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ABSTRACT

Motivation: Much of a cell’s regulatory response to changing
environments occurs at the transcriptional level. Particularly in higher
organisms, transcription factors (TFs), microRNAs and epigenetic
modifications can combine to form a complex regulatory network.
Part of this system can be modeled as a collection of regulatory
modules: co-regulated genes, the conditions under which they are
co-regulated and sequence-level regulatory motifs.
Results: We present the Combinatorial Algorithm for Expression
and Sequence-based Cluster Extraction (COALESCE) system for
regulatory module prediction. The algorithm is efficient enough
to discover expression biclusters and putative regulatory motifs
in metazoan genomes (>20 000 genes) and very large microarray
compendia (>10 000 conditions). Using Bayesian data integration, it
can also include diverse supporting data types such as evolutionary
conservation or nucleosome placement. We validate its performance
using a functional evaluation of co-clustered genes, known yeast and
Escherichea coli TF targets, synthetic data and various metazoan
data compendia. In all cases, COALESCE performs as well or
better than current biclustering and motif prediction tools, with high
accuracy in functional and TF/target assignments and zero false
positives on synthetic data. COALESCE provides an efficient and
flexible platform within which large, diverse data collections can be
integrated to predict metazoan regulatory networks.
Availability: Source code (C++) is available at http://function.
princeton.edu/sleipnir, and supporting data and a web interface are
provided at http://function.princeton.edu/coalesce.
Contact: ogt@cs.princeton.edu; hcoller@princeton.edu.
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
While the genome sequence of an organism describes its com-
plement of potential proteins, it is the controlled expression,
translation and modification of these proteins that allows cells to
survive and grow. At the level of transcription and mRNA stability,
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a complex regulatory network of transcription factors (TFs),
RNA binding proteins and microRNAs governs the interactions
between components of a cell’s internal state and its external
environment. Understanding the elements of this regulatory network
and the stimuli to which it responds in higher organisms has
been of increasing recent interest as a key to metazoan systems
biology (Bonneau, 2008; Long et al., 2008), particularly as genetic
misregulation is a major cause of human disease.

One means of discovering regulatory modules is the analysis
of gene expression data, since a consequence of transcriptional
co-regulation is co-expression. While a wealth of assays has
also been developed to explore the transcriptional regulatory
network under specific experimental conditions, regulatory module
prediction from microarray data is a widely studied problem
that remains unsurpassed for inference of general regulatory
networks, particularly when additional genomic data sources are
also integrated (Bussemaker et al., 2007). Prediction of regulatory
relationships has been particularly well-studied in unicellular
systems, where regulation often occurs based on well-defined TF
binding sites and discrete activation or repression of transcription
(Beer and Tavazoie, 2004; Roth et al., 1998). These assumptions
have led to the current motif discovery paradigm, in which
microarray data are clustered, each cluster’s promoter sequences
tested for enriched motifs, and the resulting consensus sequences
matched again known TF binding sites.

In many cases, however, and particularly in more complex
organisms, these assumptions no longer hold, and predicting
regulatory modules from expression data becomes an increasingly
difficult problem. It combines the challenges of biclustering [i.e.
grouping together co-expressed genes and the subset of conditions
where they are co-expressed (Kloster et al., 2005; Tanay et al.,
2004)] with the difficulty of de novo motif discovery from DNA
sequences, where regulatory motifs can be short, degenerate and
frequently present without being functional (Hannenhalli, 2008).
Note that this is distinct from the related tasks of inferring
regulatory networks with prior knowledge of potential regulators
or regulatory motifs (e.g. Kundaje et al., 2008; Lemmens et al.,
2009; Segal et al., 2003) or while omitting the process of motif
discovery (e.g. Margolin et al., 2006), both of which have also
been intensively studied. Most existing approaches to regulatory
module discovery break the biclustering and motif discovery tasks
into separate stages: first, expression data is clustered or biclustered,
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Fig. 1. A schematic overview of the COALESCE algorithm for regulatory
module discovery. COALESCE predicts regulatory modules, each consisting
of a gene expression bicluster (co-regulated genes and the conditions under
which they are co-regulated) plus zero or more putative regulating motifs.
Its primary input data are gene expression microarrays (to form biclusters)
and flanking sequences (to predict motifs, although these can be omitted
to output only expression biclusters). Additional supporting data types can
be flexibly integrated using a Bayesian framework; for example, highly
conserved sequence locations may be more likely to contain motifs, and
sites occluded by nucleosomes may be less likely. COALESCE is efficient
enough to integrate thousands of expression conditions and supporting data
for large (>20 000 genes) metazoan genomes.

and afterwards, each cluster is analyzed for enrichment of sequence
motifs (Elemento et al., 2007). To discover regulatory modules
most effectively, though, it would be natural to perform both
tasks at the same time, discovering clusters of genes that are
both co-expressed and enriched for regulatory motifs. Recent work
(Halperin et al., 2009; Reiss et al., 2006) has indeed confirmed
the intuition that regulatory module discovery by simultaneous
analysis of expression and sequence data can be extremely effective,
but this has neither been developed to incorporate heterogeneous
data integration, nor has it been scaled for application to complex
metazoan genomes.

