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Abstract
The increasing prevalence of obesity suggests a need to develop a convenient, reliable, and
economical tool for assessment of this condition. Three-dimensional (3-D) body surface imaging has
emerged as an exciting technology for the estimation of body composition. We present a new 3-D
body imaging system, which is designed for enhanced portability, affordability, and functionality.
In this system, stereo vision technology is used to satisfy the requirement for a simple hardware setup
and fast image acquisition. The portability of the system is created via a two-stand configuration,
and the accuracy of body volume measurements is improved by customizing stereo matching and
surface reconstruction algorithms that target specific problems in 3-D body imaging. Body
measurement functions dedicated to body composition assessment also are developed. The overall
performance of the system is evaluated in human subjects by comparison to other conventional
anthropometric methods, as well as air displacement plethysmography, for body fat assessment.
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1 Introduction
The importance of human body composition research has increased due to the prevalence of
obesity, a health disorder characterized by excess body fat. Obesity is a public health concern
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because of its associations with chronic diseases, including type 2 diabetes, hypertension, and
coronary heart disease.1,2 The World Health Organization (WHO) classifies obesity in terms
of body mass index (BMI), calculated by dividing body weight (in kilograms) by squared height
(in square meters).1 However, BMI is only a crude conjecture of body fat, as it can be influenced
by muscularity, age, gender, and ethnicity.2 More precise, noninvasive, inexpensive methods
are needed to estimate the impact of the size and shape of the body on the distribution and
degree of adiposity and the associated health risks.

A multiplicity of techniques have been developed for direct measurements of the amount and
distribution of body fat. Previous technology, such as hydrodensitometry3 (underwater
weighing) and air displacement plethysmography,4 focused on densitometry methods for
determinations of body volume and estimations of overall density. These methods give a
percent of body fat based on empirical predicting models.5,6 The significant time and subject
burden of hydrodensitometry with subjects repeatedly being submerged in water limited its
applicability to certain populations. Currently, volumetric measurements have been improved
by air displacement technology such as the BodPod®. But its bulkiness and high expense have
reserved its use to research and special facilities. A more rapid and inexpensive method to
estimate body fat is bioelectrical impedance analysis,7 although this method is not
recommended for research in persons with altered hydration states.8 Dual-energy x-ray
absorptiometry9 (DXA), computed tomography10 (CT), and magnetic resonance imaging11

are more advanced and accurate techniques, but their significant expense and nonportability
restricts their use to medical and research settings. Furthermore, the ionizing radiation of DXA
would limit its continual use; the stronger radiation of CT is much more worrisome.

The escalation of worldwide obesity has intensified the demand for a convenient, safe, and
relatively inexpensive device for the estimation of body size, shape and composition. Recent
studies have shown that three-dimensional (3-D) body surface imaging is a potential alternative
to assess body fat and to predict the risk of metabolic syndrome.12,13 This type of instrument,
commonly called a body scanner, captures the surface geometry of the human body by utilizing
digital techniques. Body scanning is a densitometry method for body fat assessment that
provides noncontact, fast, and accurate body measurements. Anthropometric parameters
computed by this system include waist and hip circumferences, sagittal abdominal diameter,
segmental volumes, and body surface area. Therefore, body scanning provides more
comprehensive measurements than traditional anthropometric tools.

Although body-scanning technologies have been evolving for the past several decades, the
application of 3-D body measurement for body composition assessment is still at an early stage.
The development of body scanning initially focused on custom clothing, character animation,
and other applications.14,15 Currently, several body scanners are commercially available, but
their high price and large size limit their practicality for field studies. In addition, because
software systems capable of performing body composition assessment are rarely available,
there is a need to promote 3-D body measurement for body composition research. Thus, the
purpose of this study was to develop a portable, low-cost, 3-D body surface imaging system
that would be readily accessible to body composition researchers and public health
practitioners.

