain

Differences in the ability to replicate in macrophages [27] and

induction of immune response and genomic characteristics [28]

have been reported for T. cruzi strains in experimental models.

These characteristics might have a differential effect on viral

HIV-1 Inhibition by T. cruzi
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replication. To analyze this hypothesis, MDM were also infected

with trypomastigotes of the K98 clone, which has different

characteristics from those of the VD strain, and the fully infectious

isolate HIV-1BaL, simultaneously. P24 antigen production was

measured at days 4, 8 and 12 of culture supernatant. Fig. 4A
shows that p24 production was inhibited in the presence of K98

parasites. MDM were also infected with VSV-G or BaL

pseudotypes, and K98 trypomastigotes simultaneously and

luciferase activity was evaluated 96 h p.i. Results showed that

early steps of the replication cycle were also significantly inhibited

by K98 (p,0.01) for both pseudotypes with inhibition values of

,86% for VSV-G and ,98% for BaL (Fig. 4B). These results

indicate that T. cruzi inhibition of HIV replication does not depend

on the parasite strain.

Early Post-Integration Steps Are Inhibited in Co-Infected
MDM

The influence of trypomastigotes or TcSn on post-integration

steps, including transcription, was analyzed. MDM were infected

with VSV-G pseudotype and 96 h later with trypomastigotes or

treated with TcSn. Under these conditions, most of the viral DNA

should be integrated, which allowed to evaluate the effect of the

parasite in post-integration steps [29]. When luciferase activity was

measured 24 h and 96 h p.i. or treatment, a reduction of luciferase

levels in the presence of the parasite was observed, being

significant at 96 h (p,0.01), while no differences were found

when TcSn was used (Fig. 5). These results suggest that

trypomastigotes, unlike their excreted/secreted antigens, might

affect HIV-1 transcription and protein synthesis.

Trypomastigotes and TcSn Inhibit Early Post-Entry Steps
As the decrease in early steps of viral replication observed with

pseudotyped viruses could be reflecting an effect on steps prior to

integration, we evaluated whether reverse transcription and viral

entry were affected by T. cruzi. Early products of the reverse

transcription reflect the input virus entered into the cells [29].

Thus, the influence of the parasite at this level was evaluated by

measuring intermediate products of HIV-1 replication through

quantitative real-time PCR 24 h p.i. Single round infections with

BaL pseudotyped virus and trypomastigotes or TcSn were

performed on MDM. The expression of both R-U5 and U5-gag

transcripts was significantly diminished in the presence of

trypomastigotes or TcSn (p,0.05) (Fig. 6A and 6B).

Then, in order to elucidate if this decrease represented only

viral input or if it was also caused by an impairment of reverse

Figure 1. Inhibition of HIV-1 replication by T. cruzi in different cell types. Cells were infected with HIV-1 primary isolates with or without T.
cruzi blood trypomastigotes and p24 production was measured at day 8 p.i. (A) PMBCs infected with R5 (BaL), X4 (Lai) and R5X4 (A204). (B) SupT-1
cell line infected with X4 (Lai) isolate and (C) MDM infected with R5 (BaL). Results are expressed as mean 6 SD, and are representative of at least 2
independent experiments. * p,0.001.
doi:10.1371/journal.pone.0008246.g001

HIV-1 Inhibition by T. cruzi
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transcription, cells were infected with VSV-G pseudotype virus

which by-passes HIV entry process in the presence of live

trypomastigotes or TcSn. Levels of both transcripts were

diminished for VSV-G, suggesting that reverse transcription

would also be affected (Fig. 6C and 6D).

These results indicate that entry and early post-entry steps are

partially inhibited by the parasite and its soluble factors present in

the TcSn.

T. cruzi Modifies Expression of HIV-1 Co-Receptor CCR5
Unlike CD4 Receptor

The inhibitory effect observed on the BaL pseudotyped virus

was stronger than that observed on the VSV-G, both in the

presence of live trypomastigotes and TcSn. The fact that viral

entry is also diminished, it suggests an additional inhibitory effect

on the CCR5-dependent viral entry in MDM. To evaluate this

hypothesis, cell surface expression of CCR5 and CD4 was

measured in cells infected or co-infected overnight with the wild-

type BaL isolate and live trypomastigotes or TcSn.

