
[14:37 10/11/2009 Bioinformatics-btp593.tex] Page: 3251 3251–3258

BIOINFORMATICS ORIGINAL PAPER Vol. 25 no. 24 2009, pages 3251–3258
doi:10.1093/bioinformatics/btp593

Sequence analysis

Significant speedup of database searches with HMMs by search
space reduction with PSSM family models
Michael Beckstette1,∗,†, Robert Homann2,3,†, Robert Giegerich3 and Stefan Kurtz1

1Center for Bioinformatics, University of Hamburg, Bundesstrasse 43, 20146 Hamburg, 2International NRW
Graduate School in Bioinformatics and Genome Research, Center for Biotechnology (CeBiTec), Bielefeld University,
33594 Bielefeld and 3Group for Practical Computer Science, Technische Fakultät, Bielefeld University, Postfach
100 131, 33501 Bielefeld, Germany

Received on June 10, 2009; revised on October 2, 2009; accepted on October 9, 2009

Advance Access publication October 14, 2009

Associate Editor: Burkhard Rost

ABSTRACT

Motivation: Profile hidden Markov models (pHMMs) are currently the
most popular modeling concept for protein families. They provide
sensitive family descriptors, and sequence database searching
with pHMMs has become a standard task in today’s genome
annotation pipelines. On the downside, searching with pHMMs is
computationally expensive.
Results: We propose a new method for efficient protein family
classification and for speeding up database searches with pHMMs
as is necessary for large-scale analysis scenarios. We employ simpler
models of protein families called position-specific scoring matrices
family models (PSSM-FMs). For fast database search, we combine
full-text indexing, efficient exact p-value computation of PSSM
match scores and fast fragment chaining. The resulting method
is well suited to prefilter the set of sequences to be searched
for subsequent database searches with pHMMs. We achieved a
classification performance only marginally inferior to hmmsearch, yet,
results could be obtained in a fraction of runtime with a speedup of
>64-fold. In experiments addressing the method’s ability to prefilter
the sequence space for subsequent database searches with pHMMs,
our method reduces the number of sequences to be searched with
hmmsearch to only 0.80% of all sequences. The filter is very fast
and leads to a total speedup of factor 43 over the unfiltered search,
while retaining >99.5% of the original results. In a lossless filter setup
for hmmsearch on UniProtKB/Swiss-Prot, we observed a speedup of
factor 92.
Availability: The presented algorithms are implemented in
the program PoSSuMsearch2, available for download at
http://bibiserv.techfak.uni-bielefeld.de/possumsearch2/.
Contact: beckstette@zbh.uni-hamburg.de
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Profile hidden Markov models (pHMMs) are currently the most
popular modeling concept for protein families. They provide very
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sensitive family descriptors, and sequence database searching with
models from major pHMM collections (Finn et al., 2006; Haft
et al., 2003) has become a standard task in sequence analysis.
On the downside, database searching with pHMMs with well-
known programs like hmmsearch or hmmpfam (Eddy, 1998)
is computationally expensive. In particular, the long running
times of pHMM-based methods and the time scaling behavior,
which is linear in the length of the searched sequence, make
them more and more demanding in today’s sequence database
search scenarios. This problem will become even more severe
as the continuing exponential growth of sequence databases will
certainly be amplified by the increasing dispersal of next-generation
sequencing technologies (Shendure and Ji, 2008). Nevertheless,
pHMM-based database searches are indispensable for today’s
genome annotation pipelines. For instance, the majority of member
databases of the InterPro classification system (Hunter et al., 2009),
a widely used system for protein annotation purposes, employ family
information in form of pHMMs. The applied classification procedure
InterProScan (Quevillon et al., 2005) includes searches with all
pHMMs from the Pfam (Finn et al., 2006), TIGRFAM (Haft et al.,
2003), Superfamily (Gough et al., 2001), PIRSF (Wu et al., 2004),
Gene3D (Yeats et al., 2006), Smart (Letunic et al., 2006) and
Panther (Mi et al., 2005) databases. These pHMM-based database
searches render InterProScan a very compute intensive application
whose employment on a large scale is challenging even on the largest
cluster systems.

To solve this dilemma, much effort has been spent on improving
the running time of pHMM-based database search tools. Some
approaches for improvement use parallelism techniques and/or
fast, extended, CPU-specific instructions sets, like SSE/SSE2
(Streaming Single Instruction/Multiple Data Extensions) (Walters
et al., 2006). Hardware solutions implementing proprietary variants
of hmmsearch on special field- programmable gate array (FPGA)
boards are also available. Moreover, the application of machine
learning techniques has been suggested (Lingner and Meinicke,
2008a, b). Very recently, Sun and Buhler (2009) described the
design of patterns and profiles for speeding up hmmsearch using
unordered sets of motifs in form of PROSITE-like patterns or
position-specific scoring matrices (PSSMs) derived from a multiple
alignment of a protein family. These motifs are then searched
with standard regular expression matching and profile searching
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algorithms, respectively, to prefilter the search space for subsequent
application of hmmsearch. The reported speedups over unfiltered
search are in the range of 20-fold with almost 100% sensitivity and
30- to 40-fold with 90% sensitivity.

