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Abstract

Although CDA4(+) cells represent the major target for HIV infection in blood, claims of complement-independent binding of
HIV-1 to erythrocytes and the possible role of Duffy blood group antigen, have generated controversy. To examine the
question of binding to erythrocytes, HIV-1 was incubated in vitro with erythrocytes from 30 healthy leukapheresis donors,
and binding was determined by p24 analysis and adsorption of HIV-1 with reduction of infectivity for CD4(+) target cells. All
of the cells, regardless of blood group type, bound HIV-1 p24. A typical preparation of erythrocytes bound <2.4% of the
added p24, but erythrocytes selectively removed essentially all of the viral infectivity as determined by decreased infection
of CD4(+) target cells; however, cell-associated HIV-1 was approximately 100-fold more efficient, via trans infection, than
unadsorbed virus for infection of CD4(+) cells. All of the bound HIV-1 p24 was released by treatment of the cells with EDTA,
and binding was optimized by adding Ca®* and Mg?* during the washing of erythrocytes containing bound HIV-1. Although
the small number of contaminating leukocytes in the erythrocyte preparation also bound HIV-1 p24, there was no
significant binding to CD4, and it thus appears that the binding occurred on leukocytes at non-CD4 sites. Furthermore,
binding occurred to erythrocyte ghosts from which contaminating leukocytes had been previously removed. The results
demonstrate that erythrocytes incubated in vitro with HIV-1 differentially adsorb all of the infectious HIV-1 virions (as
opposed to non-infectious or degraded virions) in the absence of complement and independent of blood group, and
binding is dependent on divalent cations. By analogy with HIV-1 bound to DC-SIGN on dendritic cells, erythrocyte-bound
HIV-1 might comprise an important surface reservoir for trans infection of permissive cells.
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Introduction experiments, direct i trans infection has not yet been demonstrated

to occur m vwo [9], and dendritic cells are relatively rare when
compared to other circulating blood cells.

Claims by several groups that HIV-1 also binds to erythrocytes
[10-13] have generated controversy. Erythrocytes derived from
infected patients were reported to contain cell-bound HIV-1, and
erythrocytes were hypothesized to represent a novel viral reservoir
[12,14], but erythrocyte-bound HIV-1 from infected patients was
subsequently disputed and the reservoir hypothesis was challenged
[15]. It was subsequently concluded that erythrocytic complement
receptor type 1 (CR1) was responsible for essentially all of the
binding of HIV-1 to the erythrocytes [16]. Binding to the
erythrocytic blood group Duffy antigen receptor for chemokines
(DARC) was also reported [10,13], but claims that DARC
mediated genetic tendencies to HIV-1 infection and AIDS

Upon initial entry into blood, HIV-1 is faced with three major
options: (a) directly infect a CD4(+) target cell; (b) remain as a
circulating free virion while it searches for a target cell; or (c)
temporarily bind to the surface of a CD4(—) cell, such as a
circulating dendritic cell, as a depot for infection by transfer of the
virus (infection in trans) to a CGD4(+) cell [1]. Infection of a CD4(+)
target cell is the goal to which the other two options are directed,
but it is also the most difficult to achieve because CD4(+) cells are
relatively rare when compared to other circulating cells in the
blood. Although free infectious HIV-1 is widely thought to be a
major form of the virus in blood [1], remaining as a free virion is
also fraught with danger because of exposure to numerous
humoral and cellular defense mechanisms, such as antibodies,

complement, or NK cells available to the host [2-6]. Calcium-
dependent binding of HIV-1 to DC-SIGN on dendritic cells can
also occur, and HIV-1 attached to dendritic cells might be
protected for more than 4 days either from degradation or
neutralization by certain antibodies, when compared to free HIV-
1 [7,8]. Although trans infection of CD4(+) cells by HIV-1-bound
dendritic cells has also been proposed based on i uwitro
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[13,17-19] were strongly challenged [20—23].