Here, we describe a Combinatorial Algorithm for Expression and
Sequence-based Cluster Extraction (COALESCE), which allows the
discovery of regulatory motifs and modules from large collections
of genomic data (Fig. 1). COALESCE takes advantage of Bayesian
integration of multiple data types (primarily expression data) on
a large scale (Huttenhower and Troyanskaya, 2008) to predict

co-expressed gene modules, the conditions under which they are
co-regulated, and the consensus binding motifs responsible for their
regulation. The algorithm is practical for use with complex metazoan
genomes (>25 000 genes), analyzes extremely large expression data
collections (>15 000 conditions), can explicitly model dependencies
between related gene expression conditions (e.g. points in a time
course) and can integrate heterogeneous supporting data types
in order to improve predictions (nucleosome positioning and
evolutionary conservation are specifically demonstrated below). An
implementation of COALESCE (including C++ source code) is
provided as part of the Sleipnir software package at http://function
.princeton.edu/sleipnir, and a web interface is available at http://
function.princeton.edu/coalesce. We have validated COALESCE’s
ability to discover functionally relevant biclusters and transcriptional
motifs in synthetic data and in Saccharomyces cerevisiae,
demonstrating improvements over previous methods in both
expression biclustering and binding site prediction. We provide
further evaluation of TF target predictions using the Yeastract
(S.cerevisiae; Teixeira et al., 2006) and RegulonDB (E.Coli; Gama-
Castro et al., 2008) motif databases and results including regulatory
modules for Caenorhabditis elegans, Drosophila melanogaster, Mus
musculus and Homo sapiens.

2 METHODS
The COALESCE algorithm provides an efficient, iterative framework for
predicting regulatory modules (co-regulated genes, the conditions under
which they are co-regulated, and putative regulatory motifs) from very
large collections of gene expression data. Supporting data types (e.g.
nucleosome positioning or evolutionary conservation) can be integrated
in a Bayesian framework, and the algorithm scales sufficiently to handle
very large genomes (>25 000 genes) and gene expression collections
compendia (>15 000 conditions). We validate COALESCE’s performance
on gold standards from S.cerevisiae and E.coli, provide additional
results from C.elegans, D.melanogaster, M.musculus and H.sapiens,
evaluate results on synthetic data, and compare COALESCE to existing
algorithms for biclustering (Kloster et al., 2005; Reiss et al., 2006;
Tanay et al., 2004) and de novo motif prediction (Elemento et al.,
2007; Pavesi et al., 2004). Example inputs for yeast are provided
in Supplementary Dataset 1, and predicted regulatory modules for all
datasets and organisms are available in Supplementary Dataset 2. Methods
are presented here in summary, with additional details provided in
Supplementary Text 1.

2.1 The COALESCE algorithm
The basic COALESCE algorithm consumes gene expression and DNA
sequence data as input to produce putative co-regulated modules as output;
extensions allowing supporting data types and in-depth sequence analysis
are discussed below. Each resulting module consists of a set of co-regulated
genes, one or more expression conditions under which they are co-expressed
and zero or more motifs predicted to drive the co-regulation. The algorithm
finds modules in a serial manner by seeding each new module with a set of
co-expressed genes and iteratively refining the module to convergence. Each
iteration begins with a process of feature extraction, in which expression
conditions and sequence motifs showing differential expression/enrichment
are associated with the developing module. This is followed by a Bayesian
integration step, in which each gene’s values for the selected features are
combined probabilistically to determine whether the gene should be included
in the module, with priors proportional to the fraction of features actually
selected. After these two stages are alternated to convergence, the module’s
centroid is subtracted from the selected genes and features and the process
begins again for the next cluster. This algorithm is presented schematically
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in Figure 1; it is summarized in pseudocode in Supplementary Text 1 and
described in more detail below.