The majority of current body scanners are based on laser scanning, structured light, or stereo
vision. In laser scanning, consecutive profiles are captured by sweeping a laser stripe across
the surface.16 This system is more intricate and expensive than the other two types as it involves
moving parts. Structured light utilizes a sequence of regular patterns to encode spatial
information.17 It requires dedicated lighting and a dark environment, which makes the
hardware relatively more complex than stereo vision. Stereo vision18 works similarly in
concept to human binocular vision, and in principle, it is a passive method that it is not
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dependent on a light source. The major challenge in stereo vision is in disparity computation
when the surface is without texture. Unfortunately, human skin is not rich in texture. Therefore,
a projector to generate artificial texture on the scanned surface is usually required in a practical
system. Data acquisition by stereo vision is very fast because one image from each camera can
be captured simultaneously. In contrast, images must be captured sequentially in
synchronization with pattern projections in structured light. In the case of whole body scanning,
image acquisition by structured light can be further slowed down, because multiple sensing
units in the system cannot work simultaneously; otherwise pattern projections from different
units may interfere with each other. Rapid data acquisition is critical to the curtailment of
artifacts caused by body movements because a slight body position movement may induce
unacceptable inaccuracy in quantification of body volume. Therefore, the new system
presented here is based on stereo vision.

2 System Setup
In a basic stereo vision system, two slightly separated cameras reconstruct the visible surface
of an object. Since the two cameras observe the object from slightly different views, the
captured left and right images are not exactly the same. The relative displacement of the object
in the two images is called the disparity, which is used to calculate the depth. A prototype
whole-body imaging system based on stereo vision was developed in this study. To reduce the
cost and shorten the duration of development, off-the-shelf components such as cameras and
projectors were utilized. The basic unit of the system is a stereo head that consists of a pair of
cameras and a projector. The projector is used to shed artificial texture onto the body. Multiple
stereo heads are required for full- body imaging. Our previous work on a rotary laser scanner
indicates that full-body reconstruction can be made from two scanning units that are placed on
the front and back sides of the subject, respectively.19 A similar construction was used in the
study. However, two stereo heads are ncecessary to cover each side of the body, due to the
limited field of view of the cameras and projectors. Therefore, there are a total of four stereo
heads in the system, as illustrated in Fig. 1. The four stereo heads are mounted on two steady
stands. Compared to some existing whole-body scanners, the unique setup of the system has
greatly improved its affordability and portability.

More specifically, four pairs of monochromatic CMOS cameras (Videre Design, Menlo Park,
California) with a resolution of 1280×960 were used. The focal length of the cameras was 12
mm and the baseline length was set as 90 mm. Four ultrashort throw NEC 575VT LCD
projectors (NEC Corp., Tokyo, Japan) were used to create artificial texture on the subject. At
a projection distance of 2.3 m, the image size was 1.5×1.15 m. Hence, when two such projectors
are used together with a slight overlap for each side, the field of view can be as large as 1.5×2.0
m, a size that is large enough for the majority of the population. The distance between the
stands can be reduced if we use projectors with an even smaller throw ratio, which is defined
as the projection distance divided by the image size. The cameras communicated with a host
computer via IEEE 1394 Firewire. A dual-port graphics card sent a texture pattern to the
projectors through a VGA (video graphics array) hub.

3 Algorithms
The procedures of data processing in the system are illustrated in Fig. 2. The major components
and associated algorithms are described as follows.

3.1 Image Acquisition
The cameras and projectors were synchronized by the host computer and a single random
texture pattern was sent to the projectors. Then four pairs of images were captured
simultaneously when the body was illuminated by the projectors. The entire image acquisition
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procedure was completed in 200 ms, and thus, the artifacts caused by involuntary body
movements were drastically reduced. As an example, a stereo image pair captured by one of
the stereo heads is shown in Fig. 3.