If erythrocytes are major, or even minor, HIV-1 binding sites
not mediated by effectors such as antibodies or complement, this
could represent a novel mechanism for transmission of infectious
HIV-1 virions to CD4(+) cells in blood. If HIV-1 bound to
erythrocytes represents a hidden infectious depot of HIV-1 i vivo,
this might also present new challenges for development of broadly
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neutralizing antibodies for a vaccine. In view of the importance
and the controversial nature of the issue of HIV-1 binding to
erythrocytes, we examined the binding of HIV-1 both to human
erythrocytes and to highly purified erythrocytic ghosts in order to
ascertain the degree, if any, that infectious HIV-1 virions bind to
erythrocytes in the absence of antibodies or complement, and to
shed light on possible implications of such binding for concepts of
HIV-1 pathogenesis and mechanisms of transmission for uptake
and infection of CD4(+) cells. Our results demonstrate that
although a mean of only 2.3% of added HIV-1 p24 became bound
to erythrocytes, adsorption with the cells differentially removed
nearly all of the infectious virions. The erythrocyte-bound HIV-1
was then approx 100-fold more infectious, via trans infection, for
infection of CD4(+) target cells, and the cell-bound HIV-1
reconstituted essentially all of the infectivity of the original
unadsorbed free virus.

Results

Binding of HIV-1 to erythrocytes obtained after
leukapheresis

After incubation of increasing concentrations of a typical
preparation of erythrocytes with HIV-1, followed by washing of
the cells, dose-related binding of HIV-1 p24 was observed
(Fig. 1A). At the highest concentration (8,486 pg of p24,
corresponding to a 1:1 dilution of the viral stock with phenol
red-free RPMI), a plateau of binding was still not apparent.
However, when 8,486 pg of HIV-1 was then incubated with
increasing numbers of erythrocytes, nearly a four-fold increase of
p24 binding occurred, resulting in 320 pg of p24 bound per
20x107 erythrocytes (Fig. 1B). Although a definitive plateau of
binding was not quite achieved, the change of slope at high
numbers of cells indicated that only a very shallow dose response
occurred at the high end of the curve. Thus, in the experiment
illustrated only 3.7% of the total p24 added became bound to the
cells. Erythrocyte preparations obtained from 30 different donors
bound a mean of 2.32% (range 0.03-6.02%), of added p24 of
undiluted virus stock incubated with the indicated number of
erythrocytes (Table 1). Within this small range of binding, the ratio
of added cells/viral p24 bore little exact resemblance to the % of
p24 bound with different donor cells. Although erythrocytes from
each donor preparation did bind HIV-1, the number of individual
samples tested was too small to determine contributing effects, if
any, of each potential variable (such as blood group type, or viral
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clade, or type of co-receptor used by the virus) shown in Table 1.
Although the exact mechanism of binding of the HIV-1 virions to
the cells is not yet known, Fig. 2A demonstrates that the binding
was completely eliminated in the presence of EDTA. As shown
with three representative donor preparations in Fig. 2B, removal
of HIV-1 bound to the cells was dependent on the concentration
of EDTA. Even in the absence of EDTA, binding of p24 to two of
the three donor cells was considerably reduced when the medium
used to wash the cells lacked Ca*" and Mg®* when compared to
the control in which the cells were washed in the presence of Ca*"
and Mg** (Fig. 2B).