COALESCE receives as input a standard genes-by-conditions expression
matrix, DNA sequences for each gene in the regions of interest (e.g. upstream
and/or downstream of the coding region), and four parameters: a k-mer length
k, maximum P-value cutoffs pe and pm for expression condition and motif
significance, respectively, and a minimum probability cutoff pg for inclusion
of genes in modules. Each module is then computed beginning with an initial
seed of the two genes maximally correlated across all expression conditions.
Three steps are then iterated to modify the module until it converges:
selection of significant expression conditions, selection of significant motifs
and inclusion of probable genes. An expression condition is considered to be
significant (and thus included in the module) if the distribution of expression
values for genes currently in the module differs below threshhold pe from
the genomic background (based on a standard Z-test). Similarly, a motif
is significant if its frequency in gene sequences currently in the module
differs below threshhold pm from background (based on a Z-test modified
to use Cohen’s d; Supplementary Text 1). Based on these selected features
(significant conditions and motifs), each gene’s probability P(g∈G|C,M)
of inclusion in the developing module is calculated using Bayesian data
integration of P(C|g∈G), observed from the expression data, P(M|g∈G),
observed from the sequence data and P(g∈G), a prior used to stabilize
module convergence. Genes above probability pg are included and those
below are excluded. When the module converges to a final set of conditions
C, motifs M and genes G, its mean expression values and motif frequencies
are subtracted from the underlying data and the process is begun again with
a new pair of seed genes. C++ source code for the algorithm is available
at http://function.princeton.edu/sleipnir, and a detailed description including
pseudocode can be found in Supplementary Text 1.

Integration of additional data types modifies the algorithm only minimally
and is discussed below. All significance tests involving P-values are
Bonferroni corrected for multiple hypotheses. For all experiments in this
manuscript, P-value threshholds were fixed at 0.05, probability threshholds
at 0.95 and k = 7.

2.1.1 Motifs and DNA sequences COALESCE considers three types of
motifs. The pseudocode above describes simple k-mers, each a string of
k characters drawn from the alphabet {A, C, G, T}. Our implementation
also considers reverse complement pairs (RCs) and probabilistic suffix trees
(PSTs) in an equivalent manner. An RC is the equally weighted union of a
k-mer and its reverse complement.APST is the union of two or more arbitrary
k-mers and RCs in a weighted (probabilistic) manner; such a structure can be
constructed and matched against DNA sequence rapidly at runtime (Pavesi
et al., 2004). Briefly, just as a Position Weight Matrix (PWM) or Position
Specific Score Matrix (PSSM) contains a single column per base to be
matched, a PST contains a single node in a tree for each base. A PST thus
has some depth equivalent to the length of a PWM/PSSM, and the maximal
length match against some sequence is thus the depth or the length of the
sequence, whichever is shorter.

Initially, all possible k-mers and RCs are considered, but no PSTs. During
each runtime iteration, a new PST is constructed for any pair of existing
motifs m and m′ for which (i) Z-score (Mm, Mm′ ) is small and (ii) the
minimum edit distance between m and m′ is small (experiments here used
gap penalty 1, mismatch penalty 2.1 and threshhold 2.5). Each PST so
constructed is treated identically to k-mers and RCs with respect to frequency
calculations etc. in all future iterations, subsequent to calculation of gene-
specific scores Mg,m. For a PST p with depth |p|, maximum length match
|p[s, i]| for some sequence s beginning at offset i and probability p[s, i] of
specifically matching position i, these are calculated as:

MPST
g,m = 1

|sg|
|sg|−k∑

i=0

4|p[s,i]|−|p|
k−1∏

j=0

p[sg,i+j]. (1)

That is, each base is treated as a simple independent probability, and
normalized by the likelihood of matching the observed number of bases by

chance; this is the normalized product over each base of the probability of a
match, just as would be calculated for a PWM/PSSM. Note that, as defined
below, scores Mg,m are calculated in a simpler manner for static k-mers and
for k-mers weighed by supporting datasets. Using this definition, PSTs can
thus capture degeneracy (similarly to PWMs), reverse complementation and
motifs longer than any given k.

See Supplementary Text 1 for details on discretization of motif
frequencies, Z-tests for enrichment and decomposition of sequence data
into partitioned subareas (e.g. upstream versus downstream and flank versus
UTR).

2.1.2 Gene expression data and prior structural knowledge COALESCE
is robust to missing values in the input expression data and to differences in
microarray platform and processing across conditions. The input expression
matrix E is initially Z-scored per condition (column) to have mean = 0,
SD = 1. Since all subsequent tests occur within single conditions, differences
in platform and preprocessing do not affect the remainder of the algorithm,
and missing values are excluded from distribution comparisons. See
Supplementary Text 1 for details on the prior β for different data types and
the incorporation of dataset covariance (i.e. block structure such as a time
course).