3.2 System Calibration
The system was calibrated in two separate stages: camera calibration and 3-D registration.
Camera calibration is a procedure of determining the intrinsic and extrinsic camera parameters.
The intrinsic parameters correct the distortion induced in each individual camera by imperfect
lens and lens displacement, and more specifically, include the effective horizontal and vertical
focal lengths, the principal point describing the center offset of the lens, and the radial and
tangential lens distortion coefficients. The extrinsic parameters describe the position and
orientation of the each individual camera in a reference coordinate system, and can be
represented by a rotation matrix and a translation vector. Based on the extrinsic parameters of
the two cameras of a stereo head, their relative position and orientation was determined. The
Small Vision System shipped with the cameras provided a toolbox of plane-based calibration
routines, using the algorithm originally proposed by Zhang.20

The preceding camera calibration procedure was performed separately on each individual
stereo head, and each stereo head had its own camera coordinate system. The goal of 3-D
registration is to transform each camera coordinate system to a common world coordinate
system so that 3-D data from each view can be merged to complete surface reconstruction.
This transformation followed the rigid body model since it does not change the Euclidean
distance between any points. To determine a rigid body transformation, three noncollinear
points are sufficient. For this purpose, we designed a planar board target. There are six dots on
each side of the board, and each stereo head requires only three of them. The world coordinates
of the centers of the dots were manually measured. The images of the target were first rectified,
and then the dots were identified and sorted. Next, the centers of the dots were estimated and
the camera coordinates of each point can be calculated from its disparity.

Within the two stages, camera calibration is relatively complicated, but it is not necessary to
repeat it frequently, since the relative position of two cameras in a stereo head can be readily
fixed and intrinsic camera parameters can be stabilized using locking lenses. Therefore, only
3-D registration is required when the system is transported. This property contributes to the
portability and also reduces maintenance cost.

3.3 Stereo Matching
Stereo matching21,22 solves the correspondence problem in stereo vision. For the stereo vision
system developed in this study, a matching algorithm with subpixel accuracy was necessary
to reach the quality of 3-D data demanded by body measurements. Additionally, because the
system was designed to capture the front and rear sides of the body only, some portions of the
body are invisible to the cameras. To deal with this issue, a surface reconstruction algorithm
(described in the next subsection) was developed that is capable of filling in the gaps in 3-D
data caused by occlusions. However, if the boundaries of the body in each view cannot be
accurately located, it would be difficult to recover the surface from incomplete data. Therefore,
in addition to high accuracy in matching, the algorithm should be able to accurately segment
the body from the background. Thus, the matching algorithm must accurately recover the
boundaries of foreground objects.

The stereo matching algorithm involves two major phases. In the first phase, foreground objects
are accurately segmented from the background of the scene, and meanwhile, a disparity map
with integer-pixel accuracy is computed. In the second phase, the disparity map is iteratively
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refined to reach subpixel accuracy. The flowchart of the algorithm is shown in Fig. 4 and is
explained as follows.

3.3.1 Phase I—The first step is to compute a disparity space image (DSI), which is a matching
cost function defined in the reference image and at each possible disparity.21 Let Il(x,y) and
Ir(x,y) be the left and right intensity images, respectively. Taking the left image as the reference,
a match is denoted as (x,y)l ↔ [x+d(x,y),y]r, where d(x,y) is the disparity map to be solved.
Suppose the images have been rectified so that the disparity exists only in the horizontal
scanline. In this paper, a match is measured by normalized cross-correlation (NCC), since it is
less sensitive to photometric distortions by the normalization in the local mean and standard
deviation.23 Accordingly, the matching cost can be defined by

(1)

where ρ(x,y,d) is the NCC coefficient. Since −1 ≤ ρ(x,y,d) ≤ 1, we have 0 ≤ C(x,y,d) ≤ 2. Here
the trivariate function C(x,y,d) is called the DSI. For the sake of conciseness, we will also
denote the DSI as Cp(d), with p being a pixel.

Then foreground segmentation is performed in the DSI. Let P denote the pixel set of the
reference image. We define L={F,B} as a label set with F and B representing the foreground
and background, respectively. Then the goal is to find a segmentation (or labeling) f(P) ↦
L that minimizes an energy function E(f), which usually consists of two terms,24

(2)

where N ⊂ P × P is the set of all neighboring pixel pairs; Dp (fp) is derived from the input
images that measures the cost of assigning the fp to pixel p; and Vp,q (fp, fq) imposes the spatial
coherence of the labeling between the neighboring pixels p and q.