Surface expression of CCR5 was affected by both trypomasti-

gotes and supernatants, while CD4 expression was not modified.

Trypomastigotes, either in the presence of the virus or not, caused

a decrease of CCR5 expression of ,60% and ,70% respectively

(Fig. 7A). Similarly, TcSn alone or in combination with the virus

caused a reduction of ,60% for both conditions respectively,

when compared with virus-infected cells (p,0.05) (Fig. 7B). These

results indicate that CCR5 expression in cell membrane is

inhibited by the presence of trypomastigotes or its soluble factors,

Figure 2. Inhibition of HIV-1 production by T. cruzi in MDM. MDM were infected with HIV in presence of T. cruzi blood trypomastigotes (A) or
trypomastigotes free-supernatant (TcSn) (B) in three different schemes: HIV 24 h after T. cruzi (T. cruzi-HIV), HIV 24 h before T. cruzi (HIV-T. cruzi) or HIV
at the same time as T. cruzi (HIV+T. cruzi), where T. cruzi indicates either trypomastigotes or TcSn. P24 antigen production was measured at days 4, 8
and 12 p.i. in culture supernatants. Results are expressed as mean 6 SD of triplicates of infection and a representative experiment of at least 3
independent experiments performed with cells from different donors is shown.
doi:10.1371/journal.pone.0008246.g002

HIV-1 Inhibition by T. cruzi
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Figure 3. Inhibition of pseudotyped viruses replication by T. cruzi. MDM were infected with both VSV-G or BaL pseudotyped viruses in the
presence of T. cruzi blood trypomastigotes (A) or trypomastigotes free-supernatant (TcSn) (B) in three different schemes: HIV 24 h after T. cruzi (T.
cruzi-HIV), HIV 24 h before T. cruzi (HIV-T. cruzi) or HIV at the same time as T. cruzi (HIV+T. cruzi), where T. cruzi indicates either trypomastigotes of
TcSn. Luciferase activity was measured from cell lysates 4 days post-viral infection. Results are expressed as relative light units per second (RLU/sec),
presented as a percentage relative to the control (100%), where the histogram in white corresponds to the percentage of infection with the
respective control virus and the histogram in black corresponds to the percentage of infection in the presence of the parasite. (C) MDM were also
infected with pseudotyped viruses and cell-derived trypomastigotes, and luciferase activity was evaluated. (D) Cell viability was evaluated by flow
cytometry at day 4 p.i. in co-infected cells with blood trypomastigotes and controls stained with PI and Annexin-V-FITC. During the analysis 20000
events were acquired and the analysis includes all the ungated cells; percentages of PI and Annexin-V positive cells are indicated. Results are
representative of 3 independent experiments performed with cells from different donors.
doi:10.1371/journal.pone.0008246.g003

HIV-1 Inhibition by T. cruzi

PLoS ONE | www.plosone.org 5 December 2009 | Volume 4 | Issue 12 | e8246



suggesting that this would be one of the explanations for HIV-1

replication impairment in MDM.

Cruzipain, a Major T. cruzi Antigen, Is Related to Viral
Replication Impairment

Cruzipain, the major cystein-protease of T. cruzi, is found in

every parasite stage but it is only shed to the media by

trypomastigotes [30]. In the parasite, cruzipain accumulates in

lysosomes near the flagellar pocket, is present at surface level, and

shed to the supernatant in parasite cultures. Since parasitic cystein-

proteases have been involved in parasite immunoevasion and cell

and tissue invasion [31], we analyzed whether cruzipain is

involved in the inhibition of the viral replication impairment

observed in MDM. The influence of three concentrations (0.001;

0.1 and 10 mg/ml) of cruzipain were assayed on transcriptional

activity of VSV-G and BaL pseudotyped viruses. Cruzipain

inhibited BaL luciferase activity in all concentrations assayed while

it only had a significant effect on VSV-G at higher concentrations

(p,0.01) (Fig. 8A). The production of p24 antigen at day 8 p.i.

was also evaluated in cells treated with 0.1 and 10 mg/ml of

cruzipain. Both concentrations were responsible for over 90% of

the inhibition of antigen production (p,0.01) (Fig. 8B). Con-

versely, neither CD4 nor CCR5 cell surface expressions were

modified by cruzipain (Fig. 8C).