2.1.3 Supporting data types: nucleosome occupancy and conservation
Additional data types can be incorporated into the COALESCE algorithm
in one of two ways. First, since the data integration step uses a flexible
Bayesian framework, any dataset for which P(D|g∈G) can be calculated can
be included. This will effectively treat the dataset D in a ‘microarray-like’
manner, in that its distribution of values will drive the inclusion and exclusion
of genes in a module similarly to a single microarray condition; priors can,
of course, be applied to any dataset or condition to up- or down-weight
its contribution to the integration process. This might include any dataset
quantifying a gene product’s behavior under some environmental condition:
degree of localization to a particular compartment, quantitative phenotypes
from gene deletions or physical interactions with particular prey.

However, other data types are more appropriately analyzed in a ‘sequence-
like’ way, in that they associate values with individual genomic bases rather
than with genes as a whole. Two such data types are nucleosome occupancy,
which describes the probability with which each base is occluded by a
nucleosome under some condition, and evolutionary conservation, which
describes how conserved each base is over some set of organisms of interest.
Data that scores individual bases can be used by COALESCE as weights
to transform instances of each motif prior to the assembly of the matrix M.
For example, let sg[i, j] represent the substring of sequence sg at position i
(zero-indexed) with length j. Then the calculation of Mg,m in the unweighted
case as described above can be written as:

Mkmer
g,m = 1

|sg|
|sg|−k∑

i=0

δ
(
sg [i,k],m

)
(2)

for δ (the Kronecker delta function) = 1, when its inputs are identical and 0
otherwise. Each supporting dataset w can be represented as a function w(sg, i)
mapping the i-th base of sequence sg to some continuous value. Given a set
of such supporting datasets W , this allows each entry of Mg,m to be weighted
appropriately:

MSupp
g,m = 1

|sg|
|sg|−k∑

i=0

δ
(
sg [i,k],m

) 1

|W |k
∑

w∈W

k−1∑

j=0

w
(
sg,i+j

)
(3)

The specific nucleosome occupancy and evolutionary conservation data used
in our experiments are described below and available in Supplementary
Dataset 3.

2.2 Data collection and processing
COALESCE consumes two primary data types, gene expression and genomic
sequence data, as well as arbitrary supporting data of other experimental

3269



[14:42 9/11/2009 Bioinformatics-btp588.tex] Page: 3270 3267–3274

C.Huttenhower et al.

types; for the latter, we use probabilities of nucleosome occupancy and
a per-base measure of evolutionary conservation. The experiments in this
manuscript were run on S.cerevisiae expression data drawn from a large
(>2200 condition) compendium (Huttenhower and Troyanskaya, 2008),
E.coli expression data from GEO (Barrett et al., 2009), three synthetic
datasets, and a variety of metazoan (H.sapiens, M.musculus, D.melanogaster
and C.elegans) expression data from GEO. Sequence data were obtained
from BioMart (Durinck et al., 2005) and RSAT (Thomas-Chollier et al.,
2008) using 2 kb upstream and downstream flanks for each organism. 5′ and
3′ UTR annotations and repeat masking were available for all organisms
except yeast, and sequences overlapping adjacent ORFs were excluded. See
Supplementary Text 1 for details on the specific expression data, nucleosome
placements, evolutionary conservation and synthetic data used in this study.

2.3 Testing and evaluation
We evaluated COALESCE using four different metrics: ability to recover
functionally informative modules in S.cerevisiae; correspondence of
predicted motifs in S.cerevisiae and E.coli with known TF sites from the
Yeastract (Teixeira et al., 2006) and RegulonDB (Gama-Castro et al., 2008)
databases; comparison with previous methods [biclusters from SAMBA
(Tanay et al., 2004) and PISA (Kloster et al., 2005), motifs from Weeder
(Pavesi et al., 2004) and FIRE (Elemento et al., 2007), and total results
from cMonkey (Reiss et al., 2006)]; and recovery of biclusters and motifs
from three synthetic datasets. For all analyses, default parameters were
used as described above. Functional evaluation was performed as in (Myers
et al., 2006); see Supplementary Text 1 for details and for information
on functional evaluation of COALESCE’s predicted human modules and
TF/target evaluations in yeast and E.coli.

3 RESULTS
We have evaluated COALESCE’s performance in four broad areas:
its ability to construct functionally informative biclusters from
S.cerevisiae data; its ability to correctly predict known TF targets
in yeast and E.coli; its efficiency and accuracy on synthetic data;
and its ability to discover regulatory modules in large metazoan
datasets, including ∼15 000 human gene expression conditions.
Example yeast input files are provided in Supplementary Dataset 1,
and predicted modules for all datasets and organisms are available
in Supplementary Dataset 2.