We propose a new software-based method well suited: (i) for
efficient and reliable protein family classification, and (ii) to speedup
database searches with hmmsearch. Our approach employs a simpler
model of protein families based on PSSMs in combination with exact
p-value computation using lazy evaluation and full text indexing
with enhanced suffix arrays (Abouelhoda et al., 2004) to filter
the search space for subsequent database searches with pHMMs
corresponding to these families. The work is an extension of our
PSSM search tool PoSSuMsearch (Beckstette et al., 2006), so we
briefly describe previous work on index-based PSSM matching and
efficient p-value computation for PSSM matchscores (Sections 2.2
and 2.3) before describing the new concepts and algorithms used in
the new version of PoSSuMsearch (Sections 2.4–2.6), herein after
referred to as PoSSuMsearch2.

2 METHODS

2.1 Preliminaries
Let S be a sequence of length n over finite alphabet A, and let S[i..j],
0≤ i≤ j≤n−1, denote the substring of S of length j−i+1 starting at position
i and ending at (including) position j.

Let $ be a symbol in A, larger than all other symbols, which does not
occur in S. The suffix array suf is a table of integers in the range 0–n that
lists the starting positions of all n+1 suffixes of S$ in lexicographical order
(symbol $ must be appended to S to obtain a well-defined order on suffixes).
That is, Ssuf[0],Ssuf[1],...,Ssuf[n] is the sequence of suffixes of S$ in ascending
lexicographic order, where Si =S[i..n−1]$ denotes the i-th non-empty suffix
of the string S$, for i∈[0,n]. lcp is a table in the range 0–n such that lcp[0] :=
0 and lcp[i] is the length of the longest common prefix of Ssuf[i−1] and Ssuf[i],
for i∈[1,n]. skp is a table in the range 0–n such that skp[i] :=min({n+
1}∪{j∈[i+1,n] | lcp[i]> lcp[j]}). In terms of suffix trees, skp[i] denotes
the lexicographically next leaf that does not occur in the subtree below the
branching node corresponding to the longest common prefix of Ssuf[i−1] and
Ssuf[i]. Tables lcp and skp can be computed as a by-product during the
construction of suffix array suf, and enhance the basic suffix array. All three
tables can be computed in linear time (Kärkkäinen and Sanders, 2003; Kasai
et al., 2001). For a linear time construction algorithm for table skp, see
Figure 1 in the Supplementary Material. We refer to the troika of tables suf,
lcp and skp as enhanced suffix array. See Figure 1 for an example.

A PSSM is an abstraction of a multiple alignment and is defined as a
function M : {0,...,m−1}×A→R, where m is the length of M, also denoted
with |M|, and A is a finite alphabet. Usually function M is given by an
m×|A| matrix, where each row of the matrix reflects the frequency of
occurrence of each amino acid or nucleotide at the corresponding position of
the alignment. From now on, let M be a PSSM of length m and let w[i] denote

Fig. 1. Enhanced suffix array for S =tccatcacct, consisting of the suffix
array suf, and additional tables lcp and skp. The suffixes of S are sorted
lexicographically (rightmost column).

the character of w at position i for 0≤ i<m. The score range of a PSSM is the
interval [scmin(M),scmax(M)] with scmin(M) :=∑m−1

i=0 min{M(i,a) |a∈A}
and scmax(M) :=∑m−1

i=0 max{M(i,a) |a∈A}. We define the match score for
a segment w∈Am of length m of the sequence w.r.t. M as sc

(
w,M

) :=∑m−1
i=0 M(i,w[i]). We also define pfxscd (w,M) :=∑d

h=0 M(h,w[h]), maxd :=
max{M(d,a) |a∈A}, σd :=∑m−1

h=d+1 maxh and θd :=θ−σd for any d ∈[0,m−
1]. pfxscd (w,M) is the prefix score of depth d. σd is the maximal remainder
score that can be achieved in the last m−d−1 positions of the PSSM and θd

the intermediate threshold at position d. Given a score threshold θ, PSSM M
is said to match string w with threshold θ if and only if sc

(
w,M

)≥θ. Hence,
the PSSM matching problem is to find all matching substrings of length m
in some sequence S with their assigned match scores for a given threshold θ

and PSSM M.

2.2 Fast database searching with single PSSMs
2.2.1 Algorithms for finding PSSM matches A naive O (mn ) time
algorithm solving the PSSM matching problem moves a sliding window of
size m over the text to be searched of length n and is implemented in many
programs facilitating PSSMs (Henikoff et al., 2000; Kel et al., 2003; Quandt
et al., 1995; Scordis et al., 1999). Considerable practical speedups can be
obtained with the lookahead scoring technique of Wu et al. (2000). It uses the
implication pfxscd (w,M)<θd ⇒sc

(
w,M

)
<θ as an early stop criterion for

the calculation of sc
(
w,M

)
. However, lookahead scoring does not improve

the theoretical worst case time complexity of the naive algorithm.

2.2.2 Index-based searching with PSSMs For fast database searching with
PSSMs, PoSSuMsearch2 employs the algorithm ESAsearch (Beckstette et al.,
2006), which in turn makes use of enhanced suffix arrays. To use enhanced
suffix arrays for fast database searching with PSSMs, one simulates a depth
first traversal of the suffix tree (cf. Abouelhoda et al., 2004) by processing
the arrays suf and lcp from left to right. To incorporate lookahead scoring,
the search skips over certain ranges of suffixes in suf using the information
from table skp. Algorithmic details are given in Beckstette et al. (2006).

