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ABSTRACT

Motivation: Next-generation sequencing has become an important
tool for genome-wide quantification of DNA and RNA. However,
a major technical hurdle lies in the need to map short sequence
reads back to their correct locations in a reference genome. Here,
we investigate the impact of SNP variation on the reliability of
read-mapping in the context of detecting allele-specific expression
(ASE).
Results: We generated 16 million 35 bp reads from mRNA of each
of two HapMap Yoruba individuals. When we mapped these reads
to the human genome we found that, at heterozygous SNPs, there
was a significant bias toward higher mapping rates of the allele
in the reference sequence, compared with the alternative allele.
Masking known SNP positions in the genome sequence eliminated
the reference bias but, surprisingly, did not lead to more reliable
results overall. We find that even after masking, ∼5–10% of SNPs
still have an inherent bias toward more effective mapping of one
allele. Filtering out inherently biased SNPs removes 40% of the top
signals of ASE. The remaining SNPs showing ASE are enriched in
genes previously known to harbor cis-regulatory variation or known
to show uniparental imprinting. Our results have implications for a
variety of applications involving detection of alternate alleles from
short-read sequence data.
Availability: Scripts, written in Perl and R, for simulating short reads,
masking SNP variation in a reference genome and analyzing the
simulation output are available upon request from JFD. Raw short
read data were deposited in GEO (http://www.ncbi.nlm.nih.gov/geo/)
under accession number GSE18156.
Contact: jdegner@uchicago.edu; marioni@uchicago.edu;
gilad@uchicago.edu; pritch@uchicago.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
There has been a great deal of recent interest in identifying genes for
which the two alleles in an individual are expressed at different rates
(Knight, 2004; Milani et al., 2009; Ronald et al., 2005; Wittkopp
et al., 2008; Yan et al., 2002). At least two important biological
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mechanisms can be uncovered through the identification of allele-
specific expression (ASE). For example, studies investigating ASE
have uncovered both genes harboring cis-regulatory variation and
imprinted genes that are epigenetically silenced in one copy but not
the other (Babak et al., 2008; Serre et al., 2008; Wang et al., 2008).

Recently developed sequencing technologies such as the Illumina
Genome Analyzer, Roche 454 GS FLX sequencer and Applied
Biosystems SOLiD sequencer have the potential to greatly improve
our ability to detect ASE and to improve our understanding of
cis-regulatory variation and epigenetic imprinting. However, the
detection of ASE depends critically on accurate mapping of short
reads in the presence of sequence variation. Here, using RNA-
Seq data from two HapMap individuals, along with simulation
experiments, we characterize the effects of individual SNPs on the
quantification of expression levels. Our results are also relevant
to other applications of next-generation sequencing, such as SNP
discovery, expression QTL mapping and detection of allele-specific
differences in transcription factor binding.

2 METHODS

2.1 RNA isolation and sequencing
Total RNA from two HapMap Yoruba lymphoblastoid cell lines (GM19238
and GM19239) was extracted using an RNeasy Mini Kit (Qiagen,
Valencia, CA) and assessed using an Agilent Bioanalyzer. mRNA was
then isolated with Dyna1 oligo-dT beads (Invitrogen, Carlsbad, CA) from
10 µg of total RNA. The mRNA was randomly fragmented using the RNA
fragmentation kit from Ambion. First-strand cDNA synthesis was performed
using random primers and SuperScriptII reverse-transcriptase (Invitrogen,
Carlsbad, CA). This was followed by second-strand cDNA synthesis using
DNA Polymerase I and RNaseH (Invitrogen, Carlsbad, CA).

