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Summary
Cardiolipin (CL), the signature lipid of mitochondria, plays a critical role in mitochondrial function
and biogenesis. The availability of yeast mutants blocked in CL synthesis has facilitated studies of
the biological role of this lipid. Perturbation of CL synthesis leads to growth defects not only during
respiratory growth but also under conditions in which respiration is not essential. CL was shown to
play a role in mitochondrial protein import, cell wall biogenesis, aging and apoptosis, ceramide
synthesis, and translation of electron transport chain components. The genetic disorder Barth
syndrome (BTHS) is caused by mutations in the tafazzin gene resulting in decreased total CL levels,
accumulation of monolysocardiolipin (MLCL), and decreased unsaturated fatty acyl species of CL.
The variation in clinical presentation of BTHS indicates that other physiological factors play a
significant role in modifying the phenotype resulting from tafazzin deficiency. Elucidating the
functions of CL is expected to shed light on the role of this important lipid in BTHS and other
disorders of mitochondrial dysfunction.
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1. Introduction
Cardiolipin (CL) (1,3 diphosphatidyl-sn-glycerol) is a unique and ubiquitous anionic
phospholipid that, in eukaryotes, is localized in the mitochondrial inner membrane. CL was
first isolated from beef heart, hence its name [1]. While it is most abundant in the heart, CL
can be found in all mammalian tissues. Unlike the other membrane phospholipids, it has a
dimeric structure in which two phosphatidyl moieties are linked by a glycerol [2]. As a result,
CL is hydrophobic by virtue of four fatty acyl groups and acidic due to two phosphates. CL
interacts with a wide variety of mitochondrial proteins by both hydrophobic and electrostatic
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interactions [3,4], and stabilizes proteins in the mitochondrial respiratory chain [5]. CL
molecules can form lamellar or inverted hexagonal structures. The hexagonal phase is favored
in the presence of divalent cations [6]. Although the biological relevance of these structures is
not known, it is plausible that CL is involved in the formation of local non-bilayer structures
within biological membranes. Such structures are believed to be involved in membrane fusion
and in trans-bilayer movement of solutes [7]. The finding that mitochondrial biosynthesis of
the non-bilayer forming phospholipid phosphatidylethanolamine is essential for the viability
of yeast mutants lacking CL suggests a critical role of CL in the formation of these structures
[8], although it should be noted that these structures have not been convincingly demonstrated
in vivo.

The fatty acid composition of CL plays an important role in the function of the lipid, as aberrant
CL remodeling (replacing one fatty acid with another) underlies the genetic disorder Barth
syndrome (BTHS) [9]. However, no single species of fatty acid is required for function, as the
acyl species of CL from different organisms vary considerably. Bacterial CL contains saturated
and mono-unsaturated fatty acyl chains 14-19 carbons in length [10]. Mitochondrial CL is
mainly composed of monounsaturated and diunsaturated fatty acyl chain of 16-18 carbons in
length, resulting in a much higher unsaturation index than that of bacterial CL. In mammals
and higher plants, the predominant species is linoleic acid, whereas oleic acid and palmitoleic
acid species exist in yeast [11]. In humans, CL acyl species vary with tissue type, although the
predominant species in heart is tetralinoleoyl CL. This species is absent from BTHS cells
[12]. While specific CL acyl species vary among eukaryotic cardiolipins, the feature shared
by different organisms is that the dominant species of CL contains only one or two types of
fatty acid. This leads to symmetry and structural uniformity among cardiolipins [9].