The practical speedup of ESAsearch over methods that operate on the
plain text is influenced by the choice of threshold θ. The larger the value
of θ, the more likely it is to fall short of an intermediate threshold θd on
average. This in turn means that the computation of the scores can be stopped
earlier and more suffixes can be skipped by utilizing the information stored
in tables lcp and skp. As shown in Beckstette et al. (2006), the expected
runtime of ESAsearch is sublinear in the text length, whereas its worst case
runtime is O (n+m ) under the special condition that n≥|A|m +m−1 holds,
independent of the chosen threshold θ. The high speed of ESAsearch is the
foundation for the speedup of database searches with pHMMs described in
the sequel.

2.3 Efficient computation of score thresholds from
p-values

To differentiate between match and mismatch, ESAsearch requires a score
threshold parameter θ. However, PSSM scores are not equally distributed
and thus scores of two different PSSMs are not comparable. This makes it
difficult to choose a global score cutoff, meaningful for all PSSMs. Individual
score cutoffs must be derived from p-values. This can be computed by
dynamic programming (Rahmann, 2003; Staden, 1990; Wu et al., 2000),
but is expensive as the complexity depends on the range of possible score
values. For arbitrary floating point scores this problem is NP-hard (Touzet
and Varré, 2007; Zhang et al., 2007). PoSSuMsearch2 uses the LazyDistrib
algorithm (Beckstette et al., 2006) to speedup the computation of exact p-
values for given PSSM scores. By lazily computing only the tail of the
distribution function, LazyDistrib obtains a speedup of more than 300,
compared with previous methods based on dynamic programming. For the
special case of PSSMs employing floating point scores of several decimal
digits, p-value computation could be further improved by more than a
magnitude using the method of Touzet and Varré (2007), but this has not yet
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Fig. 2. (A) Non-overlapping alignment blocks, excised from ungapped
regions of a multiple alignment. Since li ≤ri < lj ≤rj for 1≤ i≤ j≤5, A=
A1,A2,A3,A4,A5 is an ordered sequence of non-overlapping alignment
blocks suitable to construct a PSSM-FM M=M1,M2,M3,M4,M5.
(B) Matches of Mi,i∈[1,5], on sequence S, sorted in ascending order of their
start position. (C) Graph-based representation of the matches of Mi,i∈[1,5].
An optimal chain of collinear non-overlapping matches is determined, by
computing an optimal path in the directed, acyclic graph. Observe that not
all edges in the graph are shown in this example and that the optimal chain
(indicated here by their black marked members) is not necessarily the longest
possible chain.

been integrated in the PoSSuMsearch software. Building on these techniques
for fast searching of single PSSMs, we now proceed to their generalization
to PSSM family models (PSSM-FMs).

2.4 PSSM-FMs
Let A=A1,A2,...,AL be a sequence of non-overlapping alignment blocks.
These alignment blocks are excised from a multiple alignment and the
indexing from 1 to L reflects their order of occurrence in the alignment.
See Figure 2A for an example. A PSSM-FM M of length L is a sequence
of L PSSMs M=M1,M2,...,ML where Mi denotes the PSSM derived from
Ai, i∈[1,L]. The order � of the PSSMs occurring in M is imposed by the
order of the corresponding alignment blocks. In practice, M can be obtained
from multiple alignments of related protein sequences (i.e. of a protein
family). PSSMs can be computed from the blocks by several well-known
methods (Gribskov et al., 1987; Henikoff and Henikoff, 1996; Tatusov et al.,
1994). A match to M is a non-overlapping sequence of matches for some
or all of the PSSMs in M in their specified order. We will now make this
more precise.

Consider a PSSM-FM M with total order �. Let MS be the set of all
matches for all M ∈M in sequence S of length n. A match is represented
by a triple (M,p,s) such that M matches at position p in S and s :=
sc

(
S[p..p+m−1],M)

is the corresponding match score.
We say that matches (M,p,s) and (M ′,p′,s′) are collinear, written as

(M,p,s)� (M ′,p′,s′) if M �M ′ and p+|M|≤p′. A chain C for family model
M is a sequence of matches

C=〈(M1,p1,s1),(M2,p2,s2),...,(Mk,pk,sk)〉,

all from MS, such that (Mi,pi,si)� (Mi+1,pi+1,si+1) for all i, 1≤ i≤k−1.
To incorporate a measure of match quality into PSSM-FMs, we associate

with (M,p,s) a p-value π(M,s) and a weight α(M,s) defined by

α(M,s)= −ln (1− (1−π(M,s) )n−m+1 )

ln (n )
. (1)

The chain score of a chain C is defined by

csc
(C)=

k∑

i=1

α(Mi,si). (2)

The motivation for Equation (1) is as follows. π :=π(M,s) is the
probability for the event that M matches a random string w of length m=|M|
for score threshold s by chance, i.e. π=P

[
sc

(
M,w

)≥s
]
. Thus, (1−π ) is

the probability for the complementary event that M does not match a random
string of length m, and (1−π )n−m+1 is the probability that there is no match
in n−m+1 random strings. This corresponds to the number of different
positions that M can actually match in a string of length n. Conversely,
1− (1−π )n−m+1 is the probability for the event that there is at least one
in n−m+1 random strings that matches M with a score at least s. We take
the logarithm to obtain additive weights and divide by ln(n) to account for
sequence length.