Since E. coli-produced recombinant cruzipain could contain

endotoxin, polymyxin was added to the protein preparation. Also,

considering that polymyxin is a PKC inhibitor which might itself

cause the effects ascribed to cruzipain, additional controls were

included in which viral infection of MDM were performed with

polymyxin in the absence of cruzipain. In this case, p24 antigen

production was not affected with respect to that observed in HIV

infected MDM (Fig. 8D) suggesting that inhibition is mediated by

cruzipain itself and not by polymyxin content, if any.

These results indicate that cruzipain is one of the parasite

molecules responsible for the inhibition of HIV-1 replication cycle

in human macrophages.

Discussion

As a result of the rapid spread of the HIV pandemic, a number

of epidemiological, biological, and clinical interactions between

HIV and other tropical pathogens gained relevance. Each

pathogen has the potential to alter the epidemiology, natural

history, and/or response to therapy of other pathogens [3].

Therefore, it is unpredictable to establish the outcome of such co-

infections. In Latin America, one of the most important endemic

protozoonoses is Chagas disease and its association with HIV-1

appears to be a substantial threat in large cities, where the

distribution of both pathogens overlaps, mostly as a result of the

massive migration of rural populations to big cities [13].

Several clinical studies on co-infected patients have reported T.

cruzi reactivation and manifestation of Chagas disease mainly in

AIDS patients [13]. However, few data are available on HIV

infection outcome in co-infected subjects; only one case report

Figure 4. HIV-1 inhibition by a different T. cruzi strain. (A) MDM
were infected simultaneously with HIV-1BaL and K98 clone blood
trypomastigotes overnight and p24 antigen production was measured
in supernatants. Results are expressed as mean 6 SD of triplicates of
infection and a representative experiment of 3 others is shown. (B) Cells
were infected with BaL and VSV-G pseudotyped viruses and K98 strain
blood trypomastigotes overnight. At day 4 p.i., cells were lysed and
luciferase activity was measured from lysates. Results are expressed as
relative light units per second (RLU/sec), presented as a percentage
relative to the control (100%), where the histogram in white
corresponds to the percentage of infection with the respective control
virus and the histogram in black corresponds to the percentage of
infection in the presence of the parasite. Results are representative of 4
independent experiments performed with cells from different donors.
doi:10.1371/journal.pone.0008246.g004

Figure 5. Effect of T. cruzi on post-integration events. MDM were
infected with VSV-G pseudotyped virus overnight and kept in culture
for four days. Then, they were infected with trypomastigotes or treated
with TcSn overnight. Cells were lysated 24 or 96 h after parasite
infection and luciferase activity was measured in cell lysates. Results are
expressed as mean 6 SD of RLU/sec of triplicates of infection and a
representative experiment of 3 is shown. * p,0.01.
doi:10.1371/journal.pone.0008246.g005

HIV-1 Inhibition by T. cruzi
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described the concomitant aggravation of parasite and viral

infection in an HIV-positive patient [32].

Much less is known about the interaction of these pathogens at

cellular level. We recently reported that T. cruzi inhibited HIV

replication in human chorionic villi histocultures and in a

trophoblast cell line. The study suggested that coinfection with

T. cruzi may have a deleterious effect on HIV-1 transduction and

thus, it could play an important role in viral outcome at the

placental level [26]. Here, we have conducted studies of HIV/T.

cruzi co-infection in their common cellular target: human

macrophages. Indeed, macrophages are competent host cells and

play critical roles in both pathogens. In T. cruzi infection, non-

activated macrophages are host cells and contribute to parasite

dissemination, while activated macrophages are involved in innate

response to infection [33]. In HIV infection, macrophages are

among the first cells to be infected since viral infection is spread

Figure 6. Inhibition of HIV entry and reverse transcription by T. cruzi. MDM were infected with BaL pseudotyped virus in the presence of (A)
trypomastigotes or (B) TcSn or VSV-G pseudotyped virus in the presence of (C) trypomastigotes or (D) TcSn, overnight. Single viral infections with
both pseudotypes were performed as control. DNA was isolated and early (R-U5) and late (U5-gag) transcripts were quantified by real-time PCR 24 h
p.i. Results are expressed as an n-fold difference with respect to the calibrator (x Cal) 6 SD of infection duplicates. Results are representative of 3
independent experiments performed with cells from different donors. * p,0.05.
doi:10.1371/journal.pone.0008246.g006

HIV-1 Inhibition by T. cruzi
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throughout the body [34], and may therefore persist in tissues for

long periods of time and contribute to the propagation of the viral

infection [4-6].