Binding of HIV-1 to contaminating leukocytes in the
erythrocyte preparation, and binding to erythrocyte

ghosts

Erythrocytes obtained after leukapheresis would still be
expected to have a small contamination with leukocytes,
including CD4(+) cells. Flow cytometry analysis of one erythro-
cyte preparation (not shown) revealed approximately 0.4%
contamination by non-hemolyzed cells, and 0.07% of the original
starting cells in the erythrocyte preparation consisted of CD4(+)
cells while 0.33% consisted of CD4(—) cells. To examine the
possibility that contaminating leukocytes might have contributed
to HIV-1 binding, we hemolyzed the erythrocytes and separated
the leukocytes by low speed centrifugation from the erythrocytic
ghosts. As shown in Fig. 3A, the non-hemolyzed cells (leukocytes),
and the purified erythrocytic ghosts obtained by high speed
centrifugation, each bound p24. Based on the smaller numbers of
leukocytes, it appears that the binding to leukocytes was stronger
than binding to erythrocytes. However, Fig. 3B further
demonstrates that HIV-1 also bound directly to purified ghosts
from which all contaminating leukocytes had been previously
removed. Under these latter circumstances binding to erythro-
cytic ghosts occurred at approximately the same level as to the
original erythrocyte preparation that included contaminating
leukocytes. The increased binding to erythrocytic ghosts in the
absence of leukocytes (Figs. 3B vs. 3A) suggests that adhesion
molecules present on erythrocytes [24] might have competed
with adhesion molecules on leukocytes for binding to HIV-1. An
alternative possibility that intracellular surface binding sites for
HIV-1 became available on ghosts that were stabilized after
hemolysis seems unlikely because of limited access to such sites

[25].
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Figure 1. Binding of a HIV-1 isolate to erythrocytes. (A) Increasing amounts of HIV-1 isolate 90US_873 (as quantified by p24) were incubated
with 5x107 erythrocytes (donor Q6), and binding of p24 to the cells was determined. (B) Dose-dependent binding of the HIV-1 isolate (8,486 pg p24)
with increasing numbers of erythrocytes. The experiment shown is representative of 3 separate experiments. In each experiment HIV-1 was bound to
erythrocytes in triplicate, washed, and the triplicates were pooled for p24 determination.