To derive Dp(fp), we assume the disparity space can be divided into two subspaces: the
foreground space and the background space that contain the object and the background,
respectively. The interface between the two subspaces can be readily determined from the
known geometrical configuration of the system, as described in Ref. 25. Denote the interface

as d*(P). Now we define , and thus CF(P) and CB(P)
represent the minimum surfaces in the foreground and background subspaces, respectively. If

, we can expect that there is a good chance that pixel p belongs to the foreground. The
same applies to  and the background. Therefore, we can define Dp (fp) by

(3)

Since there are only two states in the label space L, the Potts model25 can be used to define the
spatial coherence term in Eq. (2), i.e.,
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(4)

In the 8-neighborhood system, we set βp,q = β0 if p and q are horizontal or vertical neighbors,
and  if they are diagonal neighbors.

As a binary segmentation problem, the global minimum of the energy function E(f) can be
searched by using the graph-cuts method.26 Once the pixels are labeled, each pixel in the
foreground is assigned a disparity to minimize the cost function, i.e.,

(5)

In practice, the obtained disparity map can be noisy, so median filtering is used to quench the
impulse noise. Furthermore, morphological closed and open operators are used to smooth the
contour.

3.3.2 Phase II—The disparity map from the first phase takes only discrete values, and it
should be refined to achieve subpixel precision. The refinement process is iterative and involves
two steps: local least-squares matching and global optimization. For the first step, the amount
of update is estimated locally for each pixel. The estimation can be made by minimizing the
matching cost function defined in Eq. (1). However, the process is difficult since the NCC
function ρ is highly nonlinear. So instead, the sum of squared differences (SSD) is applied to
define the matching cost as in the least-squares matching algorithm.27 If the SSD takes into
account the gain and bias factors between cameras, it is essentially equivalent to NCC. Now
the matching cost is defined as

(6)

where W(x,y) is a matching window around (x,y), and a and b are the gain and bias factors,
respectively. Then the local estimate of the disparity d̃ is obtained by minimizing the preceding
equation.

In the second step, the disparity map is optimized at a global level by minimizing the following
energy function:

(7)

where dx and dy are the disparity gradients. The first term of the function measures the
consistency with the local estimation, and the second term imposes smoothness constraints on
the solution. Note that λ is called the regularization parameter, which weighs the smoothness
term. This process follows the principles of regularization theory.28

The preceding two steps are repeated until a convergence is reached. The advantage of this
method is that high accuracy can be reached by the least-squares matching. Meanwhile,
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stability is maintained and potential errors are corrected by the global optimization. More
detailed description of the algorithm is available in. Ref. 25

The results of stereo matching on the images of Fig. 3 are shown in Fig. 5. The disparities are
coded with the standard cold-to-hot color mapping that corresponds to “far-to-close” to the
cameras. The coarse and refined disparity maps are shown in Figs. 5(a) and 5(b), respectively.
The results show that the algorithm is effective in both foreground segmentation and subpixel
matching and is promising for our application.

3.4 Surface Reconstruction
The raw data obtained from stereo matching are comprised of around 1 million scattered 3-D
points, from which it is hard to read and handle the desired information directly. Surface
reconstruction is a process that accurately fits the raw data with a more manageable surface
representation. Thus, the data can be manipulated and interpreted more easily for some specific
applications.

In developing a surface reconstruction algorithm, a proper surface representation must be
selected initially. One of the most common representations is the B-spline surface
representation due to its attractive properties such as piecewise smoothness, local support, and
the same differentiability as found with the basis functions.29 But B-spline patches require
cylindrical or quadrilateral topology, and intricate boundary conditions are necessary to zipper
patch together to represent a more complex surface. In contrast, a piecewise smooth subdivision
surface, resulting from iteratively refining a control mesh of arbitrary topology, gives a more
flexible representation.30