An important finding of this study is that T. cruzi inhibits the

HIV-1 replication cycle in lymphoid cells and macrophages. In the

model of early infection set in MDM, we found that live

trypomastigotes from two different strains of live trypomastigotes,

as well as TcSn harboring soluble factors shed by the parasite,

were able to impair viral production (Fig. 2A, 2B and 4A). Thus,

the inhibitory effect induced by T. cruzi does not depend on the

parasite strain, and the active cell infection of the parasite is not

necessary for viral replication impairment. Moreover, early steps

of viral replication were also impaired by both trypomastigotes,

whether purified from mouse blood or culture derived (Fig. 3A,
3C and 4B), and supernatants (Fig. 3B), regardless of the

infection scheme for both BaL and VSV-G pseudotyped viruses.

The inhibitory effect of soluble products seemed to be less

sustainable than that observed in live trypomastigotes. Our results

suggest that while live trypomastigotes affected pre- and post-

integration events, soluble parasite products only had an inhibitory

effect at pre-integration events (Fig. 3A, 3B and 5). However, it is

important to highlight that T. cruzi supernatants were only added

to the culture at the moment of infection while trypomastigotes are

continuously in contact with cells as they replicate and re-infect

other cells.

The strongest effect observed when the parasite precedes viral

infection is found in the early steps of viral infection. Therefore, it

is likely that the parasite and its products make the cells less

susceptible to viral infection. The stronger inhibition for BaL

pseudotype, compared to inhibition with VSV-G pseudotype

(Fig. 3A and 3B), which enters the cell in a co-receptor

independent manner [35], suggests an additional effect on the

CCR5-dependent entry into the cell. Indeed, the cell surface

expression level of CCR5 co-receptor was affected by both

trypomastigotes and TcSn (Fig. 7). However, it has been reported

that the CCR5 density is not only related to the quantity of virus

entering the cell but it is also influential at a post-entry step of

HIV-1 replication, including reverse transcription [36]. Moreover,

Figure 7. CCR5 expression impaired by T. cruzi. Expression of the cell surface of CCR5 and CD4 was evaluated on MDM infected or coinfected
with (A) T. cruzi trypomastigotes or (B) TcSn. After overnight infection, cells were harvested, and CCR5 and CD4 expressions were assayed by flow
cytometry. Histograms in grey correspond to isotype control. Results are representative of 4 independent experiments performed with cells from
different donors.
doi:10.1371/journal.pone.0008246.g007

HIV-1 Inhibition by T. cruzi
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Figure 8. Implication of the major antigen cruzipain in the inhibition of HIV-1 replication cycle. (A) Cells were infected with either VSV-G
or BaL pseudotyped viruses in the presence of 0.001; 0.1 and 10 mg/ml of cruzipain (Cz). Luciferase activity was measured in cell lysates 96 h p.i.
Results are expressed as relative light units per second (RLU/sec), presented as a percentage relative to the control (100%), where the histogram in
white corresponds to the percentage of infection with the respective control virus and the histogram in black corresponds to the percentage of
infection in the presence of the parasite. A representative experiment of 3 is shown. (B) Production of p24 antigen at day 8 p.i. in cells treated with 0.1
and 10 mg/ml of cruzipain. Results are expressed as mean6SD of triplicates of infection and a representative experiment of 3 others is shown. (C)
Influence of cruzipain on cell surface expression of CD4 and CCR5 after overnight infection in the presence of 0.1 mg/ml of cruzipain. Histograms in
grey correspond to isotype control. Results are representative of at least 3 independent experiments. * p,0.01. (D) Cells were infected with BaL
isolate in the presence or absence of polymyxin, and p24 antigen production was measured at day 8 p.i. Results are expressed as mean6SD of
triplicates of infection and a representative experiment of 3 is shown.
doi:10.1371/journal.pone.0008246.g008
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it has been described that HIV-1 internalization in macrophages

does not depend on envelope-receptor interactions only [37].