The smaller the p-values of the matches in a chain (i.e. the more significant
the matches of single PSSMs M are), the larger the fragment weights get,
and hence the overall chain score. Consequently, chains that consist of a
number of significant matches are assigned larger chain scores than those
with fewer, or many less significant matches. Equation (2) implicitly assumes
independence of random strings, which is certainly an invalid assumption in
our case as the ‘random strings’ are overlapping substrings of some longer
sequence. Yet, our experiments confirm our chain scoring to work well in
practice; it is significantly better than a more straightforward strategy that
simply computes the product of raw p-values, i.e. one that sets α(M,s)=
−ln (π(M,s) ) (see Fig. 2 in the Supplementary Material).

2.5 A specialized and improved PSSM chaining method
Thus far our description was based on a single sequence. However, the
results described below are based on a large set of sequences S1,...,Sk . To
handle these, we concatenate the single sequences with separator symbols,
and construct the enhanced suffix array for the concatenation. For a given
PSSM-FM M, all Mi, 1≤ i≤L, are matched one after the other against the
enhanced suffix array. This gives match sets MS(Mi) for PSSM Mi.

The PSSM chaining problem for a single sequence Sj can be considered
a chaining problem for pairwise matches between sequence Sj and a virtual
sequence V [1..L] such that a match for PSSM Mi is a match of length
one at position i in V . The pairwise chaining problem can be solved in
O(blogb) time using an algorithm described in Abouelhoda and Ohlebusch
(2005), where b=|MS(Sj)| and MS(Sj) is the set of PSSM matches in Sj . This
algorithm is called the general chaining algorithm. For the special case of
the PSSM chaining problem, we have specialized and improved the general
chaining algorithm to obtain a method with the following advantages:

• While the general chaining algorithm requires a dictionary data
structure with insert, delete, predecessor and successor operations
running in logarithmic time (e.g. an AVL-tree or a red-black tree), our
approach only needs a linear list, which is much easier to implement
and requires less space.

• While the general chaining algorithm requires an initial sorting
step using O(b∗ logb∗) time, our method only needs O(b∗ +∑k

j=1
∑L

i=1 bj,i logbj,i) time for this step. Here, b∗ is the total size of all
sets MS(Mi) and bj,i =|MS(Sj,Mi)|, where MS(Sj,Mi) is the set of all
PSSM matches of PSSM Mi in sequence Sj .

• While the general chaining algorithm solves the chaining problem for
MS(Sj) in O(blogb) time, our method runs in O(b ·L) time. If L is
considered to be a constant, the running time becomes linear in b.

The details of the improved chaining method are described in the
Supplementary Material.

2.6 Using PSSM-FMs for sequence classification
To employ PSSM-FMs for protein family classification, we combine the
three algorithms sketched in Sections 2.2–2.5. Namely (i) ESAsearch for
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fast searching with single PSSMs; (ii) LazyDistrib for exact and efficient
p-value computation; and (iii) chaining of single PSSM matches in the form
of the chaining method sketched in Section 2.5. All three algorithms are
implemented in PoSSuMsearch2 and, in combination provide, an efficient
solution to the problem of protein family classification. In the first phase,
PoSSuMsearch2 computes single PSSM matches for the PSSMs of a family
model using algorithm ESAsearch. In the second phase, PSSM matches
obtained in phase one and their ordering information are used to compute
optimal chains of PSSM matches according to the order given in the family
model.

When classifying an unknown protein sequence into a known family, a
sequence is searched with several PSSM-FMs, representing different protein
families. The classification into a certain family should be based on the
quality of the best match of a sequence to the corresponding family model.
Hence, the objective is to determine the best chain C∗

M,S of PSSM matches
in a sequence S for a given family model M and their chain score

csc∗M,S :=csc
(C∗

M,S

)
with (3)

csc
(C∗

M,S

)=max{csc
(CM,S

) |CM,S is a chain for M on S}. (4)

We call such a chain an optimal chain. With the definition of optimal
chains and their chain scores, we introduce a quantifiable, rankable criterion
of match quality to our PSSM-FM concept, making it applicable for
sequence classification. More precisely, let S be a sequence and F =
{M1,M2,...,MT } be a collection of T PSSM-FMs, representing T distinct
protein families. Further, let csc∗F ,S :=max{csc∗Mi,S |Mi ∈F} be the
maximal score of all optimal chains in S over all family models in F . We
classify S into the family represented by M∈F if and only if csc∗F ,S =
csc∗M,S . That is, we classify the sequence under consideration into the
family whose family model generates the highest scoring optimal chain. In
practice, it is often useful to employ a threshold constraint, like a minimal
necessary chain length, as a lower boundary for classification. That is,
sequences not satisfying this constraint are not classified.

PoSSuMsearch2 can be used in two modes of operation:

• Mode modsearch allows sequence classification based on a, typically
small, library of PSSM-FMs. For each sequence the best matching
chains for (up to) k different family models are reported.

• Mode seqclass allows sequence classification based on a, typically
large, library of PSSM-FMs. For each model, the best matching chains
in (up to) k different sequences are reported.