This review focuses on the biosynthesis and function of CL in eukaryotes, primarily
concentrating on yeast, the model in which null mutants of the genes for CL synthesis are
available. The most exciting findings pertaining to CL in the last few years are that this
phospholipid plays an important role not only in mitochondrial bioenergetics, which is not
unexpected given the interaction of CL with mitochondrial proteins, but also in essential
cellular functions not generally associated with respiratory function. Some of these include
mitochondrial protein import, cell wall biogenesis, translational regulation of electron transport
chain (ETC) components, aging, and apoptosis, and it is likely that this list will be longer in
subsequent reviews. The importance of CL in these and other processes is underscored by the
finding that mutations in tafazzin, the CL remodeling enzyme, leads to BTHS. In this paper,
CL biosynthesis is summarized only briefly in order to provide a context in which to understand
the defects in the mutants that have been used to elucidate function. For a more detailed
discussion of the regulation of CL biosynthesis, we refer the reader to several recent reviews
[13,14]. We focus here on studies describing the role of CL in mitochondrial function and in
the essential cellular functions that are not associated with mitochondrial bioenergetics. In
addition, we discuss the role of CL in BTHS. Finally, we put forward several unanswered
questions that can be exciting areas for further exploration in this field.

2. CL biosynthesis
All of the enzymes for de novo synthesis of CL are present in the mitochondria. As seen in
Fig. 1, phosphatidylglycerolphosphate (PGP) synthase (Pgs1p) catalyzes the committed step,
forming PGP from CDP-DG and glycerol-3-phosphate (G-3-P) [15]. PGP is then
dephosphorylated to PG by PGP phosphatase [16]. CL synthase (Crd1p) catalyzes an
irreversible condensation reaction in which CDP-DG is linked to PG via cleavage of a high
energy anhydride bond to form CL [11,17-22]. CL then undergoes remodeling - deacylation
leads to the formation of monolysocardiolipin (MLCL), which is then reacylated with another
fatty acid [23]. In rat liver, mitochondria associated phospholipase A2 was shown to catalyze

Joshi et al. Page 2

Biochim Biophys Acta. Author manuscript; available in PMC 2010 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the deacylation step to form MLCL [24]. The yeast enzyme that deacylates CL has not been
identified. Reacylation is catalyzed by tafazzin [25]. Schlame et al. demonstrated that tafazzin
is a CoA-independent transacylase that transfers acyl chains preferentially from
phosphatidylcholine (PC) to CL [26]. In a study comparing CL species from a wide variety of
organisms, Schlame and co-workers showed that the most abundant species of CL contained
only one or two types of fatty acids, which results in a high degree of structural uniformity and
molecular symmetry in cardiolipins [9]. In contrast, tafazzin-deficient cells were characterized
by multiple species of CL.

The accumulation of MLCL in yeast and human tafazzin-deficient cells [25,27-29] is consistent
with the two step pathway of remodeling shown in Fig. 1. The importance of remodeling is
underscored by its role in BTHS, a rare X-linked disorder caused by mutations in tafazzin.
BTHS is characterized by cardiomyopathy, skeletal myopathy, neutropenia and growth
retardation due to abnormal mitochondria and defective oxidative phosphorylation [12].
Patients also exhibit elevated urinary excretion of 3-methylglutaconic acid [30] and
hypocholesterolemia [31]. BTHS patients display reduced CL, accumulation of MLCL, and
aberrant CL species [24].

The power of the yeast system in elucidating the function of CL derives from the
characterization of the yeast genes that encode Pgs1p, Crd1p, and Taz1p and the availability
of null mutants of these genes [15,20-22,25,27,28]. These mutants are powerful molecular tools
with which to elucidate the role of CL in vivo. The yeast taz1Δ null mutant exhibits biochemical
defects similar to those observed in BTHS [14,32-34]. These defects are complemented by
expression of the human tafazzin gene in the taz1Δ mutant [25]. Many studies with the yeast
mutants have shown that the CL pathway is required for optimal mitochondrial function, as
discussed in section 3. The mutants exhibit growth defects with varying degrees of severity on
non-fermentable carbon sources. The taz1Δ mutant grows poorly on ethanol at elevated
temperature [25,35], crd1Δ exhibits growth defects at elevated temperature on several carbon
sources [35-37], and pgs1Δ cannot grow at all on non-fermentable carbon sources [15,38].
Interestingly, pgs1Δ and crd1Δ exhibit growth defects even on glucose, suggesting that the CL
pathway is required for essential cellular processes not directly associated with respiration.
The crd1Δ mutant exhibits a strain dependent inability to form colonies at elevated temperature
on glucose medium, and pgs1Δ cannot grow at all at 37°C on glucose unless supplemented
with sorbitol [36,37]. Moreover, pgs1Δ also loses mitochondrial DNA, which may account to
some degree for the inability of the mutant to grow on non-fermentable carbon sources. The
studies summarized in sections 4-7 describe cellular functions that are perturbed when CL
synthesis is blocked.