doi:10.1371/journal.pone.0008297.9001
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Table 1. Binding of four HIV-1 isolates to erythrocytes derived from 30 different donors.
ABO blood Duffy blood Viral clade/ p24 added No. of erythrocytes % of p24 bound
Donor no. type Rh type Virus isolate co-receptor (pg) added to cells®
Q1 AB A= 99KE_KNH1135 A/R5 5,999 5x107 4240
Q2 A + 89BZ_167 B/R4 30,257 5x108 3.48°
Q3 B + 89BZ_167 B/R4 30,257 5x108 1.09
Q4 O + 89BZ_167 B/R4 12,053 5x108 1.06
Q5 o) Es Fy(a+b-) 89BZ_167 B/R4 30,257 5x10° 2.30¢
91US_4 B/R5 77,236 5x108 0.03
99KE_KNH1135 A/R5 29,995 5x10° 0.61
Q6 o + Fy(a+b+) 99KE_KNH1135 A/R5 29,995 5%108 0.53
91US_4 B/R5 77,236 5x108 0.28
90US_873 B/R5 8,486 2x108 3.77
89BZ_167 B/R4 30,257 5x108 2.66°
Q7 (6] + Fy(a+b+) 99KE_KNH1135 A/R5 29,995 5x108 1.23
91US_4 B/R5 77,236 5x108 0.66
Q8 (6] - Fy(a+b—) 91US_4 B/R5 77,236 5x108 0.36
99KE_KNH1135 A/R5 29,995 5x108 141
90US_873 B/R5 8,486 2x10° 3.65
Q9 A + Fy(a—b—) 90US_873 B/R5 8,486 5x10° 135
99KE_KNH1135 A/R5 29,995 5x108 0.88
91US_4 B/R5 77,236 5x108 0.18
89BZ_167 B/R4 30,257 5x108 299
R1 (0] - 89BZ_167 B/R4 30,257 5x108 5.61
R2 A + 89BZ_167 B/R4 15,129 5x108 2.49°
R3 (0] - 89BZ_167 B/R4 45,386 7.5x108 4.47°
R4 o + 89BZ_167 B/R4 30,257 5x108 291
R5 (0} AP 89BZ_167 B/R4 30,257 5x10° 437
R6 (¢] + 89BZ_167 B/R4 30,257 5%108 1.84
R7 A 4= 89BZ_167 B/R4 30,257 5x108 6.02
R8 (6] + 89BZ_167 B/R4 30,257 5x108 5.67
R9 (0] 4= 89BZ_167 B/R4 7,564 2.5x10° 1.07
S1 A + 89BZ_167 B/R4 15,129 5x108 1.59
S2 (0] + 89BZ_167 B/R4 45,386 7.5x108 0.69
S3 A - 89BZ_167 B/R4 30,257 5x108 3.27
S4 (¢] + 89BZ_167 B/R4 15,129 5x108 5.40
S5 O + 89BZ_167 B/R4 72,320 3x10° 0.56
S6 A AP 89BZ_167 B/R4 15,129 5%10° 440
S7 A + 89BZ_167 B/R4 15,129 5x108 5.55
S8 (¢] 4= 89BZ_167 B/R4 7,564 5x108 0.75
S9 B + 89BZ_167 B/R4 7,564 5x108 0.49
T1 (0] + 89BZ_167 B/R4 72,320 3x10° 1.65
T2 A + 89BZ_167 B/R4 72,320 3x10° 3.00
T3 A + 89BZ_167 B/R4 72,320 3x10° 0.67
Mean 232
SD 1.82
Median 1.65
Range 0.03-6.02
Values are from a single experiment except for means of Ptwo, “four or “five experiments.
doi:10.1371/journal.pone.0008297.t001
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Figure 2. Release of erythrocyte-bound HIV-1 by treatment with EDTA. (A) HIV-1 isolate 89BZ_167 (75,643 pg) was incubated with 5x108
erythrocytes (donor S4) in RPMI, washed three times, and then treated with either EDTA or RPMI (no EDTA). The bound HIV-1 was completely
removed by treatment with EDTA. The dashed line shows the limit of detection of the p24 assay. (B) After incubation of HIV-1 with erythrocytes from
3 different donors, following washing, the cells were incubated with different amounts of EDTA (or no EDTA), and washed either in the absence or

presence (control) of Ca®* and Mg*".
doi:10.1371/journal.pone.0008297.g002

Lack of significant binding to contaminating CD4(+) cells
in the erythrocyte preparation

Because of the binding of HIV-1 to contaminating leukocytes
(Fig. 3A), the question arose whether the apparent binding of
HIV-1 to non-hemolyzed cells actually consisted of binding to the
small number of contaminating CD4(+) cells. If this were so, it
would be expected that incubation of the cells at 37°C for 4 hours
would allow sufficient time for internalization of the virus [26], and
the association of the HIV-1 p24 with the cells would then no
longer be susceptible to EDTA. To examine this, HIV-1 was
incubated with the cell preparation for 2 hr at 4°C and EDTA was
then added at different times over a period of 4 hours during
further incubation at 37°C compared to 4°C.. As shown in Fig. 4A,
at each time interval in the course of the incubation, HIV-1 p24
binding was removed from the cells by EDTA to an equal extent
at 37°C and 4°C. In contrast, Fig. 4B shows a partial repeat of the
experiment shown in Fig 4A that also contains a positive control
performed with peripheral blood mononuclear cells (PBMC)
instead of erythrocytes. In the positive control, the PBMC were
first incubated with virus at 4°C; after removal of unbound virus
by washing, the PBMC were incubated at 37°C for 4 hours and
then treated with EDTA. As shown, the p24 associated with

PBMC was not removed by treatment with EDTA, thus indicating
that the p24 became internalized by PBMC, and because p24 was
not on the cell surface it could not be removed from the PBMC by
EDTA. Thus, the binding of HIV-1 p24 to erythrocytes occurred
mainly, or exclusively, on the surface of the cells, and binding of
the virus to CD4 sites on contaminating CD4(+) cells did not play
a significant role. Based on this, it appears that the binding of p24
to leukocytes (shown in Fig. 3) did not involve binding of infectious
virions to CGD4.