3.1 Predicted S.cerevisiae regulatory modules are
functionally cohesive

We ran COALESCE on a compendium of ∼2200 S.cerevisiae
expression conditions comprising ∼125 datasets (Huttenhower
and Troyanskaya, 2008), using 2 kb of upstream and downstream
sequence for regulatory motif prediction. An evaluation of
the functional accuracy of the resulting putative regulatory
modules appears in Figure 2, which describes the ability of
these gene/condition biclusters to recapitulate known associations
between functionally related genes as annotated in the Gene
Ontology. In comparison to standard k-means clustering over the
entire compendium or the representative PISA (Kloster et al., 2005)
and SAMBA(Tanay et al., 2004) biclustering methods, COALESCE
(both with and without information from gene sequences) succeeds
in recovering regulatory modules strongly enriched for specific
functional activities and functionally related genes.

COALESCE allows a variety of supporting information and
data types to be incorporated into the process of regulatory
module prediction: information about the dependency structure

Fig. 2. Evaluation of the functional consistency of S.cerevisiae expression
biclusters predicted by COALESCE. Precision and recall are over
gene pairs co-annotated in the Gene Ontology as described in (Myers
et al., 2006). Unless noted, COALESCE was executed on ∼2200 yeast
expression conditions using 2 kb of up- and downstream flanking sequence.
See Supplementary Figure 1 for a plot with standard scale axes and
Supplementary Figure 2 for a comparable evaluation using human data.
(a) A comparison of COALESCE with the PISA and SAMBA expression-
only biclustering systems. This comprises 1870 modules integrating five runs
of COALESCE, 428 modules from one run of COALESCE, ∼1000 modules
integrating ∼20 runs of PISA, 492 modules from one run of SAMBA (lower
recall results are not available from PISA or SAMBA), and k-means clusters
with k ranging from 10 to 5000 for comparison. (b) Effects of supporting data
types (evolutionary conservation and nucleosome placement) and of dataset
correlation structure on COALESCE predictions. While neither supporting
data nor prior knowledge of dataset correlation structure (e.g. sets of related
conditions such as time courses) significantly influence overall performance,
accounting for correlation structure greatly improves conciseness, achieving
comparable functional accuracy using <1/3 as many modules.

within datasets, supporting data such as individual nucleotides’
evolutionary conservation or occlusion by nucleosomes, or even
the simple aggregation of multiple predictions into a single set of
putative regulatory modules. A single execution of COALESCE
on this data typically produces ∼450 regulatory modules, while
aggregation of five executions produces ∼1900 predicted modules
with diminishing returns as additional executions are included
(Supplementary Figs 3 and 4, Supplementary Table 3). As indicated
in Figure 2B, incorporation of information on dataset covariance
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Fig. 3. Accuracy of predicted S.cerevisiae and E.coli TF targets using the Yeastract and RegulonDB databases. COALESCE and cMonkey (Reiss et al.,
2006) both predict expression biclusters and putative motifs simultaneously; FIRE (Elemento et al., 2007) and Weeder (Pavesi et al., 2004) require data to
be pre-clustered and have been provided here with clusters from k-means and COALESCE, respectively (Section 2). TF/target prediction accuracies were
assessed by assigning predicted motifs to known TF consensus binding sites, ranking predicted targets by frequency and confidence, and Z-scoring the resulting
separation of known targets [from Yeastract (Teixeira et al., 2006) or RegulonDB (Gama-Castro et al., 2008)] from the background distribution. (a) The 15
yeast TFs predicted most accurately by any of the four systems. (b) Seven yeast TFs most influenced by integration of supporting data using COALESCE. This
indicates that, for example, functional Sum1p binding sites may be particularly well-conserved among the Saccharomyces. (c) The nine E.coli TFs predicted
most accurately by the three applicable systems; results are sparse due to the smaller coverage of RegulonDB.

introduces only minor changes in the precision and recall of
these functional modules, but with a great improvement in
their conciseness: each execution of COALESCE with dataset
covariance produces ∼150 modules, with ∼550 predicted by
the aggregation of five executions. Inclusion of additional data
types has no substantial impact on the functional cohesiveness
of predicted modules, which may be indicative that (i) individual
binding sites are not sufficiently conserved at the genome-wide
level to enhance functional specificity; (ii) conservation and/or
nucleosome placement may be sufficiently condition-specific that
global effects are not reflected in our single-condition datasets;
and/or (iii) nucleosome placement is sufficiently dynamic that
our single dataset does not reflect substantial global effects.
Interestingly, when individual TFs are inspected, supporting data
types do influence motif predictions as discussed below.