3. CL and mitochondrial bioenergetics
CL is highly enriched in membranes designed to generate an electrochemical gradient for ATP
synthesis, such as the bacterial plasma membrane [39] and the inner mitochondrial membrane
[40]. It is also present in membranes of hydrogenosomes, a mitochondria-like organelle in
protists [41]. This ubiquitous and intimate association between CL and energy transducing
membranes suggests an important role for CL in bioenergetic reactions. It is not surprising that
a number of biochemical studies carried out in the 80’s and 90’s have identified interactions
between CL and several inner mitochondrial membrane proteins (Table 1). We refer readers
to previous reviews [3,4] for a more detailed discussion of this subject. CL modulates the
catalytic activities of the interacting proteins, as seen in the ADP-ATP carrier [42,43] and/or
provides stability, as reported for complex III [44] and complex IV [45]. CL also binds
specifically and irreversibly to cytochrome c [46], limiting the soluble pool of the protein.
Therefore, it may play an important regulatory role in cytochrome c release, which triggers the
downstream events in apoptosis.
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In summary, in vitro studies suggest that CL is involved in site-directed structure-function
relationships with mitochondrial respiratory chain complexes and transporters. However, it
should be noted that these studies may not necessarily reflect in vivo interactions.

3.1 In vivo studies of the role of CL in mitochondrial respiration
The cloning of the CL synthase gene CRD1 [20-22] and the construction of crd1Δ yeast cells,
which are completely devoid of CL, provided an excellent model to address the in vivo role of
CL. Subsequent studies led to the surprising observation that crd1Δ cells can grow in non-
fermentable carbon sources (which requires a functional respiratory chain for viability). This
suggested that the interaction of CL with respiratory chain proteins is not essential for
respiration, perhaps because other phospholipids such as PG and phosphatidylethanolamine
(PE), which are elevated in crd1Δ cells, are able to compensate for the lack of CL [37,47].
Although crd1Δ cells can grow in non-fermentable carbon sources, the growth rate of the
mutant is reduced, suggesting the presence of mild defects in the mitochondrial energy
transforming machinery. Indeed, bioenergetic measurements in isolated mitochondria from
crd1Δ cells showed that CL is required for tight coupling (optimal ADP/O ratio and low state
4 respiration) of mitochondria at the maximal rate of respiration [48] and also for the
maintenance of a mitochondrial membrane potential [35]. Furthermore, CL improved the
efficiency of oxidative phosphorylation in unfavorable conditions, such as increased
temperature and osmotic shock [48,49]. The molecular basis underlying these physiological
defects became clearer after the discovery of the supramolecular structural assembly of
respiratory chain proteins [50].