Binding of infectious HIV-1 virions by erythrocytes, and
infectivity of bound virus

Although the above data demonstrated that only a minute
fraction of the p24 added became bound to the erythrocytes, Fig. 5
shows that a single adsorption with erythrocytes from each of three
different donors depleted an average of approximately 81% of the
infectivity of the original HIV-1 preparation, and a second
adsorption with one of the erythrocyte preparations removed 92%
of the infectivity. In another experiment (not shown) three
adsorptions removed 97% of the infectivity. The question then
arose whether cell-bound HIV-1 retains its infectivity. Figure 6
shows, in a representative experiment, that when the infectivity of
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Figure 3. HIV-1 binds to erythrocytes, erythrocytic ghosts, and leukocytes. (A) After incubation of 151,286 pg of HIV isolate 89BZ_167 with
the indicated preparation containing 2.5x10° erythrocytes, the mean p24 bound (+ SD of triplicate measurements) was determined. The
erythrocytes were then hemolyzed and the p24 bound to the ghosts and the leukocytes was separately measured. (B) After incubation of 105,900 pg
of HIV-1 isolate 89BZ_167 with the indicated erythrocyte preparation (3.5x10° erythrocytes), or with purified ghosts previously depleted of
leukocytes, from each donor, the mean bound p24 (= SD of triplicate measurements) was determined.

doi:10.1371/journal.pone.0008297.g003
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Figure 4. HIV-1 bound to the erythrocyte cell preparation is not internalized by contaminating leukocytes at 37°C. (A) Erythrocytes
(donor R9) were first incubated with HIV-1 (isolate 89BZ_167) at 4°C for 2 hr and binding was determined. The cells were then incubated further at
either 4°C or 37°C, and at the indicated times 10 ml of 5 mM EDTA (Na salt) were added and p24 associated with the cells was measured. The
experiment shown was performed twice with similar results. (B) In a further experiment, containing a positive control, erythrocytes (donor T4) and
PBMC were first incubated with HIV-1 (isolate 89BZ_167) either at 4°C or 37°C for 2 hr and binding was determined. The cells were then incubated for
4 hours at either 4°C or 37°C then treated with 5 mM EDTA (Na salt). Cells were washed and p24 associated with the cells was measured.

doi:10.1371/journal.pone.0008297.g004

cell-bound HIV-1 was compared to the original unadsorbed free
virus, based on p24 values the bound HIV-1 was approximately
100-fold more efficient, via frans infection, for infecting CD4(+)
peripheral blood mononuclear target cells. It should be empha-
sized that the 100-fold degree of increased infectivity is only a
rough estimate. Even though approximately the same level was
seen in two separate experiments, the exact degree of increased
infectivity might change under different conditions, and this might
also prove to be virus- and cell-dependent. The results demon-
strate that erythrocytes bound only an extremely small amount of
the total p24, but this accounted for nearly all of the infectious
virions, and the cell-bound HIV-1 remained fully infective for
transmission to CD4(+) cells by trans infection. The data thus show
that infectious virions were strongly enriched by binding to the
cells, but the data do not exclude the possibility that the cell-bound
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Figure 5. Erythrocyte preparations selectively adsorb most of
the infectious HIV-1 virions. HIV-1 isolate 89BZ_167 (105,900 pg)
was adsorbed with erythrocytes the indicated numbers of times by
adding 3.5x10° erythrocytes from the indicated donors. After removing
the erythrocytes by centrifugation, non-adsorbed virus in the superna-
tant was assayed for the ability to infect CD4(+) TZM-bl cells in trans.
The relative degree of infection, determined by the mean p24 (= SD of
triplicate measurements), was compared with infection by the original
free virus (shown as 100%).

doi:10.1371/journal.pone.0008297.g005
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P24 might also have contained a small fraction of non-infectious
particles, such as immature or defective virions, in addition to the
infectious particles.