The short cDNA fragments from each sample were prepared into a library
for Illumina sequencing. Briefly, the Illumina adaptor was ligated to the
ends of the double-stranded cDNA fragments and a 200 bp size selection
of the final product was performed by gel-excision, following the Illumina-
recommended protocol. To create the final library, 200 bp cDNA template
molecules with the adaptor attached were enriched by PCR. Sequencing
was performed on the Illumina Genome Analyzer II for 36 cycles (resulting
in 35 bp reads after discarding the final base). The images taken during
the sequencing reactions were processed using Illumina’s standard analysis
pipeline (v.1.3.2). Two lanes of a flow-cell were used for each individual
yielding 15 579 717 and 16 780 153 total sequence reads for GM19238 and
GM19239, respectively.
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2.2 Read-mapping and binomial tests
Reads were initially mapped to the human genome (build 36.3) with MAQ
(MAQ v. 0.7.1, Li et al., 2008), using default parameters, excluding random
sequence fragments and masking one copy of the pseudo-autosomal regions.
In particular, reads were assigned to the location in the genome with the best
match, provided that the number of mismatching bases was <3 and that the
sum of quality scores at mismatched bases was <70. Reads that mapped to
multiple locations equally well according to MAQ’s quality-aware alignment
algorithm (i.e. had mapping quality scores of 0) were discarded.

At each exonic SNP that was heterozygous according to the HapMap
genotype data, we quantified the amount of expression from each allele
by counting the number of times each allele was observed [exons defined
by RefSeq (Pruitt et al., 2007); HapMap SNPs and genotypes from
release r22 (International HapMap Consortium, 2005, 2007)]. Overall,
<1.0% of all reads had a base-call at a HapMap SNP position that was
inconsistent with the known genotype of the individual and these reads were
discarded.

To study the effect of allelic differences between the sequence reads and
the reference genome they were mapped against, we classified all read calls
in the dataset as matching the reference allele or the non-reference allele.
For each individual, in order to include a SNP in our analysis, we required
that at least 20 reads mapped to that SNP position in that individual. The two
sequenced individuals were analyzed independently such that two separate
tests were performed if both individuals had >20 reads overlapping the
same SNP. For each individual, we compared the observed distribution of
the proportion of mapped reads coming from the reference allele to the
expected distribution assuming symmetric binomial sampling. Two one-
sided binomial tests were applied to each SNP, to test the complementary
alternative hypotheses that expression of the reference allele was greater
than or less than 0.5. False discovery rate (FDR) corrections were applied
across both individuals to correct for multiple testing such that we allowed
an overall FDR of 1%, 5% and 10%. Results in the main text correspond to
an FDR of 1%, while results corresponding to an FDR of 5% and 10% are
given in Supplementary Tables S1-S3.

Additionally, in an attempt to correct for the bias toward preferentially
mapping the reference allele, we created a copy of the human genome in
which all SNP positions were masked. SNP locations were obtained from
the February 2009 release of the 1000 Genomes project (Kaiser, 2008,
www.1000genomes.org). Since currently available mapping algorithms do
not allow for ambiguity codes in the reference sequence, masking was
accomplished by changing the nucleotide at each SNP position to a third
allele that is not known to segregate in humans (e.g. changing A→T in the
reference sequence at the position of an A/G SNP).

2.3 Simulations
To better understand the bias toward the reference allele and the amount
of this bias that could be attributed to read-mapping, we simulated 1.8
million 35 bp reads. Three simulated sets of reads were created that, at
each SNP, consisted of equal numbers of reference and non-reference alleles
(Supplementary Fig. S1). Each simulated set started with all 35 bp segments
of human chromosome 1 that overlap an exonic HapMap SNP. For each of
these 35 bp segments and on each strand, one read matched the reference
allele and one read matched the non-reference allele at the SNP position.
All base quality scores were assigned as the modal quality score for that
position in the real RNA-Seq data. Random ‘sequencing’ errors were added
to two of the sets of simulated reads such that each base in the read had
a Bernoulli probability of 0.01 or 0.05, respectively, of being changed to a
different randomly selected base. These two error rates were chosen to span
the range of possible values that might be observed in real data. Additionally,
to explore the potential impact of read-mapping biases on studies using longer
read lengths, we applied the same procedure to simulate all 50 and 100 bp
reads (without additional errors) that overlapped the same SNPs.