Hence, mode modsearch mimics the modus operandi of program
hmmsearch, whereas mode seqclass is comparable with program hmmpfam.

3 RESULTS

3.1 PSSM-FMs for protein classification
Detection of protein families in large databases is one of the principal
research objectives in structural and functional genomics. To evaluate
the suitability of PoSSuMsearch2 employing PSSM-FMs for fast and
accurate protein family classification, we rigorously tested and validated
our method using the evaluation system Phase4 (Rehmsmeier, 2002).
We evaluated the sensitivity and specificity, addressing different database
search scenarios at different levels of difficulty. That is, we measured
our method’s ability to detect (A) very close, (B) close and (C) distant
sequence relationships and compared the obtained results with those
gained by the HMM-based hmmsearch from the HMMER package, which
marks the state-of-the-art in this field. For the evaluation, separated
training and test sets (i.e. the sets that define the true positives) were
created from the SCOP database (Andreeva et al., 2008). SCOP contains
protein sequences classified into families, superfamilies, folds and classes,
depending on their structural relationships. To minimize the influence
of redundancies on the results of our experiments, we used the non-
redundant PDB90 subset of SCOP (Rel. 1.75), which contains sequences

Table 1. Evaluation scenarios and number of models used in the experiments
to assess method sensitivity and specificity

Scenario (#models) Description

(A) Very close
relationship (561)

For each superfamily: for each family, half of its
sequences are chosen as test sequences, and the
remaining ones are chosen as training sequences.
The sequences of the surrounding superfamily are
ignored in the evaluation.

(B) Close relationship
(474)

For each superfamily, half of the sequences of each
of its families are chosen as training sequences and
the remaining ones are chosen as test sequences.

(C) Distant
relationship (1221)

From a superfamily, each family in turn is chosen
to provide the test sequences. The remaining
families within that superfamily provide the
training sequences.

A

B

C

Fig. 3. Construction of training and test sets for (A) very close, (B) close
and (C) distant relationships.

with pairwise homology of at most 90%. This subset consists of a total
of 15 440 amino acid sequences classified into 3890 families and 1955
superfamilies.

3.1.1 Model construction and scoring The three scenarios used for our
evaluations differ in how training and test sets are constructed from SCOP
data. Table 1 and Figure 3 give more details on the three scenarios. The
task of the searching program in each case is to find, preferably, only
protein sequences from the test sets in the whole SCOP database, while
only providing the corresponding training sets to the searching program.
That is, a perfect searching method would always find exactly the set of true
positives, which is the test set.
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Fig. 4. Classification performance of PoSSuMsearch2 using PSSM-FMs
versus hmmsearch using pHMMs in the three evaluation scenarios. Shown
are percentage true positives values averaged over all test families, called
the average percent coverage value or just coverage for short (y-axis), for
different numbers of accepted false positives (x-axis).

Since some superfamilies in SCOP contain only one family and some
families are very small, we employed the following criteria to select
superfamilies and families for evaluation. Only superfamilies comprised
of at least two families were selected. From these superfamilies, families
were chosen to be test families, if both, the family itself and the
remainder of the superfamily contained at least five sequences. The resulting
numbers of families employed in each evaluation scenario are given in
Table 1. From each training set we constructed a PSSM-FM for use with
PoSSuMsearch2 and a pHMM for hmmsearch, respectively. With these
models, we subsequently searched the sequences in the corresponding test
set. Both model types are derived from a multiple alignment, which we
compute from each training set using CLUSTAL W (Higgins et al., 1994)
with default parameters. To construct PSSM-FMs, we excised from the
multiple alignments all blocks of width 6–12, favoring wider blocks and
allowing at most 20% gaps per column inside a block. For this task, we
used the BLOCKMAKER program from the BLIMPS distribution (Henikoff
et al., 1995). We retained the block order and computed from the blocks
log-odd score-based PSSMs with the method of Henikoff and Henikoff
(1996). For this, we estimated residue probabilities of observing a certain
residue in a column of the alignment block from relative frequencies.
From the same multiple alignments, calibrated pHMMs for disposition with
hmmsearch were computed using hmmbuild and hmmcalibrate (HMMER
package version 2.3.1, using the programs’ default parameters). Thus, the
so computed PSSM-FMs and pHMMs are descriptors for their respective
training sets and serve as input for a database search with PoSSuMsearch2
and hmmsearch, respectively. In these searches, thresholds were set in a
very relaxed way (for hmmsearch E-value cutoff 10 and for PoSSuMsearch2
single PSSM p-value cutoff of 0.1) so that all sequences irrespective of
their score are reported. Matches to a model were ranked by their method-
specific scores in descending order, i.e. in case of PoSSuMsearch2 the best
chain score csc∗M,S , and in case of hmmsearch the sequence classification
score.

3.1.2 Assessment of sensitivity and specificity To assess the sensitivity
and specificity of our PSSM-FM approach and to compare the classification
accuracy with hmmsearch in the three different evaluation scenarios, we
determined the percentage of true positives in all test sets (also called the
coverage) that is achieved by the method when accepting different counts
of false positives. We plotted the (accepted) false positive counts versus the
average percent coverage. See Figure 4.