Critical structures inside the cytosol of the host cells are required

for viral genome retrotranscription and transfer to the nucleus

[38], and they could be altered by the parasite or its soluble

factors. Moreover, disruption of the reverse transcription complex

by exogenous enzymes or alteration of protein interaction can lead

to an impaired HIV-1 replication [39]. Experiments using one-

round infections, which prevent overlapping replication cycles,

together with quantitative real time PCR, showed that the amount

of virus entering the cell and the first products of retrotranscription

were affected by the parasite and the supernatants, represented by

R-U5 levels 24 h p.i. (Fig. 6A and B). Furthermore, levels of late

transcripts also decreased for VSV-G pseudotyped virus, confirm-

ing that reverse transcription could be also affected by T. cruzi

(Fig. 6C and D). Once a trypomastigote enters the cell, it escapes

from parasitophorous vacuole to the cytoplasm and gradually

changes into the amastigote form. It has been shown that actin

filaments play an important role in parasite adhesion and

internalization, as well as during the process of differentiation

into its intracellular form [40,41]. Cytoskeleton disruption after

parasite infection has been described in different cell types.

However, polymerization of actin filaments is required for cellular

retention of the parasite inside the cell [41]. On the other hand,

the HIV-1 virion interacts with actin filaments after entering the

cell, which contributes to the binding to microtubules and the

transport to the nuclear periphery [42]. Thus, modifications in

macrophages cytoskeleton due to the presence of the parasite

actually might impair viral replication.

Several co-infections have been identified to potencially inhibit

HIV replication in different cell types and at different phases of

viral replication cycle. Some viral co-infections can modulate

HIV-1 entry in vitro, mainly by modulating chemokines and

chemokine receptors [43–45]; and measles virus has been able to

interfere with HIV-1 reverse transcription and replication by

blocking cell-cycle progression of CD4+ T lymphocytes [46].

Furthermore, some studies have identified specific proteins from

the co-infected pathogen as responsible for the inhibitory effect on

HIV-1 [47–49]. T. cruzi is known to express and/or secrete

effector molecules that control cell entry and intracellular targeting

or modulate host cell functions required for survival, multiplica-

tion, and dissemination within the host [19–22]. Moreover,

different T. cruzi proteins have been reported in the parasites

immunoevasion [50–52]. Cystein-proteases are not only key

factors to parasite immunoevasion but they are also involved in

cell and tissue invasion in many parasitic species [53], and have

been described as an efficient candidate antigen for vaccine

development [54,55]. In vitro, it has been shown that cruzipain, the

major cystein-protease of T. cruzi, is capable of modulating the

immune response towards a type-2 profile by increasing IL-10 and

TGF-b secretion, while it simultaneously decreases IL-12

production [53]. In our model, the polarization of the immune

response might be also involved in the inhibition of HIV-1

transcriptional activity and p24 antigen production (Fig. 8A and
B). Similarly, it has been shown that Mycobacterium tuberculosis

inhibits HIV-1 replication in MDM at an early post-entry level.

This inhibition is mediated by soluble factors, not by CCR5-

binding chemokines, but partially by endogenous production of

IL-10 [7]. Indeed, IL-10 can inhibit HIV-1 in macrophages at

early stages of viral replication without affecting CCR5 expression,

and also at post-integration stages. This inhibition is associated

with the ability of IL-10 to down-modulate the production of pro-

inflammatory cytokines IL-6 and TNF-a [56]. In our study,

cruzipain did not affect CCR5 expression (Fig. 8C). The effect of

cruzipain on viral replication in macrophages is clear but all the

analyses have been conducted on an in vitro model here. We

consider that in vivo studies analyzing the direct effect on the viral

particle should be conducted in order to evaluate cruzipain as a

microbicide. Indeed, the search for microbicides worldwide is very

active given their possibilities for primary prevention. However,

since TcSn diminished CCR5 expression, in the supernatant of

trypomastigotes there could be other parasite products, in addition

to cruzipain, affecting the viral replication, which identification

needs further research.

The significance of our findings on the evolution of co-infection

in vivo remains unclear since it is difficult to extrapolate in vitro

studies to an organism with normal or impaired immune reaction.

