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Abstract

The QTc interval is a complex quantitative trait and a 
strong prognostic indicator of cardiovascular mortal-
ity in general, healthy people. The aim of this study was 
to identify non-genetic factors and quantitative trait lo-
ci that govern the QTc interval in an isolated Mongolian 
population. We used multiple regression analysis to 
determine the relationship between the QTc interval 
and non-genetic factors including height, blood pres-
sure, and the plasma lipid level. Whole genome linkage 
analyses were performed to reveal quantitative trait lo-

ci for the QTc interval with 349 microsatellite markers 
from 1,080 Mongolian subjects. Among many factors 
previously known for association with the QTc interval, 
age, sex, heart rate, QRS duration of electrocardiogram 
and systolic blood pressure were also found to have 
influence on the QTc interval. A genetic effect for the 
QTc interval was identified based on familial correla-
tion with a heritability value of 0.31. In a whole genome 
linkage analysis, we identified the four potential link-
age regions 7q31-34, 5q21, 4q28, and 2q36. 

Keywords: electrocardiography; linkage (genetics); 
long QT syndrome; quantitative trait, heritable; quanti-
tative trait loci; regression analysis

Introduction

An individual with a prolonged QTc interval is prone 
to ventricular arrhythmia. The QTc interval is also a 
strong prognostic indicator of cardiovascular mor-
tality in patients both with and without cardiac 
disease (Peters et al., 1990; Algra et al., 1991; 
Siscovick et al., 1996). Several epidemiological 
studies (Schouten et al., 1991; Dekker et al., 1994, 
2004; De Bruyne et al., 1999) have reported a 
relationship between QTc interval prolongation and 
increased risk of cardiovascular mortality in healthy 
individuals, although controversy exists (Goldberg 
et al., 1991). 
    The QTc interval is a complex quantitative trait. 
Many factors, both genetic and non-genetic, affect 
the QTc interval. The heritability of the QTc interval 
ranges between 0.25 and 0.40 (Russell et al., 
1998; Friedlander et al., 1999; Carter et al., 2000; 
Newton-Cheh et al., 2005), and at least seven 
genes involved in the congenital long QT syndrome 
(LQTS) have been identified (Keating et al., 1991a;  
1991b; Jiang et al., 1994; Schott et al., 1995; 
Wang et al., 1995; Splawski et al., 2000; Shah et 
al., 2005). Six of these genes encode potassium or 
sodium ion channel proteins. The seventh gene, 
the ANK2 gene, encodes the structural protein 
ankyrin-B. The molecular mechanisms of these 
rare form Mendelian diseases have been identified. 
However, QTc interval values in the general popu-
lation can not be fully explained by these LQTS 
genes. Therefore, it is possible that there are other 
genes that regulate the QTc interval. Most previous 
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Ethnicity Number (%)
Khalkha 1,055 (80.6)
Uriankhai    126 (9.6)
Dorwod      71 (5.4)
Others*      57 (4.4)
Total 1,309 (100)

*Other 10 ethinicities: Bayad, Buryat, Darhad, Hoton, Kazakh, Oold, Oros, 
Shanga, Tuva, and Zahchi.

Table 1. Ethnic composition of the study population.