3.1.3 Comparison of runtime and scalability All benchmark experiments
described in this article were performed on a single Intel Xeon CPU running
at 2.3 GHz. For runtime experiments, we took the first 100 protein families
from the Pfam Rel. 23.0 database (Finn et al., 2008), and computed PSSM-
FMs from the Pfam seed alignments by excising alignment blocks as
described above, but of width 5–8. This resulted in 100 models, consisting
of 2096 individual PSSMs. From the same alignments, we generated 100
calibrated pHMMs using hmmbuild/hmmcalibrate. We searched with these
family descriptors in the UniProtKB/Swiss-Prot Rel. 57.5 database (Wu
et al., 2006), containing 470 369 protein sequences in 167 MB. It took
PoSSuMsearch2 ∼28.1 min to find all matches to the PSSM-FMs, using
a p-value threshold of 10−4 for each PSSM. For hmmsearch, we chose
an E-value of 10−5 in order to find roughly the same set of matches. It
took hmmsearch ∼30 h to find matches to the pHMMs. This makes for a
speedup factor of more than 64.8 for PoSSuMsearch2 over hmmsearch.Along
with these results, PoSSuMsearch2 clearly showed sublinear time scaling
when applied to subsets of UniProtKB/Swiss-Prot of different sizes,
whereas hmmsearch showed linear scaling behavior due to the underlying
Viterbi algorithm. For the results of this experiment, see Figure 3 in the
Supplementary Material.

3.2 Acceleration of pHMM-based database searches
Here, we evaluate the performance of PoSSuMsearch2 when it is used as
a filter to reduce the search space for hmmsearch. The combination of
PoSSuMsearch2 and hmmsearch is called PSfamSearch. The intention is to
speedup the database search while keeping the sensitivity of hmmsearch.

As a prerequisite for reliable filtering, we have to calibrate p-value cutoffs
for the PSSM-FMs such that they match the corresponding pHMMs trusted
cutoff (tc) and noise cutoff (nc). That is, our calibrated PSSM-FMs operate
on the same level of sensitivity as hmmsearch employing the pHMM, but with
possibly reduced specificity. Hence, the determination of a proper family-
specific p-value cutoff is crucial for the sensitivity as well as overall speedup
of PSfamSearch. A too stringent cutoff may reduce the search space too
much and thus may have a negative effect on the sensitivity. On the other
hand, a too relaxed cutoff may not sufficiently reduce the search space
and lead to long running times. In the following, we evaluate two different
strategies for cutoff calibration: cutoff calibration for lossless filtering and
cutoff calibration based on training- and test-set separation.

3.2.1 Cutoff calibration for lossless filtering We start by searching with
a pHMM representing a protein family in a large protein database like
UniProtKB/Swiss-Prot using hmmsearch with the model’s trusted and
noise cutoffs, respectively, and tabulate all matching sequences. From the
seed alignment of the employed pHMM, we construct a PSSM-FM with
a block width of 6–12 and use this family model to iteratively search
UniProtKB/Swiss-Prot using PoSSuMsearch2. In each iteration, we relax
the p-value cutoff until we find all the sequences also detected by hmmsearch
using the model’s trusted and noise cutoffs respectively. With this procedure,
we determine p-value cutoffs denoted by πtc and πnc corresponding to the
pHMM’s trusted and noise cutoffs in terms of sensitivity. Observe that the
set of matching sequences detected by PoSSuMsearch2 using cutoff πtc or
πnc may be a super set of the set of sequences detected by hmmsearch
employing the pHMM’s trusted and noise cutoffs. However, since we are
interested in using PSSM-FMs searched with PoSSuMsearch2 as a prefilter
for search space reduction for hmmsearch, sensitivity is more important than
specificity. Once πtc and πnc are computed on a large protein database,
they are, together with the PSSM-FM, stored on file. That is, for further
searches with hmmsearch using the model’s trusted or noise cutoffs, we can
use PoSSuMsearch2 using cutoff πtc or πnc as a filter and apply the compute
intensive hmmsearch only on sequences that contain chains matching to
the PSSM-FM. Sequences that contain no such chains are filtered out. Since
sequences containing sufficiently long chains constitute only a small fraction
of all sequences to be searched and since PoSSuMsearch2 is much faster than
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hmmsearch, we expect a reduced overall runtime. We tested this hypothesis
with the following experiment.

We applied PSfamSearch to the first 200 out of 3603 pHMMs of
the TIGRFAM database (Rel. 8.0) on the complete UniProtKB/Swiss-
Prot database (Rel. 57.5, 471 472 sequences of total length ∼167 MB).
We determined PoSSuMsearch2 p-value cutoffs corresponding to hmmsearch
trusted as well as noise cutoffs with the iterative procedure described above.
We measured the search space reduction (see Supplementary Fig. 4 for results
for the first 20 TIGRFAM families) and the total runtimes of PSfamSearch and
compared them with hmmsearch operating on the unfiltered dataset. PSSM-
FM-based filtering reduces the search space and hence the overall runtime
considerably. For example, for family TIGR00011 only five sequences
remain after the filtering step and are handed over to hmmsearch. Filtering
with p-value cutoffs corresponding to the less-stringent noise cutoffs reduced,
in the worst case (TIGR00001), the search space by ∼80%. For all 200 tested
families, the overall runtime is reduced from 4233 (4234) to only 46 (117)
min when using trusted (noise) cutoffs. This is a speedup of factor 92 (36).