To determine if there were differences in the observed bias among three
popular mapping algorithms, we mapped the simulated 35 bp reads to the

SNP-masked genome using each mapping program [MAQ v. 0.7.1, as used
for the analyses of the real data in this article (Li et al., 2008); BOWTIE v.
0.9.9.2 (Langmead et al., 2009); and BWAv. 0.4.6 (Li and Durbin, 2009)].All
programs were downloaded from their respective sources on April 15, 2009.
For each mapping algorithm, the settings were left as close to the defaults as
possible, while still allowing meaningful comparisons across algorithms. If
the program allowed a setting for the size of the sequence used in a heuristic
search, the entire read length was chosen (more details about the settings
used for each algorithm are given in Supplementary Table S5). For most of
our analyses we considered that a read mapped to a particular location in the
genome if that location yielded a uniquely best match. Each of the mapping
programs allows for some stochastic assignment of ambiguous reads among
potential best hits in the genome. However, since allowing this feature would
not offer a complete solution to the mapping bias problem and would make
the results more difficult to interpret, we did not use this feature in any of our
analyses. For MAQ and BWA, which both report a quality score, we tested
whether changing the stringency of the quality score cutoff in simulation
experiments had any effect on the biases described here. The results of this
analysis appear in Supplementary Figure S2.

Finally, for all SNP positions across the genome with >20 reads in the real
data, we simulated all potential reads that could overlap these sites (adding no
additional errors) and mapped these reads against the SNP-masked genome
using MAQ. This set of simulations was used to determine which SNPs
have an inherent bias in the mappability of reads between alleles. We then
discarded from analysis all SNPs for which a different number of artificial
reads mapped to the reference allele compared with the non-reference allele.
Further, for all SNPs with >20 reads in the real data, we simulated reads
where the coverage at each SNP was 10× (as compared to the 1× simulated
data described above) incorporating (i) random read-mapping errors and
(ii) variable base quality scores. However, we found that the 1× coverage
simulations were so highly correlated with the 10× coverage simulations
that they were sufficient to predict the SNPs that showed an inherent bias
(1× predicted bias had a correlation coefficient r2 >0.98 with predicted bias
in both 10× simulations).

3 RESULTS
Genome-wide RNA-Seq was performed on RNA from lymphoblast-
oid cell lines from two Yoruba HapMap individuals and reads were
mapped to the human reference genome using MAQ (Section 2).
In both individuals, 60–65% of total reads mapped uniquely to
annotated exons. To identify ASE, we isolated all reads that,
after mapping, overlapped heterozygous exonic HapMap SNPs
(yielding 104 128 and 97 359 reads for GM19238 and GM19239,
respectively). There were 1981 heterozygous SNPs with >20
reads in one individual (averaging 70.5 reads per SNP-individual
combination). By applying this minimum read threshold, we
enriched for highly expressed genes. Indeed, 62% of the exons which
contained the SNPs we tested were in the top 10% of exons when
ranked by expression level. We determined the allele for each of
these reads based on the observed nucleotide at the SNP position.

These initial data suggested that ASE was widespread (Fig. 1).
Out of 1981 tests, 90 tests of the null hypothesis of equal expression
yielded binomial test P-values that were less than P = 5.5×10−5

corresponding to an FDR of 1%. However, the results indicated a
worrying bias. First, averaging across all sites, there was a highly
significant bias toward overrepresentation of reference alleles.
Overall, 52.2% of reads matched the reference allele (P< 2×10−16

for a binomial test against a true frequency of 50%). Secondly, 61 out
of 90 significant results showed overrepresentation of the reference
allele (Binomial test; P = 0.002) and all eight of the strongest signals
were biased toward the reference allele (Fig. 1B). Therefore, we
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Fig. 1. RNA-Seq data show a higher variance in the relative expression
of each allele and a skew toward high expression of the reference allele
compared with the predicted distribution. (A) Estimated probability densities
for the proportion of reads matching the reference allele (i.e. the allele given
in the reference human genome sequence) at heterozygous SNPs in exons.
Solid lines correspond to the observed distributions for known heterozygous
SNPs with more than 20 reads in two Yoruba HapMap individuals. The
dashed line shows the predicted distribution without reference bias or ASE.
(B) QQ-plots of P-values for one-sided tests that expression of the reference
allele is either higher (circles) or lower (triangles) than the non-reference
allele. The horizontal dashed line is the P-value threshold corresponding
to a FDR of 1.0%. Notice the enrichment of very significant P-values for
overexpression of reference alleles.

hypothesized that biases introduced at the read-mapping stage might
have affected our results.