Chagas disease is characterized by an acute phase of infection

yielding high levels of circulating parasites -which sometimes leads

to death- followed by an indeterminate phase of infection by T.

cruzi in which the parasitemia becomes subpatent. A re-activation

of chronic Chagas disease usually occurs in HIV-infected

individuals and circulating parasites can be detected. Consequent-

ly, there are variable levels of parasite/cell interaction during in

vivo T. cruzi infection, which is also dependent of the infecting

strain. A case report described the concomitant aggravation of

parasite and viral infection in an HIV-positive patient [32] and

other clinical studies of co-infected patients described T. cruzi

reactivation [57–59]. In these cases, T cruzi infection was already

established in the patients by the time of the virus entry, and

parasites were restricted to non-immune cells. T. cruzi reactivation

occurred years later, with patients presenting immunosuppression

due to viral infection. The results presented here are the first

reported findings regarding the simultaneous interaction of these

pathogens in cells that have the potential to kill and control both

infections, and identify cruzipain as one of the components of the

parasite that interferes with the HIV-1 replication cycle.

Materials and Methods

Ethic Statement
Human PBMCs were isolated from healthy blood donors in

accordance with the guidelines of the Independent Ethics

Committee, School of Medicine, University of Buenos Aires. A

written consent was obtained from all blood donors.

CF1 mice were bred and housed at the animal facilities of the

Microbiology Department, School of Medicine, University of

Buenos Aires. All procedures requiring animals were performed in

agreement with institutional guidelines and were approved by the

Independent Ethics Committee, School of Medicine, University of

Buenos Aires, and conducted in accordance with the guidelines

established by the National Research Council.

Cell Line
T-lymphoblastoid cell line (SupT1) was used [60]. It was

maintained in RPMI 1640 10% FCS (Bioser, Córdoba, Argentina)

and 50 U of penicillin/ml, 50 mg of streptomycin/ml (Gibco BRL,

USA). This cell line was obtained from the AIDS Research and

Reference Reagent Program. This study was approved by the

Independent Ethics Committee, School of Medicine, University of

Buenos Aires.

Preparation of Peripheral Blood Mononuclear Cells
(PBMCs) and Monocyte-Derived Macrophages (MDM)

Human PBMCs were isolated from healthy blood donors by

density-gradient centrifugation on Ficoll-Hypaque (Amersham

Pharmacia Biotech, Piscataway, NJ) and maintained in RPMI

1640 10% FCS (Bioser, Córdoba, Argentina) and antibiotics.
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Monocytes were purified from PBMCs by adherence to plastic

in RPMI 1640 (Gibco BRL, USA) alone. Non-adherent cells were

removed after 2 h plating by several washes and were allowed to

differentiate into MDM in RPMI 1640 10% FCS (Bioser,

Córdoba, Argentina), antibiotics and 10 ng/ml of recombinant

GM-CSF (Sigma-Aldrich, St. Louis, MO) for 6 days. After

differentiation, MDM were washed, detached with 0.25% trypsin-

EDTA (Gibco BRL, USA) and plated in 96 and 24 well plates

(Greiner, USA) according to the experiment and maintained

without GM-CSF. Cells were stained with anti-CD14 antibody

and purity was analyzed by flow cytometry; cultures with .95% of

CD14 positive cells were used. All the experiments were

performed with cells isolated from at least 3 different donors.

Viral Strains
For cell-free virus infections of MDM, the R5 tropic primary

isolate HIV-1BaL [61] was used. The viral stock was prepared in

MDM.

For PBMCs infection, X4-tropic primary isolate HIV-1Lai and

X4/R5 primary isolate HIV-1A204 [26] were used and for T-

lymphoblastoid cell line SupT-1 infections, X4 isolate was used.

Virus stocks were prepared in PHA/IL-2-activated PBMCs.

Infectious titers were determined by limiting dilution assay on

PHA/IL-2-activated PBMCs and expressed as 50% tissue culture

infectious dose (TCID50)/ml.

Primary isolates were obtained from the AIDS Research and

Reference Reagent Program.

Viral Pseudotypes
Luciferase reporter viruses were produced as previously

described [61] by transiently cotransfecting (Lipofectamine 2000,

Invitrogen, USA) 293T cells with the proviral pNL-Luc-E-R+
vector [62], which lacks the env gene and has the firefly luciferase

gene inserted into the nef gene, and the expression vector pCMV

harbors the gene coding for either the VSV-G envelope protein or

the HIV-1 R5 (BaL) envelope protein. 293T cells were also

transfected only with pNL-Luc-E-R+ (Denv pseudotype). Super-

natants from 293T cells were harvested 72 h after transfection or

cotransfection and p24 levels were measured using a commercial

ELISA kit (Murex, UK).