3.2 Predicted motifs match known S.cerevisiae and
E.coli TFs and targets

In order to compare COALESCE to other algorithms that explicitly
predict regulatory modules (instead of solely gene expression
biclusters), we evaluated its TF/target assignments based on the
curated Yeastract (Teixeira et al., 2006) database (Fig. 3A). Yeastract
includes one or more experimentally determined consensus binding
sequences for ∼100 yeast TFs, as well as known regulatory
targets for an additional ∼75 TFs. Using this information, we
evaluated the cMonkey (Reiss et al., 2006) system in a similar
manner, in addition to the FIRE (Elemento et al., 2007) and

Weeder (Pavesi et al., 2004) motif predictors. While running
cMonkey on the 2200-condition yeast compendium proved to be
computationally impractical, we were able to run COALESCE
on the 667 conditions used by Reiss et al. to validate cMonkey.
Likewise, since FIRE and Weeder require data to be pre-clustered
before motif prediction, we evaluated these two algorithms on
these 667 conditions as clustered by k-means with k ∈{50, 100,
500} and on the clusters produced by COALESCE itself. FIRE’s
best results were produced for k = 50 (likely due to the relatively
large size of the resulting clusters) and Weeder’s for COALESCE’s
clusters (likely due to their smaller size). The resulting predictive
performance of all four algorithms (COALESCE, cMonkey, FIRE
and Weeder) is shown in Figure 3A. This figure displays a
representative sample of predictions for individual TFs in order
of decreasing algorithm-independent performance; COALESCE
consistently provides accurate predictions for a variety of TFs,
while cMonkey, FIRE and Weeder produce much sparser results and
generally focus on common motifs with many strongly co-regulated
targets (e.g. Gcn4p, Hap4p). It is worth noting that COALESCE
runs over four times faster for S.cerevisiae data than comparable
algorithms such as cMonkey (for which additional results are
shown in Supplementary Fig. 5), and many times faster for higher
organisms, enabling it to perform more in-depth analyses of larger,
complex datasets; this is particularly important when exploring large
compendia of metazoan (e.g. human) expression data as discussed
below.

Surprisingly, the incorporation of supporting data types did not
substantially increase the overall accuracy of motif prediction,
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with data on evolutionary conservation or nucleosome positioning
introducing only modest gains in accuracy with at best
borderline statistical significance (paired t-test P < 0.05 and >0.5,
respectively). However, the accuracies with which several individual
TFs were assigned to known target genes were strongly affected by
supporting data (Fig. 3B), indicating that these TFs may (i) have
unusually conserved binding sites and/or (ii) strongly interact with
nucleosome positioning in order to carry out their regulation. As
seen in Figure 3B, examples include Sfl1p, Gcr1p and Cst6p,
for which predictive performance is increased by the inclusion of
supporting data. Interestingly, predicted targets of Uga3p and Mot3p
both disagree with Yeastract more when supporting data types are
included, suggesting that these TFs may have unusually weakly
conserved binding sites or that the predicted nucleosome placements
used in our analysis may differ from those in the conditions
recorded by Yeastract. Finally, predicted targets of Sum1p are
specifically improved by the inclusion of evolutionary conservation
scores, raising the possibility that functional Sum1p target sites
are consistently well-conserved within the (Kellis et al., 2003)
Saccharomyces clade.

To further quantify COALESCE’s ability to recover accurate
regulatory modules, we performed a similar performance analysis
in E.coli using the RegulonDB database of known TF consensus
binding sequences and target genes (Gama-Castro et al., 2008)
(Fig. 3C). Part of the goal of COALESCE is to enable large-
scale data integration for regulatory module discovery in complex
metazoans; however, while examples of predicted mammalian
modules are discussed below, it is difficult to evaluate such
predictions quantitatively due to the sparsity of transcriptional
regulatory gold standards in higher organisms. RegulonDB itself
is much smaller than Yeastract, even taking E.coli’s smaller genome
into account, and this sparsity is reflected in the relative performance
shown in Figure 3C. Appropriate E.coli results were not available
for cMonkey, but results from FIRE and Weeder were comparable
to those in yeast: particularly for TFs with relatively general, low
information content motifs (e.g. Lrp, Fis, H-NS), Of the three
methods evaluated, only COALESCE consistently predicts more
than 1–2 TFs’ known target genes with high accuracy, as well as
providing a variety of predictions that could represent novel direct
targets or downstream effects of targeted pathways.