To explore this hypothesis further, we simulated reads spanning
known SNPs, and tested how often each allele was mapped back to
the correct location in the genome. For both alleles at each SNP, we
generated all 35 bp reads that overlapped the position of the SNP
(Section 2; Supplementary Fig. S1). We observed that some positions
showed an extremely strong bias toward the reference sequence. For
1% of SNPs, at least 75% of the mapped reads (averaging across all
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Fig. 2. Magnitude of read-mapping biases in simulated data. (A) The
distribution (across SNPs) of the proportion of correctly mapped reads that
carry the reference allele, compared with the non-reference allele. The y-
axis is broken into two segments to show more clearly the rates of highly
biased SNPs. Three different rates of sequencing errors are shown. (B) Read-
mapping was performed as in (A), except that the reads were aligned against
a version of the genome sequence in which all SNP locations were masked.
Notice that for both analysis methods, some SNPs are strongly biased, and
that SNP masking does not clearly improve the results. Sequencing errors
can substantially increase the extent of bias.

read positions) carried the reference allele, while for 0.7% of SNPs,
all mapped reads carried the reference allele.

Overall, 50.7% of the mapped reads in the simulated data carried
the reference allele. This is actually a significantly smaller bias than
the 52.2% observed in the real data (P < 2×10−16 for a binomial
test of the null hypothesis that the proportion in the real data is
50.7%). However, by incorporating random sequencing errors into
our simulations, we were able to generate the degree of bias observed
in the real data. We found that the magnitude of the bias toward the
reference allele rose with increasing sequencing error rates; error
rates of 0.01 and 0.05 mutations per base increased the average
proportion of mapped reads that matched the reference allele to
51.4% and 59.0%, respectively (Fig. 2A; Section 2).
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chr1:110034642-110034712
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chr6:5011715-5011785

A

B

Fig. 3. Two examples in which homology with other genomic locations leads to read-mapping biases. (A) Example of a SNP where there is a bias toward
the reference allele before and after SNP masking (rs506008) and (B) example of a SNP where there is a bias toward the non-reference allele after SNP
masking (rs11585481). Each example shows the variable sites in: (top row) the reference version of the genome sequence in the true location; (next six rows)
three sample reads carrying the reference and three sample reads carrying the non-reference alleles at the SNP and (bottom row) the sequence in a region of
homology elsewhere in the genome. The right-hand columns show how each read is mapped with, and without SNP masking. In these examples a read is
mapped to a particular location if it has a unique best match at that location, and is unmapped if there is a tie between possible locations. The SNP masking
generates an 1 nt mismatch between both alleles and the reference sequence at the masked site.

One plausible method for removing this bias might be to mask
all known SNP positions in the reference genome prior to read-
mapping. We found that this did eliminate the overall reference
bias in both simulated and real data (Figs 2B and 5A). However,
perhaps unexpectedly, this correction failed to reduce the number
of individual SNPs with very strong biases (Fig. 2). After masking,
2% of SNPs had at least 75% of reads derived from one allele, and
for 1.4% of SNPs all mapped reads came from one allele. As before,
sequencing errors increased the fraction of SNPs that had unequal
mapping rates for the two alleles, but there was not a substantial
average bias toward the reference allele. In summary, we do not
find a clear advantage to masking over not masking; however, our
subsequent analyses do use masking due to the slight improvements
for higher rates of sequencing errors.

To better understand the sources of read-mapping bias, we
examined more closely a number of the most strongly biased SNPs.
We find that the strong biases occur at SNPs for which the flanking
sequence shares sequence identity with another region of the genome
(Fig. 3). When we do not mask the SNP location, problems arise
when the non-reference allele matches the alternative location as
well as, or better, than the correct location (Fig. 3A). With masking,
both alleles have an 1 bp mismatch against the correct location,
but either allele might match the corresponding position in the
alternative location, thereby biasing against correct mapping of the
allele that matches elsewhere (Fig. 3B).