Discussion

As noted earlier (Introduction), the question of whether HIV-1
binds to erythrocytes, either i vitro or i vivo, has generated some
degree of controversy. In the presence of immune complexes
(HIV-1-anti-HIV-1), and in the presence of complement (unheat-
ed human serum) i witro, partially purified formaldehyde-
inactivated '*I-labeled HIV-1 reportedly bound 65-75% of the
added viral label to purified erythrocytes from healthy donors after
incubation of the labeled HIV-1 with the cells [16]. In contrast, in
the absence of complement (using heat-inactivated serum) there
was essentially no binding of HIV-1 to the cells. Based on the
above, it was concluded that erythrocytic complement receptor
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Figure 6. Erythrocyte-adsorbed virus is more infectious, based
on p24, than free virus. To compare the infectivity of cell-bound
virus with free virus-1, HIV isolate 90US_873 was bound to erythrocytes
(sample no. Q6). Increasing numbers of erythrocytes containing bound
virus were then added to a PBMC culture, and virus production was
determined on day 4 post-infection. The amount of virus production
was then compared with that obtained by incubating the original free
virus with PBMC. A similar result was obtained in a second experiment
with a different donor (no. T1) and HIV-1 isolate 89BZ_167.
doi:10.1371/journal.pone.0008297.g006
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type 1 (CR1) was responsible for essentially all of the binding of
HIV-1 to the erythrocytes. However, in the present study, which
was conducted @ vitro in the complete absence of antibodies or
complement, we demonstrate that while a mean of only 2.3% of
HIV-1 p24 bound to erythrocytes, this small amount of binding
accounted for binding of up to 97% of the infectious virions, and
the cell-bound virions were then approximately 100-fold more
infectious, via frans infection, for infecting CD4(+) cells. Moreover,
the binding occurred even with purified erythrocytic ghosts that
were devoid of contaminating leukocytes.

It is known that HIV-1 activates complement, and complement-
coated HIV-1 can bind to complement receptors i wvivo,
particularly to CR1 on erythrocytes, or to complement receptor
types 2, 3, or 4, in the presence or absence of immune complexes
[2,4,5,16,27], and cell-bound HIV-1 could bind to Fc receptors on
CD4(—) cells in the presence of circulating IgG antibodies to HIV-
1 [4,5]. However, the present experiments, performed in the
absence of antibodies or complement, suggest that uptake of
infectious HIV-1 virions by erythrocytes and other CD4(—) cells
by immune adherence to erythrocytic CR1 via complement or
complement-mediated immune complexes, or even Fc-mediated
adherence to Fc receptors, may not be required for CD4-
independent adherence of infectious HIV-1 virions to erythrocytes
and other CD4(—) cells. In fact, most of the infectious HIV-1 was
differentially adsorbed to cell surfaces through CD4-independent
binding in the absence of antibodies. The present results suggest
that the small fraction of the total HIV-1 p24, that represents
virtually all of the infectious HIV-1 virions, might be bound
mainly to erythrocytes and other CD4(—) cells, and that all of the
binding occurs at sites other than CRI.

Although the exact mechanism of binding of HIV-1 to
erythrocytes is still unknown, and there might be more than one
binding mechanism, numerous nonimmune mechanisms poten-
tially could play a role, including binding to cell surface glycolipids
[28-31], and binding to cell surface glycosaminoglycans and
proteoglycans, such as heparan sulfate [32-35]. The possibility of
binding to HIV-1 to DARC has also been proposed based on trans
infection mediated by DARC(+) erythrocytes [10,13]. Although
our data do not exclude DARC as one possible erythrocytic
binding site, our observation that cells from 30 random
plasmapheresis donors, including those with DARC(+) [Fy(at+b+),
or Fy(atb—)] and DARC(—) [Fy(a—b—)] phenotypes, all bound
HIV-1 p24 to approximately the same degree (Table 1) makes it
seem unlikely that binding to DARC, if it occurs, is the sole
binding mechanism. Our current results thus appear to be
compatible with the various studies that have challenged binding
of HIV-1 to DARC as a critical factor in the epidemiology of HIV-
1 infections and pathogenesis [20-23].