3.3 High accuracy with zero false positives in
synthetic data

To assess COALESCE’s accuracy more precisely than is possible
with currently available biological databases, we analyzed three
sets of synthetic data designed to resemble biological systems of
interest, detailed in Table 1. These included a ‘yeast-like’ dataset Y1
comprising 5000 synthetic genes and 100 conditions, a ‘human-
like’ dataset H1 comprising 25 000 genes and 100 conditions,
and a ‘human-like’ compendium H2 of 25 000 genes and 10 000
conditions, comparable to the total amount of human microarray
datasets currently available from GEO (Barrett et al., 2009).
As shown in Table 1, these synthetic datasets were spiked with 10,
100 and 500 synthetic ‘TFs’, respectively, and each was analyzed
with five different random seeds. Average runtimes for the three
datasets were 4.1 min, 11.2 h and >24 h, respectively, resulting in
average motif, gene and condition and F-scores of 0.92, 0.94 and
0.96 (module F-scores are not calculated since the H2 dataset

Table 1. COALESCE performance on synthetic data

DS Genes Conditions TFs Prec./Rec.
modules

Prec./Rec.
motifs

Prec./Rec.
genes

Prec./Rec.
conditions

Y1 5000 100 10 1.00 ± 0.00
0.68 ± 0.17

1.00 ± 0.00
0.91 ± 0.28

1.00 ± 0.01
0.94 ± 0.08

0.99 ± 0.02
1.00 ± 0.00

H1 25 000 100 100 0.99 ± 0.01
0.75 ± 0.04

0.98 ± 0.10
0.92 ± 0.27

0.98 ± 0.05
0.94 ± 0.11

0.99 ± 0.08
1.00 ± 0.01

H2 25 000 10 000 500 0.90 ± 0.02
NA

0.83 ± 0.30
0.87 ± 0.33

0.80 ± 0.28
0.99 ± 0.02

0.83 ± 0.23
0.98 ± 0.05

COALESCE was a run using default parameters on three synthetic datasets constructed
to resemble biological systems of interest: a ‘yeast-like’ dataset Y1 of 5000 genes, a
‘human-like’ dataset H1 of 25 000 genes, and a ‘human-like’ compendium H2 of 25 000
genes and 10 000 conditions. Each dataset was generated five times using different
random seeds, with the average and SD of the resulting analyses shown here for
module, motif, gene and condition precision and recall; see Supplementary Dataset
4 for details. When the datasets were generated without spiked TFs, zero false positives
were predicted for any dataset. Prec., Precision; Rec., Recall.

analysis was terminated after 24 h, making recall inapplicable). Zero
false positives were predicted for any dataset in the absence of spiked
transcriptional modules.

3.4 Recovery of biologically relevant regulatory
modules from large metazoan datasets

COALESCE is efficient enough to process substantial collections of
metazoan data, which can comprise both large genomes (≥20 000
genes) and thousands of gene expression conditions. In addition to
the quantitative evaluations, we have described here for yeast and
E.coli, Figure 4 shows sample modules predicted by COALESCE
from four metazoan datasets as detailed in Supplementary Table 4:
tissue- and development-specific data from C.elegans, diverse
conditions from D.melanogaster, neural data from M.musculus and
∼15 000 diverse conditions from H.sapiens. Full results for these
datasets are available in Supplementary Dataset 2.

Briefly, the worm module in Figure 4A comprises ∼250 proteins
functionally enriched for various structural functions (actins,
myosins and the extracellular matrix), as well as known components
of the eye lens (hsp-12.3, hsp-16.1, hsp-16.2 and others) and several
F-box proteins. These co-express primarily in the neural tissues of
(Colosimo et al., 2004) and (Von Stetina et al., 2007), and they
are enriched for an upstream GATA motif. In Figure 4B, 83 mouse
genes have been predicted to co-express under 10 conditions, seven
of which are neural crest tissue samples (of 30 such samples in
the compendium, hypergeometric P < 10−9); these are predicted
to contain an uncharacterized upstream reverse-complement motif.
Figure 4C shows a fly module functionally enriched for larval and
pupal organ development and regulation. Of its three predicted
motifs, two are upstream [one with strong similarity to the
developmental TF paired consensus binding sequence (Underhill,
2000)] and one in the 3′ flank resembles the known miR-
305 seed (Ruby et al., 2007); the 135 genes in the module
also significantly overlap known miR-305 targets (hypergeometric
P < 0.005). Finally, the human module in Figure 4D contains 191
genes co-regulated over almost a 10th of the expression data
compendium, functionally enriched for organ development and with
the consensus sequence of the known developmental TF SP1 (Zhao
and Meng, 2005) predicted in the upstream region.