Next, we investigated whether any of three popular read-mapping
programs showed less bias than the others. For the simulated set with
a per-bp error rate of 0.01, MAQ seemed to slightly outperform
BWA and BOWTIE, in that it produced the highest proportion of

SNPs (94%) for which an approximately equal number of reads
were mapped from each allele (within 5%; Fig. 4A). However, it
remains unclear from this analysis whether this subtle difference
between algorithms was mostly due to our parameter choices or if it
represents inherent differences between the algorithms themselves.
Additionally, we investigated whether changing the quality score
thresholds required for mapping by MAQ and BWA reduced the
amount of bias. We found that for any particular choice of quality
score threshold, there were SNPs that showed an inherent bias.
In fact, there was no noticeable improvement in the extent of
mapping bias for increasing quality score cutoffs (Supplementary
Fig. S2).

Because next-generation sequencing technologies are improving
and longer read lengths are becoming possible, we explored the
extent of read-mapping bias for read lengths of 50 and 100 bp. We
find that for sequences without read-mapping errors, while the read-
mapping bias decreases for increasing read lengths, even reads with
100 bp show SNPs with some bias (Fig. 4B). We also find that
there is decreasing bias for increasing read lengths when random
errors are added and the default thresholds of MAQ are relaxed
(Supplementary Fig. S5).

Armed with an understanding of the effect of biases introduced by
SNP variation, we used this knowledge to reanalyze our RNA-Seq
data to find loci displaying evidence of ASE. We observed that 1920
SNPs had at least 20× coverage across one individual after mapping
to the masked reference genome. Of these, 82 showed significant
deviation from equal expression after masking SNP locations, using
a P-value cutoff of 5.5×10−5 corresponding to an FDR of 1% in
the initial analysis and an FDR of 1% here.
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Fig. 4. Bias for three short-read alignment programs and for three read
lengths. (A) The plot shows the distribution of the fraction of mapped reads
that carry the reference allele. Simulated reads with an error rate of 0.01 were
mapped to the masked genome using MAQ (black), BOWTIE (dark blue)
and BWA (light blue). Other details as in Figure 2B. (B) Mapped with MAQ
as in (A) except that reads contained no additional errors and read lengths
were as indicated.

However, as we have noted above, mapping to the SNP-masked
genome does not eliminate mapping bias on a SNP-by-SNP basis
(Figs 2B, 3 and 5). Simulations show that 185 of the 1920 SNPs
have an inherent bias in the mappability of reads coming from one
of the alleles (see Section 2 and Fig. 3). Of these inherently biased
SNPs, 29 were among the 82 most significant SNPs. This represents
a strong enrichment for the inherently biased SNPs among the SNP
set that appears to show ASE (Fisher’s exact test; P = 2.1×10−7).
Furthermore, the biases observed in the simulated dataset correlated
well with the biases observed at these SNPs in the RNA-Seq
data, suggesting that the read-mapping biases described above were
contributing to the original signal of ASE (Supplementary Fig. S3).

After excluding these biased SNPs, we were left with 53 SNPs in
47 genes that were significant at the P-value threshold corresponding
to an FDR of 1% in the initial analysis. We consider these
remaining SNPs as candidates for representing true cases of ASE
(see Supplementary Table S1 for a list of these loci).
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Fig. 5. Summary of the ASE results after SNP masking, and after
excluding inherently biased SNPs. (A) Distribution of ASE P-values
after masking known SNP variation. Masking has largely eliminated bias
toward the reference allele (circles: overrepresentation of reference allele;
triangles, overrepresentation of non-reference allele), however, the number
of significant results is not reduced. Display is as in Figure 1B. The horizontal
dashed line represents the P-value threshold of 5.5×10−5 that allowed an
FDR of 1% in the analysis presented in Figure 1. The FDR for this analysis
using the initial P-value threshold was also 1%. (B) Distribution of P-values
after excluding SNPs with an inherent bias toward one allele, as determined
by simulations of perfect reads. This set of significant results is likely much
more reflective of genes that show genuine ASE. The FDR for this analysis
using the initial P-value threshold here was 1.4%. (C) Barplot showing the
number of significant results for the three read-mapping strategies used in
this article, corresponding to Figures 1B, 5A and 5B, using a P-value cutoff
of 5.5×10−5, corresponding to FDRs of 1.0%, 1.0% and 1.4%, respectively.