Total Male Female
n Mean ± SD n Mean ± SD n Mean ± SD

Age (y) 1,074   29.39 ± 18.04 466   27.60 ± 18.04 608   30.76 ± 17.93*
Heart rate (/min) 1,070   70.37 ± 12.74 465   68.65 ± 12.51 605   71.69 ± 12.77*
QRS duration (ms) 1,070   91.09 ± 14.04 465   96.79 ± 14.38 605   86.71 ± 12.07*
Height (cm) 1,074 151.29 ± 16.22 466 153.75 ± 19.05 608 149.41 ± 13.38*
Weight (kg) 1,074   51.86 ± 17.83 466   52.38 ± 20.11 608   51.47 ± 15.86
SBP (mmHg) 1,073 115.70 ± 24.75 465 115.01 ± 23.75 608 116.23 ± 25.50
DBP (mmHg) 1,072   78.65 ± 15.81 464   77.70 ± 15.06 608   79.38 ± 16.33
BMI (kg/m2) 1,074   21.91 ± 4.91 466   21.14 ± 4.60 608   22.50 ± 5.07*
FAT (%) 1,068   25.37 ± 8.58 463   20.22 ± 6.72 605   29.31 ± 7.73*
TG (mg/dl) 1,028   67.32 ± 35.30 440   68.04 ± 37.94 585   66.78 ± 33.21
Chol (mg/dl) 1,024 150.34 ± 33.46 439 147.74 ± 32.97 585 152.29 ± 33.73*
HDL (mg/dl) 1,024   50.73 ± 12.82 439   49.41 ± 11.97 585   51.71 ± 13.35*
LDL (mg/dl) 1,024   86.15 ± 25.56 439   84.72 ± 25.60 585   87.21 ± 25.51
Glu (mg/dl) 1,024   87.81 ± 14.56 439   89.56 ± 13.46 585   86.49 ± 15.20*

SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI, body mass index; Chol, plasma total cholesterol; HDL, HDL-cholesterol; LDL, LDL-choles-
terol; TG, fasting plasma triglycerides; Glu, fasting plasma glucose. *significant difference by sex P ＜ .05.

Table 2. Characteristics of subjects.

studies focused on candidate regulation genes 
(Busjahn et al., 1999; Liu et al., 2002) already 
known as LQTS genes, but in order to identify 
unknown genes that regulate the QTc interval in 
the general population, a population-based whole 
genome study is necessary. 
    An isolated population is appropriate for iden-
tifying genes that are responsible for complex traits 
because such a population reduces genetic hetero-
geneity and environmental diversity. Also, a large 
extended pedigree provides much genetic infor-
mation. Mongolians, especially rural people, are 
regionally and genetically isolated with many large 
extended families. 
    We identified genetic factors involved in the QTc 
interval based on familial aggregation and herita-
bility, and conducted a genome-wide linkage ana-
lysis with 1,080 Mongolian subjects. We also 
evaluated the association of many non-genetic 
factors with the QTc interval using multiple regre-
ssion analysis.

Results 

Mongolian people comprise several major and 
many minor tribes. Table 1 shows the tribal distri-
bution of our study participants, including three 
larger tribes and ten smaller ones. The Khalkha is 
the majority tribe in Mongolia and in our study.  
Table 2 shows the sex-specific mean ± SD of age, 
heart rate, QRS duration, and other charac-
teristics of the study participants. The average age 
of our population was 29 years with females being 
slightly older than males. Values for heart rate, 
height, plasma total cholesterol, and fasting plasma 
glucose revealed significant differences between 
the two sexes.
    The QTc interval exhibited a normal distribution 
within each sex group (Figure 1). The mean QTc 
interval was 421.54 ms in total, 415.86 ms in 
males, and 425.89 ms in females. The mean QTc 
interval for females was significantly longer than for 
males (P ＜ 0.0001). As seen in Table 3, the QTc 
interval decreased with age until the twenties, and 
then increased afterward. The difference in the 
QTc interval between females and males was 
significant for ages between the teens to the fifties 
(asterisks, P ＜ 0.05), but not for ages ＜10 or ≥
60. Table 3 also shows the age- and sex- specific 
distribution of abnormal QTc intervals. Generally, 
440 ms is accepted as the upper limit of a normal 
QTc interval (Garson, 1993). Using this criterion, 
among 1,074 individuals (466 men and 608 
women), 219 (61 men and 158 women) were 
classified as abnormal. The proportion of persons 
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Age
Goup, y

Total Male Female
≥440 msn Mean ± SD n (%)

≥440 msn Mean ± SD n (%)
≥440 msn Mean ± SD n (%)