We emphasize that in this experimental setup, PSfamSearch and direct
hmmsearch obtain exactly the same results on the full sequence set. Hence,
PoSSuMsearch2 works as a perfect, lossless filter. This is not too surprising,
since thresholds were trained/adjusted on the same set of sequences as were
searched afterwards employing these thresholds. This raises the question,
how well the calibrated p-value cutoffs generalize to sequences not included
in the training set used for threshold determination. To test this, we
performed additional experiments where p-value cutoffs are calibrated based
on training- and test-set separation.

3.2.2 Cutoff calibration based on training- and test-set separation For
the first 200 families listed in TIGRFAM, we built PSSM-FMs from the
families’ seed alignments with the procedure described in Section 3.1.
We calibrated the p-value cutoffs and minimal chain lengths to match all
sequences of training sets of different sizes. Training sets contain every k-th
sequence returned by direct hmmsearch on UniProtKB/TrEMBL Rel. 40.3
(7 916 844 protein sequences with a total length of 2.58 GB) for k ∈{2,3,4,5}
using the pHMMs’ trusted and noise cutoffs (for k =2 only), respectively.
That is, we evaluated the classification performance of PSfamSearch using
training sets that consist of 20%,25%,33% and 50% of the sequences
matched by the pHMM. We employed these models and cutoffs in a database
search with PSfamSearch on complete UniProtKB/TrEMBL and measured
the overall running time and true positives coverage per family and compared
the running time with the time needed by direct hmmsearch using trusted
cutoffs. See Figure 5 and Supplementary Table 1 for the results of this
experiment.

PSfamSearch returned >99.54% of the original results determined by
hmmsearch, including their E-values and scores, when using half of the
sequences matched by hmmsearch as training sets. Of 150 851, 523 matches
(0.34%) were missed. With p-value cutoffs calibrated to match the sensitivity
level of hmmsearch using noise cutoffs, PSfamSearch detected 99.4%, while
missing 649 out of 180 263 sequences. See Figure 6 and Supplementary
Tables 2 and 3 for more detailed results for the first 20 TIGRFAM families.

It took PSfamSearch ∼24.8 h to search with the first 200 TIGRFAM
families, compared with >45 days for direct hmmsearch using the models’
trusted cutoffs. That is, PSfamSearch achieves a speedup of factor 43.8
over direct hmmsearch, while retaining >99.5% of the original results. In
this experiment, the set of sequences to be searched with hmmsearch was
reduced to only 0.80% of all sequences. Using the less-stringent noise cutoffs,
PSfamSearch reduces the search space to only 3.83% of the original search
space size also with a sensitivity of 99.5% (see Supplementary Table 3 for
more detailed results for the first 20 TIGRFAM families) and a speedup of
factor ∼14 over direct hmmsearch.

3.2.3 Whole proteome annotation using PSfamSearch In an additional
experiment we searched with pHMMs and PSSM-FMs representing the
first 500 protein families in the TIGRFAM database in 26 publicly
available Escherichia coli proteomes (see Supplementary Table 4 for further
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Fig. 5. Comparison of running times (x- and y-axis) and achieved percentage
true positive values (color coded) between PSfamSearch and hmmsearch,
when searching with PSSM-FMs (pHMMs) representing the first 200
TIGRFAM families on UniProtKB/TrEMBL Rel. 40.3. Different values of
k represent different training set sizes. For further details see text.
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Fig. 6. Reduction of UniProtKB/TrEMBL achieved by PSSM-FM filtering
for the first 20 TIGRFAMs families. Dark (light) bars indicate the effective
number of sequences to be searched with hmmsearch (x-axis) when using
P-value cutoffs πtc (πnc). The bar on the top shows the total number of
sequences in UniProtKB/TrEMBL Rel. 40.3 (7 916 844 protein sequences
with a total length of ∼2.58 GB) needed to be searched by direct hmmsearch
without filtering. Note that the x-axis has a logarithmic scale.

details). These consist of 120 394 protein sequences with a total length
of 37.3 MB. Cutoffs πtc and πnc for PSSM-FMs were adjusted based
on UniProtKB/TrEMBL results as described above. In this experiment,
hmmsearch detected 11 712 (12 516) matches to the 500 protein families
when using trusted (noise) cutoffs and needed 2745 min for this task. Except
for 1 (2) missed sequence(s), PSfamSearch returned exactly the same results
at cutoff πtc (πnc), but it took only 93.3 (171.2) min; this makes for a speedup
of 29.52 (16.01).