To verify that the significant results in our final analysis were
biologically relevant, we analyzed the overlap of genes in this set
with genes previously identified as having cis-regulatory variation
or genetic imprinting. Using an eQTL (expression quantitative trait
locus) browser that we have developed (http://eQTL.uchicago.edu;
J.F.D. and J.T. Bell), we analyzed the extent of overlap of our
significant results with the genes known to have a cis-eQTL in
lymphoblasts. Veyrieras et al. (2008) tested for cis-eQTL in 11 466
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genes in the HapMap lymphoblastoid cell lines and found that 419 of
these genes contained strong evidence for an eQTL (using a posterior
probability cutoff of >0.9). Our list of significant genes at an FDR
of 1% included 19 of the genes tested by Veyrieras et al. (2008), of
which three showed evidence for an eQTL using the same cutoff.
We find that this fraction (3/19) supports an enrichment of genes in
our set that were previously found to have an eQTL in lymphoblasts
(P = 0.04; Fisher’s exact test). Further, our set of significant genes
contained two examples of genes known to be imprinted in humans
(annotated imprinted genes obtained from www.geneimprint.com).
One gene (SNURF/SNRPN) is located within human chromosome
15q11-15q12, the same region that is involved in Prader–Willi and
Angelman Syndromes, and is known to be paternally imprinted
(reviewed in Horsthemke and Wagstaff, 2008). A second gene
(GNAS) at 20q13.3 is known to be maternally imprinted and, when
disrupted, can cause Albright hereditary osteodystrophy and other
complications (reviewed in Weinstein et al., 2004). Thus, we find
that there is a significant enrichment among genes showing ASE for
genes known to be imprinted in humans (P = 0.01; Fisher’s exact
test). Further supporting the biological relevance of the final results
is the fact that in four genes (HLA-DPB1, PIP4K2A, GYPC and
PTK2B), we find ASE in both individuals and in four other genes
(CRYZ, ATF5, HLA-DRA and SEPT9), two SNPs in the same
individual give significant results for ASE in the same direction
(i.e. the higher expressed alleles are in phase in the HapMap data;
Supplementary Table S1). Finally, we find that heterozygous SNPs
within the same genes as our top results, although not all significant
by the same threshold, generally support the same direction of
ASE as the top results (i.e. the higher expressed alleles are in
phase in the HapMap dataset; Supplementary Fig. S4). Taken
together, these results suggest that after filtering our data to exclude
inherently biased SNPs, we are able to identify real signals of both
cis-regulatory DNA variation and genetic imprinting.

4 DISCUSSION
We have shown here that differential mapping of SNP alleles
can greatly affect inferences that rely on quantifying DNA or
RNA with next-generation sequencing data. This may be especially
problematic in studies that aim to detect allele-specific differences
in gene expression, transcription factor binding or other related
applications. It may also cause problems in other contexts, for
example, in QTL mapping of exon expression levels, or for
discovery of new sequence variants. Our results also highlight the
complexities that may arise when using short read sequences to study
organisms with poor quality genome sequences or whose actual
genome sequence differs from the reference individual.Although not
considered here, it is likely that small insertions and deletions will
cause problems at least as severe as we have described here for SNPs.

Perhaps surprisingly, we found that masking known SNPs does
little to eliminate inherent biases in read-mapping. However, using
simulated sequence reads, we were able to identify individual SNPs
that are inherently biased due to problems in read-mapping. In
so doing, we were able to identify and remove a large number
of false positive results that were present in a naive analysis
(Fig. 5C). Although our final analysis makes use of knowledge of
SNP variation in the human genome, the simulations that determined
the ‘mappability’ of each allele were the key to identifying and
removing false positive results. Thus, a similar approach could be

taken in organisms with a less complete annotation of SNP variation.
This article highlights a clear need for the development of more
detailed statistical models that can incorporate knowledge of SNP
variation into read-mapping and explicitly model uncertainty in the
mapping locations for reads when testing for allele-specific effects.
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