Trypomastigotes of T. cruzi and Parasite Supernatants
Two strains of T. cruzi were used: a) VD strain isolated from a

case of congenital Chagas disease, lethal for mice, phylogenetic

lineage ‘‘T. cruzi II’’ [28]; and b) K98 clone [27] derived from and

with similar features to the CA-I strain, obtained from a patient

with chronic myocardiopathy, non-lethal for mice, phylogenetic

lineage ‘‘T. cruzi I’’ [28]. Strains were maintained by serial

passages in 21-day-old CF1 mice. Bloodstream trypomastigotes

were obtained from infected T. cruzi mice bled at the peak of

parasitemia by cardiac puncture and purified as previously

described [27]. In order to discard the possible effect of mouse

blood present in the trypomastigote suspension, blood from T.

cruzi uninfected mice was assayed in parallel in all co-infection

experiments.

In order to render tissue culture-derived trypomastigotes, Vero

cell monolayers were infected with bloodstream trypomastigotes

for 24 h. For co-infection assays, culture-derived trypomastigotes

harvested from the second passage were used. All trypomastigotes

were gently washed, counted in a Neubauer hematocytometer and

resuspended at a concentration of 16107/ml in RPMI 1640 10%

FCS for further use in co-infection assays.

Parasite-free supernatant (TcSn) was obtained from suspensions

of 16107/ml trypomastigotes diluted in RPMI 1640 10% FCS

medium and incubated for 24 h at 37uC in 5% CO2. To remove

parasites and cellular debris, trypomastigote suspensions were

pelleted (30 min at 10,000 g) and supernatants were filtered

through a 0.22 mm pore-size filter. Filtrated aliquots were stored at

280uC until use. For the experimental assays using TcSn, a

volume equivalent to the parasite/cell ratio assayed (5:1) was used.

At least 5 different TcSn preparations were tested.

All assays using parasites or TcSn were performed under sterile

conditions and endotoxin levels were analyzed in each prepara-

tion. LPS contamination, if any, was lower than the detection

limits (,10 units/mg) of the Limulus amoebocyte lysate analysis

kit (Whittaker Bioproducts, Walkersville, MD).

Cruzipain Expression
Recombinant cruzipain was cloned and expressed as previously

described [54]. Briefly, cruzipain (residues 122 to 467) was

expressed in the E. coli BL21-D3 strain host, purified by affinity

chromatography using a Ni/NTA Sepharose matrix under

denaturating conditions, dialyzed against PBS and stored at

270uC until use. Purity was .95%, as assessed by SDS-PAGE.

Endotoxin was removed by using polymyxin B-agarose (Sigma

Aldrich, St. Louis, MO). Endotoxin levels in the final purified

proteins were ,10 units/mg, as determined by using a Limulus

amoebocyte lysate analysis kit (Whittaker Bioproducts, Walkers-

ville, MD). Protein concentration was determined by Bradford

(Bio-Rad Protein Assay) using bovine serum albumin (Sigma-

Aldrich, St. Louis, MO) as standard. Although the protein was

depleted of endotoxin, 15 mg/ml of Polymyxin (Sigma Aldrich, St.

Louis, MO) was added to cruzipain for in vitro studies.

Co-Infection Assays with Viral Strains
PBMCs activated with PHA/IL-2 were infected with HIV-1Lai

(0.01 moi) or HIV-1A204 (0.01 moi) and T. cruzi trypomastigotes

(parasite/cell ratio of 5:1). SupT-1 cell line was infected with HIV-

1Lai (0.01 moi) and T. cruzi trypomastigotes (parasite/cell ratio of

5:1). Cells were infected with both pathogens at the same time and

p24 production in the supernatant was evaluated using a

commercial ELISA kit (Murex, UK) at day 8 post-infection (p.i.).

MDM were infected with HIV-1BaL (0.01 moi) and T. cruzi

trypomastigotes (parasite/cell ratio of 5:1) or TcSn (25 ml).

Infections were carried out in three different schemes: HIV 24 h

before T. cruzi (HIV-T. cruzi), HIV 24 h after T. cruzi (T. cruzi-

HIV), or HIV at the same time as T. cruzi (HIV+T. cruzi). T. cruzi

indicates either live trypomastigotes or TcSn. P24 antigen was

measured in culture supernatants 4, 8 and 12 days post-viral

infection.