Since the system is made up of four stereo heads mounted on two stands that are placed in front
and in back of the subject, the scan data can be grouped into two sets that correspond to the
front and back views, respectively. For our system, a unique challenge is that there are large
gaps in the data caused by occlusions. For example, the raw data of a human subject are shown
in Fig. 6(a). The data set comprises of around 1.2 million scattered 3-D points. The objective
of surface reconstruction is to create an accurate, smooth, complete, and compact 3-D surface
model, which will be used in applications such as 3-D body measurement. A desirable
reconstruction technique should produce a surface that is a good approximation to the original
data, as well as be capable of filling the holes and gaps and smoothing out noise. In previous
work,31 an effective body surface reconstruction algorithm was developed based on
subdivision surface representation for a two-view laser scanning system. The algorithm can be
applied to the stereo vision system with a slight modification. The basic idea of the method is
described here. First, the original 3-D data points on a regular grid are resampled, and the
explicit neighborhood information of these resampled data are utilized to create an initial dense
mesh. Then the initial dense mesh is simplified to produce an estimate of the control mesh.
Finally, the control mesh is optimized by fitting its subdivision surface to the original data, and
accordingly, the body model is reconstructed.

In the example of Fig. 6, the reconstructed surface model is shown in Fig. 6(b). To demonstrate
that the algorithm is capable of gap filling, some close-up views of the model are shown in
Fig. 6(c). Note that the gap under the armpit has been completed and the holes at the sole have
been filled. Although the original data are noisy, the reconstructed surface is smooth. The foot
is one of the most difficult areas to be reconstructed due to the missing data and high noise,
but the following result is acceptable.
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3.5 Body Measurement
To create a 3-D body imaging system ready for practical use, automatic body measurement is
indispensable. A body measurement system dedicated to body composition assessment was
developed based on an earlier system that was designed for applications in apparel fitting.32

In this method, key landmarks were searched in some target zones that were predefined based
on the proportions relative to the stature. The armpits and neck were searched, with the criterion
of minimum inclination angle between neighboring triangles. The crotch was detected by
observing the transition of cusps along successive horizontal contours. Once the key landmarks
were located, the body was segmented into the torso, head, arms, and legs. Then various
measures such as circumferences and lengths were extracted. The functions of 3-D
measurement can be enhanced further by taking advantage of modern graphics hardware.
Volume measurement was performed using a depth buffer of the graphics hardware. In modern
computer graphics, the depth buffer, also called the z-buffer, records a depth value for each
rendered pixel. With 3-D APIs such as OpenGL, (Ref. 33) the z-buffer was switched to keep
track of the minimum or maximum depth (distance to the viewport) for each pixel on the screen.
To measure the body volume, the 3-D body model was rendered twice in the anterior view
using orthographic projection. During the two renderings, the z-buffer was set to record the
minimum and maximum depth of each pixel, respectively. Then the two depth maps were read
from the z-buffer corresponding to the front and back surfaces of the body, respectively. As a
result, a thickness map of the body from the difference between the two depth maps was created.
Finally, the body volume was calculated by integrating over the thickness map based on the
known pixel scale.

In principle, the z-buffering method is equivalent to resampling the surface data on a regular
grid, and thus the size of the viewport that determines the sampling interval may affect the
measure accuracy. However, we found that a moderate size of the viewport such as 500×500
pixels is sufficient to reach high accuracy. This technique is extremely efficient in time cost,
as compared to the slice-based methods.

To illustrate the output of the body measurement system, results on two human subjects are
shown in Fig. 7. The measured parameters included circumferences and cross-sectional areas
of a number of locations (such as the chest, waist, abdomen, hip, upper thigh, etc.), whole-
body volume, segmental volumes (such as the abdomen-hip volume and the upper thigh
volume), and body surface area.

3.6 Obesity Assessment
The anthropometric measures extracted from a 3-D body model can be used to assess the overall
amount and the distribution of body fat. For example, 3-D body measurement can be utilized
to assess central obesity, which refers to excessive abdominal fat accumulation. From a 3-D
body model, waist circumference and waist-hip ratio can be calculated easily. These two
measures are widely accepted as strong indicators for assessing central obesity.34 A significant
advantage of 3-D body measurement is that it is not limited to linear measures such as
circumferences. In fact, this technology offers the possibility to derive new central obesity-
associated health indexes from higher dimensional measures such as abdominal volume and
waist cross-sectional area.