  0-9    116 426.77 ± 17.55   28 (24.14)   61 426.54 ± 17.62 14 (22.95)   55 427.02 ± 17.62   14 (25.45)
10-19    333 422.31 ± 19.56   71 (21.32) 159 419.37 ± 20.04 28 (17.61) 174 425.00 ± 17.75*   43 (24.71)
20-29    132 412.11 ± 21.86   16 (12.12)   53 403.94 ± 19.55   2 (3.77)   79 417.58 ± 21.74*   14 (17.72)
30-39    185 420.22 ± 21.62   35 (18.92)   65 407.28 ± 20.78   3 (4.62) 120 427.23 ± 18.70*   32 (26.67)
40-49    147 420.50 ± 20.80   25 (17.01)   69 410.84 ± 20.35   4 (5.80)   78 429.04 ± 17.23*   21 (26.92)
50-59      76 425.09 ± 20.32   23 (30.26)   25 416.64 ± 20.78   4 (16.00)   51 429.24 ± 18.94*   19 (37.25)
60-69      60 422.67 ± 21.09   11 (18.33)   25 421.00 ± 23.91   3 (12.00)   35 423.86 ± 19.11     8 (22.86)
≥70      25 439.28 ± 27.43   10 (40.00)     9 435.78 ± 10.59   3 (33.33)   16 441.25 ± 33.65     7 (43.75)

Total 1,074 421.54 ± 21.02 219 (20.39) 466 415.86 ± 21.57 61 (13.09) 608 425.89 ± 19.51* 158 (25.99)
* Significant difference by sex P ＜ .05.

Table 3. Age- and sex-specific distribution of the QTc and abnormal QTc intervals (＞ = 440 ms).

Figure 1. Distribution of the QTc interval by sex. QTc intervals for males (A) and females (B) show normal distributions within each sex group.

with an elongated QTc interval was higher in 
females than in males because the mean QTc 
interval for females was longer than for males. This 
pattern was observed in every age range.
    Table 4 summarizes results of the multiple regre-
ssion analysis using many factors that may affect 
the QTc interval, including age, sex, electrocardio-
gram findings (heart rate, QRS duration), height, 
weight, BMI, fat, blood pressure (systolic and 
diastolic), lipid (TG, total cholesterol, HDL, LDL), 
and fasting plasma glucose. In a univariate analysis, 
all of these factors showed significant association 
with the QTc interval (data not shown), but in a 
multiple regression analysis, the QTc interval was 
influenced only by age × sex, age2

× sex, systolic 
blood pressure, heart rate, height, and QRS 
duration.
   The genetic component of a phenotype can be 

assumed based on familial aggregation and heri-
tability. Based on results of the familial correlation 
study (Table 5), among the main types of familial 
relationships (spouse-spouse, parent-offspring, and 
sibling-sibling), the sibling-sibling pair showed the 
most significant correlation and the spouse-spouse 
pair showed the least correlation, implying a 
genetic effect for the QTc interval.
    The heritability of the QTc interval, adjusted for 
age and sex, was 0.31, suggesting a moderate 
genetic effect. A heritability estimate of 0.31 for the 
adjusted QTc interval indicates that 31% of the 
inter-individual variance in the QTc interval duration 
is attributable to additive genetic effects. 
    Table 6 and Figure 2 show results of a ge-
nome-wide multipoint linkage analysis of the QTc 
interval using the variance component method in 
SOLAR across 22 autosomes. Age and sex were 
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Parameter Standard Variable P valueestimate error
Age × Sex  0.356 0.060 ＜ .0001
Age2

× Sex -0.003 0.001    0.0003
Systolic blood  0.112 0.032    0.0005
 pressure
Heart rate  0.630 0.051 ＜.0001
Height -0.272 0.046 ＜.0001
QRS Duration  0.100 0.045   0.0270

Table 4. Results of multiple regression analyses for the QTc 
interval.

n QTc COV_5*
Mother - father 140 0.0591 0.0390
Father - son 175 -0.1121 -0.0192
Mother - son 303 0.1804 0.2415
Father - daughter 163 0.1467 0.1510
Mother - daughter 341 0.1018 0.1046
Parent - offspring 982 0.0819 0.1285
Brother - brother 109 0.2829 0.2781
Brother - sister 282 0.1781 0.2188
Sister - sister 139 0.1337 0.1334
Sibling - sibling 530 0.1825 0.2091

*Adjusted for age, sex, age2, age × sex and age2
× sex.