Since TcSn contain 10 mg/ml of protein and Cz represent ,1%

of the total protein, for cruzipain experiments, two different

concentrations were assayed (0.1 and 10 mg/ml for p24 assay), and

cruzipain was added at the same time as virus and p24 antigen

production was measured at day 8 post-infection. Infections in

presence of 15 mg/ml of polymyxin were also performed as a

control and viral production was evaluated.

Co-Infection Assays with Viral Pseudotypes
MDM (56104 cells/well) plated in 96-well plates were infected

overnight with VSV-G (100 ng p24) or BaL (200 ng p24)

pseudotypes and T. cruzi trypomastigotes or TcSn. Infection

schemes were the same as described above. For cruzipain

experiments, three different concentrations of cruzipain were

assayed (0.001; 0.1 and 10 mg/ml), and cruzipain was added at the

same time as the virus. In all these experiments, cells were cultured

for an additional 72 h post-viral infection. Then, cells were washed

twice and 50 ml of luciferase lysis buffer (Promega, Madison, WI)
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per well was added. Luciferase activity was measured in 10 ml of

lysate with a luminometer (VERITAS), using a commercially

available substrate (Luciferase Reporter Assay System, Promega);

data are expressed in relative light units per second (RLU/sec).

HIV-1 Transcripts Amplification
MDM (356104 cells/well) plated in 24-well plates were co-

infected with both VSV-G or BaL viral pseudotypes and blood

trypomastigotes (parasite/cell ratio of 5:1) or TcSn (25 ml)

overnight, and DNA (QIAamp, DNA purification kit, Qiagen,

Germany) was isolated at day 1 p.i. Single infections with viral

pseudotypes were performed as control. HIV-1 R-U5 and U5-gag

fragments were quantified by real-time PCR using SYBR Green

Master Mix (Applied Biosystems, USA) on an ABI-PRISM 7500

Sequence Detector (Applied Biosystems). The target DNA

sequence was specifically amplified with 300 nM of each primer

for R-U5 and U5-gag. R-U5: NEC152 GCCTCAA-

TAAAGCTTGCCTTGA and NEC131 GGCGCCACTGCTA-

GAGATTT; U5-gag: F592 AGATCCCTCAGACCCTTT-

TAGTCA and R666 CTTTCGCTTTCAAGTCCCTGTT.

DNA levels were normalized by quantifying actin gen (endogenous

reference). Each sample was run in triplicate. The relative changes

in R-U5 and U5-gag expression were calculated using the 2DDCt

method [63], This method was used after validation experiments

demonstrated that the efficiencies of the target and endogenous

reference (actin) were approximately equal. Tanget DNA levels

were expressed against those in reference 8E5 cells, designed as

calibrator, similar for each experiment and run in parallel for each

analysis. The calibrator was thus considered to be the 1x sample,

and all other quantities were expressed as an n-fold difference with

respect to the calibrator (x Cal).

Flow Cytometry
After differentiation, MDM were plated on low attachment 24-

well plates (Corning Costar, NY, USA) and infected or co-infected

overnight with wild type virus and trypomastigotes, TcSn or

cruzipain (0.1 ug/ml). Then, they were extensively washed and

CCR5 and CD4 receptors were quantified by flow cytometry.

FITC-, APC- or PE-conjugated mAbs directed to CD14, CD4 and

CCR5 were used (BD Pharmingen; San Diego, CA). In all cases,

isotype-matched control mAbs were used, and a gate (R1) was

defined in the analysis to exclude all nonviable cells and debris,

based on forward/scatter dot blot. Analysis was performed using a

FACS flow cytometer (FACSCanto, BD) and CellQuest software

(BD Biosciences, San Jose, CA). The results are expressed as the

mean fluorescence intensity (MFI). For cell viability evaluation, co-

infected and control infections were stained with FITC-conjugated

annexin-V and Propidium Iodide (PI, BD Pharmingen; San

Diego, CA) and analyzed using a FACS flow cytometer

(FACSCanto, BD).

Statistics
All statistical comparisons were performed by using analysis

of variance. P-values of ,0.05 were considered statistically

significant.
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