3.2 The role of CL in supercomplex assembly
The respiratory chain supercomplexes, first reported by Schagger and Pfeiffer, refer to the
organization of electron transport chain complexes into supramolecular structures [50]. In
mammalian mitochondria, complex I is associated with dimeric complex III and multiple
copies of complex IV (up to 4) resulting in multiple supercomplexes. In S. cerevisiae
mitochondria, which lack complex I, complex III exists as a free dimer and in two
supercomplexes comprising an additional one or two complex IV monomers, which are
referred to as the small and large supercomplexes, respectively [50]. Blue-native PAGE (BN-
PAGE) analysis of crd1Δ mitochondria showed a complete absence of these supercomplexes
[51]. However, analysis by milder colorless-native PAGE revealed the presence of large
supercomplexes, suggesting that the anionic dye used in BN-PAGE induced dissociation of
the loosely bound complexes III and IV in the absence of CL. This implies that supercomplexes
exist in the mutant mitochondria, but the absence of CL significantly reduces their stability
[51]. An alternate explanation for the detection of supercomplexes in crd1Δ by CN-PAGE is
that highly hydrophobic membrane proteins aggregate under the conditions of CN-PAGE in
which membrane complexes migrate through the native gel by virtue of their intrinsic charges.
The experiments by Zhang et al. [52] support the latter explanation and suggest that CL may
be required for the assembly of supercomplexes. Additional evidence for the role of CL in
respiratory chain supercomplex assembly and stability came from studies with yeast taz1Δ
cells. BN-PAGE analysis of taz1Δ mitochondria showed a decrease in the amount of large
supercomplex and an increase in free complex IV monomer. Additionally, the assembly of
complex IV into supercomplexes is severely affected in taz1Δ mutant mitochondria [53]. This
indicates that CL is critical for the biogenesis of respiratory chain supercomplexes, and that
the role of CL in supercomplex assembly may not be limited to a stabilizing effect. However,
the possibility that Taz1p is a cofactor for the assembly of respiratory supercomplexes cannot
be ruled out. Similar results were seen in mitochondria from BTHS patients [53]. Furthermore,
in BTHS patient mitochondria, the interaction between complexes I and III was also less stable,
with decreased levels of the complex I/III2 supercomplex. Thus, the decreased CL and/or loss
of mature CL species in BTHS results in unstable respiratory chain supercomplexes, which
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may contribute to subsequent pathology. What are the bioenergetic consequences of the
absence of supercomplexes and how do they contribute to the pathology in BTHS? It has been
proposed that supercomplexes allow substrate channeling and thus prevent leakage of electrons
from the respiratory chain. The leaked electrons can easily react with oxygen molecules to
generate reactive oxygen species (ROS). Thus, one possible consequence of unstable
supercomplexes is increased oxidative stress, and this may be a contributing factor in the
pathogenesis of BTHS. Consistent with this, Chen et al. observed an increase in protein
carbonylation in yeast taz1Δ cells during respiratory growth (see section 6) [54].

4. CL and mitochondrial protein import
More than 98% of mitochondrial proteins are encoded in the nucleus and synthesized as
precursors in the cytosol. These preproteins are imported into the mitochondria via translocases
present in the outer and inner mitochondrial membrane [55]. The preproteins are targeted to
receptor proteins on the outer mitochondrial membrane and to general import proteins of the
TOM complex [56]. Transport across the inner membrane is mediated by the TIM complex
[56]. A role for CL in protein import was first suggested by the finding that protein import was
blocked when yeast cells were treated with the CL-binding compound doxorubicin [57].
Subsequent studies with the crd1Δ mutant indicated that the absence of CL leads to a reduced
membrane potential and decreased protein import [35]. More recently a reconstitution study
indicated that the membrane integration of mitochondrial preproteins is most efficient when a
presequence translocase is reconstituted in CL-containing membranes [58].

4.1 Defective protein import in the absence of CL
Jiang and co-workers showed that crd1Δ cells exhibit a decreased mitochondrial membrane
potential as well as defective import of proteins into mitochondria [35]. The import defect was
greater for a preprotein that required a membrane potential. More recently, a link between
BTHS and protein import was suggested by the finding that a BTHS-like illness known as
dilated cardiomyopathy with ataxia (DCMA) syndrome is caused by mutations in the protein
import gene DNAJC19/TIM14 [59]. Like BTHS, DCMA syndrome is characterized by
cardiomyopathy, neutropenia and elevated 3-methylglutaconic acid. The DNAJC19 protein
shares sequence similarity with Tim14p, a protein that is associated with the inner
mitochondrial membrane motor complex of Tim23p. Because the clinical presentation of
DCMA is very similar to that of BTHS, it is interesting to speculate that the defect in BTHS
may be caused or exacerbated by defective mitochondrial protein import.