As previously mentioned, whole-body volume can be used to estimate percent body fat by
using the two-component body model when body weight is also measured. If the body is
assumed to be composed of fat and fat-free mass (FFM) and these densities are constant, then
the percentage of body fat (%BF) can be calculated by
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(8)

where Db is the body density (in kilograms per liter) calculated by dividing body weight by
whole-body volume corrected for lung volume, A and B are derived from the assumed fat
density (DF) and FFM density (DFFM), and DF is relatively stable and is set usually as 0.9 kg/
L. But slightly different values of DFFM appear in the literature. A commonly used equation
was proposed by Siri:6

(9)

where DFFM=1.1 kg/L is assumed.

4 Experimental Evaluation and Results
To evaluate the accuracy and repeatability of the prototype 3-D body imaging system, a test
was first performed on a static object with known dimensions, and then human subjects were
tested for the measurement of body volume and dimensions. To validate its feasibility in body
fat assessment, the system was compared to air displacement plethysmography (ADP), which
has been commonly used as a method of body composition analysis.

4.1 Test on a Plywood Box
A box made of plywood was used to test the performance of the system on circumference,
cross-sectional area, and volume measurement. The dimension of the box is
505.0×505.0×915.0 mm; it was measured with a wood ruler. A 3-D model of the box and an
arbitrarily selected cross section are shown in Fig. 8. From a top view of the cross section, as
displayed in Fig. 8(b), we can observe that a near perfect square has been reconstructed. We
repeated the test 10 times over a period of a week, and each time the location of a cross section
was picked arbitrarily for measurement. The results are listed in Table 1. The coefficients of
variance (CVs) are 0.16, 0.22, and 0.11% for the circumference, cross-sectional area, and
volume measurements, respectively, which means the system is highly repeatable. The relative
errors are 0.07, 0.34, and 0.51% for these three measurements. The accuracies are high,
although errors increase with the number of dimensions.

4.2 Test on Human Subjects
4.2.1 Subjects and measurements—Twenty adult subjects (10 males and 10 females;
13 Caucasians and 7 Asians) were recruited in this research. The subjects were aged 24 to 51
yr, with weights of 47.9 to 169.5 kg, heights of 156.0 to 193.0 cm, and BMI values of 18.9 to
47.8 kg/m2. The study was approved by the Institutional Review Board of the University of
Texas at Austin. An informed written consent was obtained from each subject at the visit.

The subjects wore tight-fitting underwear and a swim cap during the test. Height, weight, waist
and hip circumferences, and waist breadth and depth were measured with conventional
anthropometric methods. Height was measured to the nearest 0.1 cm via stadiometer
(Perspective Enterprises, Portage, Michigan); weight was determined by a calibrated scale from
the BodPod® (Life Measurement Inc., Concord, California). A MyoTape body tape measure
(AccuFitness, LLC, Greenwood Village, Colorado) was used to measure circumferences, and
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an anthropometer (Lafayette Instrument Company, Lafayette, Indiana) was utilized to measure
the depth and breadth of the waist. The waist was taken at the midpoint between the iliac crest
and the lowest rib margin, and the hip was located at the level of the maximum posterior
extension of the buttocks.35

The subjects were imaged with normal breathing by the 3-D body measurement system. During
imaging, the subjects were asked to stand still in a specific posture with the legs slightly spread,
the arms abducted from the torso, and the hands made into fists. The imaging was repeated 10
times for each subject. The subjects were repositioned between scans. The subjects also were
assessed for body fat by ADP (BodPod®). The body volume obtained from the 3-D body
imaging system should be corrected for thoracic gas volume (TGV), which equals functional
residual capacity plus half of tidal volume. In this study, TGV took the value measured or
predicted by the BodPod® for consistency. The subjects were instructed to fast at least 3 h,
stay hydrated, and avoid excessive sweating, heavy exercise, and caffeine or alcohol use before
all procedures were performed.

4.2.2 Statistical analysis—Repeatability was determined by computing the intraclass
correlation coefficient (ICC) and the CV from the table of one-way random effects ANOVA
(analysis of variance). The comparisons of measurement by different methods were performed
using t tests and linear regression analysis.