Table 5. Familial correlations for the QTc interval.

Maximum Chromosome Cytogenetic Nearest Empirical 
Age N

LOD score (cM) location markers P value

 5-82 1,073 2.0 7 (157) 7q31 D7S530 0.0012
D7S684

1.9 5 (124) 5q21 D5S644 0.0013
D5S433

1.9 4 (143) 4q28 D4S406 0.0013
D4S2394

1.7 2 (252) 2q36 D2S1363 0.0022
D2S260

20-82    624 2.4 7 (162) 7q34 D7S530 0.0001
D7S684

Table 6. Results of linkage analyses for the QTc interval.

used as covariates in this analysis. The highest 
LOD score was 2.0 for the chromosome 7q31 
region (Figure 2 and 3). The second and third 
peaks represent chromosomes 5q21 and 4q28, 
where the maximum LOD scores were 1.9 for both 
peaks. An additional narrow peak was identified for 
chromosome 2q36 with a maximum LOD score of 
1.7.

Discussion

Although QTc interval values for various popula-
tions have been reported, most studies have been 
performed with Westerners and there is scant 
information for Asians. Racial differences in the 
QTc interval have been reported (Vitelli et al., 
1998; Grandinetti et al., 2005); The QTc interval is 
longer in Asians than in Caucasians, and longer in 
Caucasians than in African-Americans. However, 
our results show the mean QTc interval values in 
males and females are 415.82 and 425.91, respec-
tively, and the proportion of prolonged QTc intervals 
is 13.09% in males and 25.99% in females. This is 
similar to results in other studies (Friedlander et al., 
1999; Crow et al., 2003; Benoit et al., 2005). 

However, direct comparison is impossible because 
there are differences in study design and popu-
lation composition. Several studies have reported 
on the heritability of the QTc interval with results 
ranging from 0.25 to 0.40 (Russell et al., 1998; 
Friedlander et al., 1999; Carter et al., 2000; 
Newton-Cheh et al., 2005). Our heritability value of 
0.31 is comparable.
    As seen in Table 3, the QTc interval increases 
with age in adults. Although well known, the 
mechanism of this increase is not known (Reardon 
and Malik, 1996; Mangoni et al., 2003). The 
difference in the QTc interval by sex is significant 
only in middle age (aged 10-59) and may be a 
hormonal effect.
    Many factors are known to be associated with 
the QTc interval, including age and sex, which are 
well known, and heart rate, height, weight, blood 
pressure (systolic and diastolic), lipid (TG, total 
cholesterol, HDL, LDL), fasting plasma glucose, 
which are controversial (Dekker et al., 1994, 2004; 
De Bruyne et al., 1999; Mangoni et al., 2003; 
Benoit et al., 2005). Our results showed that 
weight, BMI, fat, diastolic blood pressure, lipid (TG, 
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Figure 2. Results of a multipoint linkage analysis across 22 autosomes for the all ages group (A) and the adult age group (B). The horizontal line (x axis) 
shows 22 autosomes sequentially. The vertical line (y axis) shows multipoint LOD scores. 