5. Mitochondrial anionic phospholipids and cell wall biogenesis
Experiments to isolate suppressors of the pgs1Δ temperature sensitivity phenotype led to the
identification of a loss of function mutant of KRE5, a gene involved in cell wall biogenesis
[60]. The cell wall is an essential organelle that determines cell shape and integrity. It is a
dynamic structure that undergoes numerous modifications in response to changes in growth
phase and environment [61,62]. The yeast cell wall is made up of two layers, including a highly
glycosylated mannoprotein outer layer, and an inner layer enriched in chitin and glucan [63].
β-1,3-glucan and chitin together provide mechanical strength to the cell wall. β-1,3-glucan, the
product of the plasma membrane protein β-1,3-glucan synthase, interconnects cell wall
components [63,64]. Glucan synthase is composed of a catalytic subunit encoded by
homologous genes FKS1 and FKS2 [65,66], and a regulatory subunit, Rho1p [64]. Chitin is
enriched in and around bud scars and is increased in number or size upon weakening of the
cell wall [63,67]. Defects in the assembly of cell wall components affect the cellular response
to heat and osmotic stress.
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Suppression of pgs1Δ temperature sensitivity by kre5Δ suggested a connection between the
CL pathway and cell wall biogenesis [60], consistent with the finding of Lussier et al. that
disruption of the PGS1 promoter leads to hypersensitivity to cell wall perturbing agents such
as zymolyase, calcofluor white, papulacandin and caffeine [68]. Biochemical analysis of the
cell wall of pgs1Δ indicated that the mutant has reduced levels of β-1,3-glucan [60]. Consistent
with this, cytological studies revealed that pgs1Δ cells exhibited the enlarged cell phenotype
characteristic of cell wall mutants. Levels of β-1,3-glucan were increased in the kre5 suppressor
mutant, and the phenotypes of temperature sensitivity and enlarged spherical morphology were
suppressed by kre5.

What are the mechanisms linking mitochondrial anionic phospholipids to the cell wall, where
these lipids are not present? A clue to this question comes from the finding that cell wall defects
in the pgs1Δ mutant are associated with perturbation of the cell integrity pathway [69]. In this
pathway, activation of Pkc1p in response to cell wall stress results in activation of a cascade
of proteins in the Mpk1/Slt2 mitogen activated protein kinase (MAPK) pathway, culminating
in the activation/dual phosphorylation of Slt2. The dual phosphorylated Slt2p activates
transcription factors that up-regulate genes involved in cell wall synthesis [70,71].
Interestingly, the pgs1Δ mutant exhibits defective Slt2p activation, which is restored by the
kre5 suppressor [69]. The mechanism linking PG/CL to the Slt2 pathway is not known.

6. CL is associated with aging and apoptosis
A role for CL has been implicated in the inter-related processes of aging and apoptosis
[72-74], and cells lacking CL exhibit accelerated entry into apoptosis and an increased level
of cell death in response to stimuli that induce apoptosis [75]. Decreased CL and a loss of
mitochondrial function have been observed in the early stages of aging in rats and humans
[76,77]. An increased content of CL species containing highly unsaturated acyl groups is also
observed in old cells [78]. CL is required for the loose binding of cytochrome c to the
mitochondrial inner membrane by electrostatic interactions in normal cells, and PG can only
partly compensate for this function [73]. CL is also required for the function of the adenine
nucleotide translocase, which is a component of the mitochondrial permeability transition pore
[79-81]. It has been proposed that the permeability transition pore controls a mitochondrial
amplification cycle in which cytochrome c and other apoptogenic proteins are released from
the mitochondrial intermembrane space into the cytosol [81]. During apoptosis, CL
peroxidation and a decrease in total CL levels result in a significant increase in cytochrome c
release into the cytoplasm and an accumulation of free cytochrome c in the intermembrane
space [73,75,82-84]. The release of cytochrome c represents a central step in apoptotic
signaling [72,83,85]. Interestingly, in addition to loose binding between cytochrome c and CL,
tight binding through hydrophobic interactions in the inner membrane induces partial unfolding
of cytochrome c and the activation of its peroxidase catalytic activity [86]. Recent studies
showed that cytochrome c is a catalyst for CL peroxidation, which contributes to permeation
of the mitochondrial outer membrane and release of cytochrome c [87]. In vitro studies showed
that cytochrome c has a lower affinity for peroxidized CL than normal CL [88]. These findings
suggest that during apoptosis, CL peroxidation caused by peroxidase activity of cytochrome c
may facilitate the release of cytochrome c from both loose and tight binding with CL.