An interesting aspect of this study is that cell-bound HIV-1 was
completely released by EDTA, and binding of HIV-1 therefore
occurred only on the cell surface. Even though the infectious HIV-
1 particles were completely stripped off cells by treatment with
EDTA, because the infectious particles comprised only a small
fraction (mean of 2.3%) of the total p24, plasma viral load
measurements obtained with calcium chelators such as EDTA as
anticoagulants probably detect mainly non-infectious or degraded
HIV-1. It thus seems likely that erythrocyte binding might be
detected poorly, or not detected, in the presence of any blood
collection method that uses calcium binders such EDTA, citrate,
or heparin. This might therefore explain the previous inability to
detect HIV-1 bound to erythrocytes obtained in EDTA tubes from
HIV-1-infected patients [15].

Our observation of highly efficient transfer of virus from CD(-)
sites for trans infection of permissive CD4(+) cells, is in keeping with
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other types of assay systems that have suggested that efficient trans
infection can be experimentally achieved wm wvitro [9,36-38].
However, in view of the possibility of complement-independent
and CD4-independent selective binding of virions to erythrocytes,
and perhaps to many other cells, with subsequent efficient #rans
infection of permissive cells, the theoretical possibility arises that
CD4(—) cell-bound infectious virions might be more important for
HIV-1 infection i vivo than infection by cell-free virions. If this
were so, it would seem to be important to explore whether
antibodies that neutralize free virus i vitro can similarly neutralize
trans infection caused by erythrocyte-bound virions. Assays for
detection of neutralizing antibodies generally use free virus (or
pseudovirus) as the infecting agent [39]. However, as illustrated in
the present work, because of the huge number of degraded
particles in the free virus preparations commonly used in most
neutralizing antibody assays, noninfectious particles or proteins
might also serve as a nonproductive sink for the antibodies being
tested. It might be further speculated, by analogy with HIV-1 that
binds to DC-SIGN on dendritic cells and remains available for
more than 4 days for #rans infection of CD4(+) cells [7], or against
neutralization by certain antibodies, when compared to free HIV-
1 [8], that infectious HIV-1 bound to the erythrocyte surface i vivo
might also be present in a type of protected state. We are currently
creating a novel #rans infection neutralization assay to examine the
ability of antibodies to neutralize erythrocyte-bound when
compared to free HIV-1.

Although it is widely believed that prior to infecting CD4(+)
cells, HIV-1 in blood exists mainly as free (i.e., not cell-associated)
infectious virions [1], the data from this study supports the
hypothesis that the erythrocytes may be added to dendritic cells as
a type of cell that binds HIV-1 on the cell surface in a calcium-
dependent, CD4-independent, and complement-independent
manner. However, erythrocytes might also have the unique
capacity to selectively bind all of the infectious HIV-1 virions that
are then potentially available for #rans infection of permissive target
cells.