3.2.4 Comparison of PSfamSearch with other hmmsearch acceleration
solutions Another approach to accelerate hmmsearch is the HMMERHEAD
program (Poster presentation at RECOMB2007).HMMERHEAD uses a
filtration approach that employs four filtering stages with increasing
computational costs to reduce the search space for the subsequent application
of the hmmsearch engine. We applied HMMERHEAD to the same
experimental setup as described in the former paragraph. That is, we
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searched with pHMMs representing the first 200 TIGRFAM families on the
complete UniProtKB/TrEMBL database and measured the running time of
HMMERHEAD and the coverage using the models’ trusted (noise) cutoffs.
In this experiment, HMMERHEAD was able to reduce the running time
compared with direct hmmsearch from 1088.05 h to 626.08 h, while retaining
100% of the original results (for details, see Supplementary Fig. 5). This
makes for a speedup of factor ∼1.7, with per model speedups in the range
of 1.4–1.9.

rpsblast (Marchler-Bauer and Bryant, 2004) may be seen as an alternative
to hmmsearch employing pHMMs. It uses psi-blast’s (Altschul et al., 1997)
checkpoint files which can be seen as models for protein families, much
like pHMMs and our PSSM-FMs. rpsblast-compatible models representing
TIGRFAM protein families are part of the CDD database (Marchler-Bauer
et al., 2009). To test the ability of rpsblast to obtain the same results as
hmmsearch and hence to offer an alternative to hmmsearch and PSfamSearch,
respectively, we compared the classification performance of rpsblast with
that of PSfamSearch employing PSSM-FMs for the first 200 TIGRFAM
families with p-value cutoffs πtc and πnc, respectively. As a state of truth
we use the results returned by hmmsearch using trusted (noise) cutoffs.
In this experiment, rpsblast achieved an averaged coverage in the range
of 85.6–98.6% (84.7–95.5%) compared with hmmsearch using trusted
(noise) cutoffs. Using the same experimental setup, PSfamSearch achieved
a uniform coverage of 99.54% (99.47%) when using cutoffs πtc (πnc).
See Supplementary Figure 6 for further details on this experiment. It took
PSfamSearch 1490 (4676) min using cutoffs πtc (πnc) to perform this task
(Supplementary Table 1), while rpsblast needed only 1341.96 min. Hence,
by application of rpsblast one obtains an additional speedup of factor 1.1
(3.4) at the price of reduced sensitivity.

Recently, Lingner and Meinicke (2008a) described an approach for search
space reduction applicable to speedup database searches with pHMMs
based on machine learning techniques. Although the described method
and presented results seem to be promising, up to now only a prototype
implemented in MATLAB and a web server for interactive usage (Meinicke,
2009) are available.

4 DISCUSSION AND CONCLUDING REMARKS
We have presented a new database search method based on
PSSM-FMs. It is well suited for fast and reliable protein family
classification. Moreover, it can serve as a filter to considerably
speedup database searches with pHMMs, while retaining almost
100% sensitivity. Our method combines fast index-based searching
of PSSMs, an efficient algorithm for exact p-value computation for
PSSM score thresholds, and a fast fragment chaining algorithm.
The methods described here are implemented in the robust and
well-documented software tool PoSSuMsearch2.

We carefully evaluated the performance of PSSM-FMs in terms of
sensitivity and specificity by using PoSSuMsearch2 in two different
modes of operation, i.e. for direct sequence classification, and
as a prefilter for hmmsearch. We have shown that PSSM-FMs
are only marginally inferior to pHMMs when used for sequence
classification. The FP50 value (the average coverage achieved when
tolerating 50 false positives) for PSSM-FMs never dropped below
the FP50 value for pHMMs by more than ∼6 percentage points in
all of our three evaluation scenarios (Fig. 4). This renders PSSM-
FMs a fast alternative to pHMMs: for example, we have observed
that PoSSuMsearch2 is more than 64 times faster than hmmsearch
for the same classification task.

We also demonstrated that PSSM-FMs are well suited for
prefiltering sequence databases to be searched by hmmsearch.
Using PSfamSearch (the combination of PoSSuMsearch2 and
hmmsearch), we observed dramatic search space reductions for

UniProtKB/TrEMBL to 0.80% and 3.83%, respectively, when
filtering with 200 PSSM-FMs built from the TIGRFAM database
using the pHMMs’ trusted and noise cutoffs, respectively. The
reduction of the sequence database resulted in speedups of ∼43.8
and 14 over original, unfiltered hmmsearch, respectively, while
retaining 99.5% of the original results in both cases. Extrapolated to
all 3603 families in TIGRFAM (Rel 8.0), we estimate a runtime of
∼18.6 days for PSfamSearch, and 2.23 years for direct hmmsearch
using the models’ trusted cutoffs. Notably, the observed speedups
come from an algorithmic as well as a conceptual advancement: the
speed of index-based PSSM searching, and the astonishing fact that
pHMMs can be approximated well by the much simpler PSSM-FMs.
This is also consistent with the finding that protein classification
works well with word correlation matrices (Lingner and Meinicke,
2008b).

In our experiments, PSfamSearch also showed a >25-fold
speedup over the program HMMERHEAD. Compared with the well-
known rpsblast tool, PSfamSearch is slightly slower. PSfamSearch,
however, achieved a significantly higher sensitivity in our
experiment. In the experiment showing the ability of PSfamSearch
for efficient annotation of E.coli proteomes, PSfamSearch returned
>99.99% of the original hmmsearch results and showed a speedup
over direct hmmsearch of ∼30.

PSfamSearch is twice as fast as the previously fastest software-
based acceleration method for hmmsearch (Sun and Buhler, 2009).
Note that Sun and Buhler (2009) focus on the problem of designing
unordered sets of motifs with good filtering characteristics while
searching them with straightforward algorithms, whereas our work
focuses on efficient index-based searching in sublinear expected
time while keeping the derivation of motifs rather simple. This raises
the question whether a future combination of both approaches might
lead to further improvements in software-based pHMM database
search methods.
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