As discussed above, CL is required for maintaining the stability and function of electron
transport chain supercomplexes [72,89-91]. As a result, the loss of CL results in respiration
defects that may contribute to the generation of ROS. Increased ROS, which is linked to
mitochondrial dysfunction, triggers both apoptosis and aging [73,92,93], and is associated with
a shortened life span in many species [94]. CL is particularly susceptible to ROS attack because
of its location in the mitochondrial inner membrane close to the site of ROS generation, and
due to its high content of unsaturated fatty acids that are highly vulnerable to oxidative damage
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[84,95]. In this manner, increased ROS in CL-deficient cells may contribute to a further
decrease in CL.

Chen and co-workers have shown that, in response to ethanol, CL mutants taz1Δ and crd1Δ
exhibit increased protein carbonylation, an indicator of ROS [54]. As the presence of paraquat,
menadione or hydrogen peroxide (H2O2) did not lead to severe growth defects in the CL
mutants as compared to wild type, the increase in ROS was most likely not due to defective
oxidant defense systems. Ethanol sensitivity and increased protein carbonylation in the
taz1Δ mutant but not in crd1Δ were rescued by supplementation with oleic acid, suggesting
that oleoyl-CL and/or oleoyl-MLCL enables growth of taz1Δ in ethanol by decreasing
oxidative stress. The finding of increased oxidative stress in the taz1Δ mutant during respiratory
growth may have important implications for understanding the pathogenesis of BTHS [54].

The observations of Chen et al. that growth of crd1 was not severely affected by H2O2 differed
somewhat from a previous report in which a phenotypic screen of yeast deletion mutants
identified crd1Δ as sensitive to H2O2 [96]. The most likely reason for the disparity is that
sensitivity was determined differently in the two studies. Chen et al. compared growth of
crd1Δ to mutants in SOD1 and SOD2, which are extremely sensitive to H2O2, under conditions
that would mask mild sensitivity. In contrast, the experiments in Higgins et al. compared
sensitivity of mutants to wild type cells in short term incubations, conditions under which mild
sensitivity would easily be detected. It is thus likely that, while loss of CL does not impair
SOD1 or SOD2 mediated antioxidant defense, mild sensitivity of crd1Δ cells to H2O2 is most
likely mediated via a compromised respiratory chain function, as has been observed in a number
of respiratory chain deletion mutants [97].

7. CL, inositolsphingolipid phospholipase C (Isc1p), and translational
regulation of ETC components

Dowhan and co-workers made the surprising observation that pgs1Δ exhibits defective
translational regulation of several mitochondria-encoded ETC components and of Cox4p, a
nuclear-encoded component of the ETC [98]. The translational defect resulted from the lack
of PG/CL in the mitochondrial membrane, as re-introduction of PGS1 on a high copy plasmid
restored expression of Cox4p. RNA levels were not affected, and in vitro studies indicated that
the defect was not due to decreased protein import but rather to a failure of translation [99].
Deletion analysis of the upstream non-coding region of COX4 suggested that a cis-acting
sequence with two stem-loops in the 5’ UTR appeared to be responsible for inhibition of
COX4 translation. Trans-acting factors that bind to this region have not been identified;
however, binding of a protein factor(s) to this sequence was observed with cytoplasm from
pgs1Δ but not wild type PGS1 cells, and loss of function mutants that allowed expression of
reporter constructs under control of the COX4 promoter were isolated. These findings identify
a novel cross talk pathway between mitochondria and the nucleus, in which translation of
nuclear-encoded proteins destined for the mitochondrial membrane respond to a deficiency of
mitochondrial anionic lipids PG and/or CL [99].