Figure 3. Results of the multipoint linkage analysis for chromosome 7. 
The highest peak is on chromosome 7 (maximum LOD score 2.0 in 
black; 2.4 in gray). The x axis shows the genetic position on chromo-
some 7 and the y axis shows the multipoint LOD score. The upper part is 
the position of the markers. Black : all age group; Gray : adult group (≥
20 yr).

total cholesterol, HDL, LDL), and fasting plasma 
glucose are not statistically meaningful in a multiple 
regression analysis, suggesting these factors do 
not independently affect the QTc interval. 
    Familial correlation analysis was performed to 
evaluate genetic effects in the variation of the QTc 
interval. In this analysis, correlation of the phe-
notype in parent-offspring pairs and sibling-sibling 
pairs reflects both the familial and environmental 
effects, and spouse-spouse pairs reflect an envi-
ronmental effect because parent-offspring pairs 

and sibling-sibling pairs share genetic and environ-
mental factors while spouse-spouse pairs share 
only environmental factors. Therefore, our results 
indicate a genetic effect on the QTc interval. 
    Correlation in mother-son pairs is stronger than 
in father-son pairs, and correlation in brother-brother 
pairs is stronger than in sister-sister pairs. Hong et 
al. (2001) found similar results and suggested they 
are due to mitochondrial and/or pre-natal effects. 
However, we think it could be an X-chromosomal 
effect because a son has only one X chromosome, 
from his mother. Father and son do not share an X 
chromosome while mother and son always share 
one. Similarly, brother-brother pairs have a lower 
chance of sharing an X chromosome than 
sister-sister pairs. Brother-brother and sister-sister 
pairs have the same chances of receiving the 
same X chromosome from their mother, but 
sister-sister pairs always share one X chromosome 
from their father. Therefore, candidate genes could 
be located on the X chromosome. We did not type 
genetic markers on the X chromosome so this 
hypothesis could not be tested.
    Genome-wide linkage analysis of the QTc 
interval in a general population was performed in 
one previous study (Newton-Cheh et al., 2005). 
Evidence was found suggestive of linkage of the 
QT interval 19 to 48 cM from the tip of the short 
arm of chromosome 3 (maximum two-point LOD 
score 3.00, maximum multipoint LOD score 2.71). 
The region of linkage contains potassium and 
sodium channel genes, including the SCN5A gene 
that has been implicated in one form of the long 
QT syndrome. Our linkage analysis results identified 
peaks on different chromosomes. The regions of 
the highest three peaks, on chromosomes 7q31, 
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5q21, and 4q28, contain ANK2 and ankyrin repeat 
genes. Most LQTS genes encode potassium or 
sodium channel proteins and one gene encodes 
the structural protein ankyrin-B, which is thought to 
anchor ion channels to the cellular membrane. 
Either a decrease in the potassium efflux due to a 
loss of function of the potassium channel or an 
increase in the sodium influx due to a gain of 
function of the sodium channel, is thought to be a 
mechanism of LQTS. Impairment of the ankyrin-B 
protein leads to deterioration of the channels and 
yields the same result. Therefore, we think that the 
ankyrin gene family is a strong candidate for 
control of the QTc interval.
    We also performed an additional linkage analysis 
using only the adult population (≥ 20 years old) 
(Table 7, Figure 2 and 3). The maximum LOD 
score of the highest peak on chromosome 7 rose 
to 2.4 in the adult population from 2.0 in whole 
population, and other peaks on chromosomes 2, 4, 
and 5 became smaller (Figure 2). The peak on 
chromosome 7q34 in the adult population was 
located slightly closer to telomere than the 
previous peak in the whole population. This region 
contains KCND2 and KCNH2 genes that encode 
potassium voltage-gated channels. These 
potassium channel genes KCND2 and KCNH2 are 
also candidate control genes.
    In conclusion, our study confirmed a genetic 
effect on the QTc interval, and identified four 
regions of potential linkage and candidate control 
genes in those regions. Several non-genetic 
factors affecting the QTc interval were identified. 
Further studies, such as linkage analyses covering 
the X chromosome in other populations, asso-
ciation studies, and biological function studies of 
candidate genes will elucidate details of QTc 
regulation. Our results can be used as a basis for 
future studies, and contributes to an improvement 
in risk assessment and treatment of ventricular 
arrhythmia and cardiovascular mortality. 