Materials and Methods

Viruses and cells

Three HIV-1 clade B isolates, 90US_873 (CCR5), 91US_4
(GCR)), and 89BZ_167 (CXCR4) and one clade A virus,
99KE_KNH1135 (CCR5) were isolated, propagated, and titrated
in peripheral blood mononuclear cells (PBMC) obtained by
leukapheresis, and stored in cell culture supernatant containing
RPMI with 15% heat-inactivated fetal bovine serum as previously
described [40]. Cells collected by leukapheresis were obtained
under a protocol approved by the Institutional Review Boards of
the Walter Reed Army Institute of Research and the Walter Reed
Army Medical Center, and participants signed an informed
consent document. Erythrocytes separated as a centrifuged pellet
after Ficoll-Hypaque purification of PBMC were washed three
times in Dulbecco’s phosphate saline (lacking Ca®" and Mg*")
(PBS) and stored in storage medium (1.1% dextrose monohydrate;
0.588% sodium citrate dihydrate; 0.41% NaCl; 0.276% monoba-
sic sodium phosphate monohydrate; 0.042% citric acid monohy-
drate; 0.03% adenine) at 4°C for a maximum of three weeks.
Before use, erythrocytes were quantified by microscopic counting
in a hemocytometer; and were then washed with phenol red-free
RPMI (lacking fetal bovine serum). To prepare ghosts, packed
erythrocytes were hemolyzed in 10 volumes of ice-cold 5mM Tis-
HCI/0.15 mM CaCly/0.5 mM MgCl,, pH 8, and a small
number of contaminating non-hemolyzed cells (leukocytes) were
isolated or removed by centrifugation at 469 xg at 4°C in a Sorvall
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RT6000D centrifuge with a H1000B rotor. Following removal of
the leukocytes, the ghosts were pelleted by centrifugation at
20,000 xg for 15 min at 4°C in a Sorvall RC-5B centrifuge with a
SA-600 rotor. TZM-bl cells were grown as described [41].

Binding of HIV-1 to cells

HIV-1 isolates, containing the indicated amounts of p24, were
mixed 1:1 (v/v) with the indicated number of erythrocytes (except
as indicated in Fig. 1a), incubated at 4°C, with rotation (10 rpm),
for 2 hr, washed 3 times with ice-cold phenol red-free RPMI
medium by centrifugation at 469 xg for 10 min. Bound p24 was
measured by a p24 antigen capture ELISA (Advanced Bioscience
Laboratories, Kensington, MD). Where indicated (Fig. 2A),
erythrocytes were treated with 5 mM EDTA solution (Na salt)
(Sigma-Aldrich, St Louis, MO) or in plastic 3 ml whole blood
Vacutainer® tubes containing spray-coated EDTA (K salt) (BD,
Franklin Lakes, NJ) for 10 min at 4°C. The erythrocytes were then
centrifuged at 469xg for 10 min, and washed once in ice-cold
phenol red-free RPMI medium. In a separate experiment (Fig. 2B)
erythrocyte-bound HIV-1 was incubated with different amounts of
EDTA (or no EDTA), and washed either in the absence or
presence of Ca”" and Mg”". Where indicated (Figure 4), after
binding the virus to erythrocytes or PHA-stimulated PBMC at
4°C, samples were incubated at either 4°C or 37°C for 4 hours.
Then both erythrocytes and PBMC were treated with 5 mM
EDTA (Na salt) for 10 min. The cells were washed with RPMI,
the pellet was lysed, and p24 was measured.
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Infection of target cells

Infection of PBMC with free virus was performed as described
[40]. For infection studies, erythrocytes were incubated with HIV-
1 as described above, but the last wash was performed in, and
resuspended in, 200 pl of RPMI with 15% heat-inactivated fetal
bovine serum [40]. Samples were prepared in duplicate. Fifty pl of
PHA-stimulated PBMC were then added at 1.5x10 cells per well
in 96-well deep-well round-bottom plates. After 4 days, 50 ul of
culture fluid were harvested and assayed for p24 (measured by p24
antigen capture ELISA). For infection of CD4(+) TZM-bl cells
with HIV-1, either 100 pl of free or erythrocyte-bound viral isolate
was incubated with a 50 pl aliquot of 1x10* TZM-bl cells (in
Dulbecco’s Modified Eagle’s Medium with 15% heat-inactivated
fetal bovine serum) in duplicate in 96-well flat-bottom culture
plates. After 48 h, cells were lysed and luminescence was measured
[41].
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