Defective translation of Cox4p was also seen with the loss of inositol phosphosphingolipid
phospholipase C (Isc1p), a member of the family of neutral sphingomyelinases that regulate
ceramide synthesis [100]. Isc1p activity is impaired in the pgs1Δ mutant, suggesting that PG/
CL is required for activation of this enzyme [100]. Interestingly, the phenotypic defects of
isc1Δ and pgs1Δ are similar, which suggests that these genes may have overlapping functions.
These findings led to the speculation that PG regulates translation of the ETC proteins indirectly
by activation of Isc1p.
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8. CL and BTHS
The studies cited above indicate that the CL pathway is crucial for mitochondrial bioenergetics
and for essential cellular functions not generally associated with respiration. It is, therefore,
not surprising that perturbation of this pathway in humans leads to deleterious consequences.
As discussed earlier, BTHS is a disorder resulting from loss of tafazzin, a CL remodeling
enzyme. About ten years after the first description of BTHS, the locus was mapped to Xq28
[101] and mutations were identified in G4.5, the tafazzin gene [102]. The link between CL and
BTHS was first reported by Peter Vreken and colleagues, who demonstrated that fibroblast
cultures from BTHS patients contain less CL than control cultures [33]. Furthermore, BTHS
cells were defective in acylation of CL and PG with unsaturated fatty acids. Subsequent analysis
showed that BTHS cells contained a decrease in total CL content [33] and an accumulation of
MLCL [29]. The predominant acyl species, tetralinoleoyl-CL is absent from BTHS cells
[12].

Lymphoblast mitochondria from patients with BTHS exhibit hyperproliferation and
abnormalities in energy metabolism [103]. These abnormalities led to impaired coupling,
consistent with the studies in tafazzin deficient yeast [104]. Due to the adhesion of opposing
membranes, the intracrista space in BTHS mitochondria appears to be deformed [105], which
may explain the decrease in mitochondrial membrane potential in BTHS [103] and in yeast
taz1Δ [104].

Approximately 28 different mutations resulting in single amino acid changes in tafazzin have
been identified in BTHS patients[26]. The mutations result in a complete loss of tafazzin or in
expression of a severely truncated protein [28]. Interestingly, the clinical presentation of BTHS
varies a great deal, from those who have severe incapacitating disease to those who are nearly
asymptomatic, even among patients with identical mutations. This variation indicates that
physiological modifiers may play a significant role in the BTHS phenotype. Thus, while it is
clear that tafazzin is a CL transacylase, the cellular consequences of defective tafazzin and the
molecular basis underlying the pathologies observed in BTHS patients are not understood.
Homologues of human tafazzin are present throughout eukaryotic species from yeast to
mammals, and yeast [25,27,28], Drosophila [106] and zebrafish [107] models of BTHS have
been characterized. Genetic studies in these model systems may help to elucidate the
mechanisms linking tafazzin to the cellular defects in BTHS, and to identify the physiological
modifiers of the BTHS phenotype.

9. Future directions
While a great deal has been learned about the biochemical role of CL from in vitro studies, the
availability of yeast CL mutants has opened the door to in vivo studies of CL function. The
studies cited above indicate that CL plays a role not only in mitochondrial bioenergetics, but
also in cell wall integrity, mitochondrial protein import, aging and apoptosis, ceramide
synthesis, and translational regulation (Fig. 2). While these studies comprise a promising
beginning to understanding CL function, numerous questions remain unanswered.