Methods

Study population and baseline measurement

A total of 1,309 individuals from 142 families were recruited 
from a rural community in Selenge Province, Mongolia, as 
part of a GENDISCAN (GENe DIScovery for Complex 
traits in Asians of the Northeast) study (Gombojav et al., 
2008). Study participants were members of 13 ethnic 
groups between 5 and 82 years of age. Basic individual 
information (age and sex), pedigree information, and 
self-reported medical histories were ascertained using 
questionnaires. Blood was collected from most subjects in 
both fasting and non-fasting states using heparin tubes. 
Values for total cholesterol, HDL cholesterol, LDL choles-

terol, triglycerides, and glucose were measured from 
fasting plasma. Body weight (kg) and height (cm) were 
checked and the body mass index (BMI, kg/m2) was 
calculated using the formula BMI = body weight/(body 
height)2. After subjects rested for 5 minutes, the blood 
pressure (systolic blood pressure, SBP, and diastolic blood 
pressure, DBP) was measured by a physician using a 
standardized mercury sphygmomanometer, and the mean 
of 2 measurements was used in our analyses. Less 
informative subjects, such as members of small families, 
were excluded, after which 1,098 phenotyped subjects 
remained. The study was approved by an institutional 
review committee and the participants gave informed 
consent.

Electrocardiogram measurement

A standard 12-lead electrocardiogram (Bionet Co., LTD, 
Korea) was recorded from 1,074 subjects at a paper speed 
of 25 mm/s and a gain of 10 mm/mV and read manually by 
a cardiologist. The QT interval was determined as the 
onset of the QRS wave to the end of the T wave in lead II. 
The QRS duration was measured in an identical manner 
from the onset of the Q wave to the endpoint of the S 
wave. We used a corrected QT interval (QTc interval), 
which was the QT interval length corrected for heart rate 
using Bazett’s formula of QTc=QT/(RR)1/2  (Bednar et al., 
2001).

DNA extraction and genotyping 

Leukocyte DNA was extracted from buffy coat specimens 
using a Gentra DNA isolation kit according to the manu-
facturer's protocol and we obtained at least 30 μg of high 
purity DNA from each subject. All subjects were genotyped 
for 384 short tandem repeat (STR) microsatellite markers 
with an average spacing interval of 10 cM (ABI co., LMS 
v2.5 HD10) excluding markers on the X chromosome. After 
PCR amplification (GeneAmp PCR System 9600), 
multiplex running of the PCR set was performed using 
internal standard DNA for high efficiency and data stability 
(GeneScan-500 LIZ, CEPH 1347-02, ABI Prism 3730 DNA 
analyzer). We then determined the size of the running 
results and genotypes using GeneMapper software 
(Applied Biosystems (ABI), ver. 3.7). A total of 317 markers 
remained after we excluded markers with genotyping 
errors. The calling rate was 99.9%. We added 13 markers 
in chromosomal areas where the inter-marker distance 
was larger than 25 cM because inclusion of these areas 
could reduce the power of the linkage analysis. Among the 
genotyping-error markers, 19 markers that had 
inter-marker distances larger than 15 cM were replaced 
with new markers. Final genotyping of 349 markers was 
performed in 1,080 subjects from the 1,098 phenotyped 
subjects. 

Data analysis

Univariate analysis and multiple regression analysis were 
performed using SAS version 8.1 software (SAS Institute, 
Cary, NC). The familial correlation was analyzed using 
S.A.G.E. (Statistical Analysis for Genetic Epidemiology, 
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http://darwin.cwru.edu/sage). IBD and MIBD matrices were 
calculated using the Loki package, a linkage analysis 
package using Markov chain Monte Carlo (MCMC) 
techniques (Heath, 1997). Loki supports estimation of IBD 
relationship matrices for use with variance component 
programs, such as SOLAR. Heritability estimates and 
multipoint linkage analysis were performed using a 
variance-component method implemented in the SOLAR 
(Sequential Oligogenic Linkage Analysis Routines) package 
(Almasy and Blangero, 1998).
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