3272



[14:42 9/11/2009 Bioinformatics-btp588.tex] Page: 3273 3267–3274

Detailing regulatory networks

(a) (b)

(c)

(d)

Fig. 4. Metazoan regulatory modules predicted by COALESCE from worm,
mouse, fly and human data. Each module shows associated functional
enrichments of the contained genes, predicted motifs and their locations
(5′ upstream or 3′ downstream, RC if predicted as a reverse complement),
and a trimmed subset of the resulting normalized expression heatmap.
(a) C.elegans module enriched for structural proteins co-expressing primarily
in neural tissues with a predicted GATA motif. (b) M.musculus module co-
expressing in neural crest samples, enriched for an uncharacterized reverse
complement motif. (c) D.melanogaster module enriched for regulation of
larval and pupal organ development, predicted to have two upstream and one
downstream motif, the latter corresponding to miR-305; module genes also
overlap significantly with known miR-305 targets (P < 0.005). (d) H.sapiens
module enriched for organ development and adhesion proteins, with a
predicted SP1-like upstream motif.

4 DISCUSSION AND CONCLUSIONS
The COALESCE algorithm is a biclustering and de novo motif
prediction system capable of extracting regulatory modules from
very large expression data compendia. It can also integrate
supporting data such as sequence-level evolutionary conservation,
nucleosome positioning or dataset-level correlation structure in
order to improve its predicted regulatory networks. Here, we have
detailed the algorithm and shown its effectiveness in predicting
functionally enriched S.cerevisiae biclusters, in finding known yeast
and E.coli TF targets, in analyzing synthetic data with zero false
positives, and in predicting regulatory modules from metazoan data
collections of up to tens of thousands of expression conditions.

Of course, COALESCE can also be used to analyze single
datasets; an example of this is provided in Supplementary Dataset 2,
which contains modules predicted from the S.cerevisiae controlled
growth conditions of (Brauer et al., 2008). In combination with
condition-specific supporting data (e.g. ChIP-chip for a TF of

interest), this can provide a powerful means of querying an
organism’s regulatory network in a particular environment, although
more focused systems also exist for this type of analysis (e.g. Lerman
et al., 2007; Toedling and Huber, 2008). COALESCE’s Bayesian
integration step could easily be adapted, however, to incorporate
data type-specific probabilities (e.g. based on a ChIP-chip or ChIP-
seq physical binding model), which is a potential avenue for future
development. Similarly, a query-based system could be developed to
explore individual datasets by seeding modules with specific genes
or known TFBS motifs of interest.

While COALESCE as an algorithm can scale efficiently
to the complexities of metazoan genomes and datasets, it is
less clear whether a simple computational model of regulatory
modules—genes, conditions and short, independent sequence
motifs—is completely appropriate for the biology of higher
organisms. As demonstrated above, this model certainly captures
some fraction of the regulatory information inherent in complex
datasets (e.g. the ∼15 000 condition human compendium), and if
sequence-level regulatory interactions are ignored, COALESCE
remains an accurate and efficient biclustering algorithm. However,
transcriptional regulation in multi-cellular organisms is substantially
more complex than in prokaryotes or unicellular eukaryotes:
individual binding motifs can be more degenerate, distal or both
(Maston et al., 2006); combinatorial regulation is more prevalent
(Smale, 2001); regulatory systems can buffer the effects of copy
number changes (Stranger et al., 2007); and epigenetic and post-
transcriptional/translational effects are more common and more
complex (Reik et al., 2001; Wu and Belasco, 2008). A richer
computational model will be necessary to more completely unravel
the complexities of metazoan regulatory networks; this should both
integrate additional experimental data types and include specific
knowledge of the multiple ways in which gene products’ activities
can be modulated.

By providing a general framework for rapidly integrating
large, diverse metazoan data collections, COALESCE represents
a platform with which richer regulatory models can be built.
As demonstrated by our evaluations in yeast and E.coli, the
current algorithm can recover substantial portions of unicellular
regulatory networks; incorporation of information on combinatorial
regulation, alternate splicing, non-coding regulatory elements and
additional experimental data types are all possibilities for expanding
the breadth of predictions in multi-cellular organisms. A C++
implementation of COALESCE is available as part of the Sleipnir
library (Huttenhower et al., 2008) at http://function.princeton.edu/
sleipnir, and a web interface is provided at http://function.princeton.
edu/coalesce, both of which allow data from any organism to be
mined for new regulatory modules.
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