The regulation of CL metabolism is not well-characterized. Genes that mediate the breakdown
and turnover of CL and the regulatory networks that control CL synthesis have not been
identified.

Molecular mechanisms underlying the role of CL in mitochondrial bioenergetics are only
beginning to be understood, and the degree to which PG can compensate for CL varies with
specific functions. What are the consequences of defective supercomplex formation associated
with CL deficiency? How does the loss of CL lead to increased generation of ROS? What is
the nature of CL interactions with the proteins of the ETC? What are the trans-acting factors
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that regulate translation of ETC proteins in response to PG/CL? These questions remain to be
addressed.

The mechanisms linking PG/CL to the essential cellular functions described above are not
known. What role does PG/CL play in mitochondrial protein import? Are import defects the
indirect results of perturbation of the membrane potential in CL mutants, or does CL play a
more direct role by interacting with the protein import machinery? Does DCMA syndrome
identify an import defect that is downstream from perturbation of CL synthesis? The answers
to these questions may help to elucidate the direct or indirect role of CL in mitochondrial
import.

The link between PG/CL and cell wall biogenesis is intriguing and may shed light on the role
of CL in aging. In yeast, cell integrity and the stress response are inter-related,and both
pathways affect longevity [108-113]. As discussed above, the Pkc1-activated Mpk1/Slt2
MAPK pathway is defective in pgs1Δ cells in some genetic backgrounds. This pathway is
interconnected with the high osmolarity glycerol (HOG) MAPK pathway that is activated in
response to osmotic and other stresses [114]. The central kinase HOG1/p38 affects longevity
and replicative capacity [115,116]. There are also several cell wall associated pathways that
affect aging independent of the stress pathways [110,111]. Because several of these
interconnected pathways are defective in CL mutants, it is tantalizing to think that they identify
possible routes through which CL regulates longevity. Further studies are required to elucidate
the mechanisms connecting PG/CL to cell wall biogenesis, to the stress response pathways,
and to aging.

Finally, how does loss of tafazzin lead to the devastating consequences in BTHS? What are
the physiological modifiers that affect the phenotype associated with tafazzin deficiency?
While it is clear that tafazzin remodels CL, the possibility cannot be ruled out that defective
functions in tafazzin deficiency that are unrelated to CL may underlie the pathology in BTHS.
The answers to these questions may shed light on the mechanisms underlying BTHS, and may
point the way to new therapies for this life-threatening illness.
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Fig. 1.
The cardiolipin (CL) biosynthetic pathway: PGS1 encodes phosphatidylglycerol phosphate
(PGP) synthase, which converts glycerol-3-phosphate (G-3-P) and CDP-diacylglycerol (CDP-
DAG) to PGP. PGP is dephosphorylated to phosphatidylglycerol (PG) by PGP phosphatase.
CRD1 encodes CL synthase, which converts CDP-DAG and phosphatidylglycerol (PG) to CL.
In the proposed remodeling pathway, CL is deacylated to monolysocardiolipin (MLCL) by a
phospholipase that has not been identified. MLCL is then reacylated to mature CL by Taz1p.
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Fig. 2.
Cellular functions of the CL pathway in yeast
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Table 1

CL interacting proteins in mitochondria

Protein Reference No.

a) Respiratory chain proteins
 1) Complex I 6
 3) Complex III 6,7,8
 4) Complex IV 9,10
 5) Complex V 11
 6) Cytochrome c 12
b) Transporter/Carrier proteins
 1) ADP-ATP carrier 13,14
 2) Phosphate carrier 15
 3) Pyruvate carrier 16
 4) Carnitine carrier 17,18
c) Others
 1) Cardiolipin synthase 19
 2) Creatine kinase 20
 3) Glycerol 3-phosphate dehydrogenase 21
 4) Carbamoyl phosphate synthetase I 22
 5) Cytochrome P450scc 23,24
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