Percent body fat was calculated from whole-body volume measured by 3-D body imaging and
ADP using Siri’s formula [Eq. (9)]. Percent body fat estimates determined by ADP were
compared to those obtained by the 3-D body imaging system using paired-sample t tests and
linear regression. In addition, a Bland and Altman analysis36 was used to assess agreement of
percent body fat across methods; a 95% agreement was estimated by the mean difference ±1.96
SD. For all analyses, statistical significance was P<0.05. The statistical calculations were
performed using SPSS 16.0 (SPSS Inc., Chicago, Illinois).

4.2.3 Results—The overall age and anthropometric characteristics of the 20 human subjects
are listed in Table 2. Eight subjects were of BMI ≥25.0 kg/m2, and four had of BMI ≥30.0 kg/
m2. Sample reconstructed 3-D surface models of subjects with various sizes and shapes are
shown in Fig. 9. The repeatability of the measurements is given in Table 3. All ICCs were
>0.99, and all CVs were <1.0%, except for the measurement of waist depth. The highest
precision was reached in body volume, partially due to the fact there was no ambiguity to
calculate whole-body volume for a 3-D model. However, it was difficult to locate precisely
the waist and hip, especially the waist in overweight subjects.

The accuracy of 3-D body imaging with reference to tape, anthropometer and ADP
measurements is shown in Table 4. The 3-D imaging was significantly different from tape and
anthropometer measures in hip circumference and waist depth, respectively. The differences
were not significant for body volume, waist circumference, or breadth. The degrees of
agreement also were characterized by linear regression analysis, as shown in Table 5. A
relatively high correlation was observed between 3-D imaging and tape or anthropometer
measure in body dimensions (r2>0.90), but the standard errors of the estimate (SEEs) were
relatively high (20 to 30 mm). A very good agreement was reached in body volume when 3-
D imaging was compared to ADP (r2=0.9996, SEE=0.690 L). The body volumes are plotted
with the regression line in Fig. 10. The line for the regression equation did not differ
significantly from the line of identity.

Equation (9) was used to predict body fat for both 3-D body imaging and ADP. Paired
comparisons of the percent body fat (%BF) estimated by these two techniques were performed
by linear regression and the Bland-Altman analysis (shown in Fig. 11). The prediction equation
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for the %BF by 3-D body imaging and ADP is y=0.891x+1.917, r2=0.9093, SEE=4.002. Along
with the Bland-Altman plots in Fig. 11, the bias and SD of differences between the two methods
are given in Table 6. When paired-sample t tests were performed, the methods did not differ
significantly for measurements of %BF.

4.3 Discussion
The overall performance of the 3-D body imaging system was developed and then evaluated
in human subjects. The measurements were found to be highly reproducible within persons.
The relatively small differences between methods observed for circumferences, breadths, and
depths were derived presumably from the lack of consistency in locating the landmarks. For
example, the level of the waist is usually the narrowest part of the torso for individuals of
normal weight. However, the location of the waist in the obese is not well defined. In manual
measurements, the waist can be determined as midway between the iliac crest and the lowest
rib margin.35 But this skeletal information is difficult to detect when performing measurement
on a 3-D body model. The error in the waist depth measurement was larger than that observed
in the waist breadth; perhaps, this was due to the fact that breathing had a greater effect on the
depth. Therefore, in practical applications, cautions should be taken to maximize precision.
For example, subsequent studies might examine the use of markers (i.e., a colored tape) to
pinpoint landmarks. Also, subjects could hold their breath during scans.

The body volumes measured by 3-D body imaging and ADP were related strongly, suggesting
that this method is effective for assessment of body fat. In estimates of body fat, 3-D body
imaging and ADP had relatively close agreements. This finding is encouraging since ADP has
been commonly used as a criterion method for body fat assessment. Nevertheless, the
estimation of percent body fat is very sensitive to the accuracy of body volume measurement
in the two-component body composition model. For example, Siri’s formula [Eq. (9)] yields

(10)

where W is the body weight in kilograms, and ΔV is the error of body volume measurement in
liters. If it is assumed that W=60 kg, then an error of 0.5 L in ΔV would lead to an over 4%
difference in %BF. A small error in body volume measurement can readily result from
inaccuracy of lung volume estimate or a slight movement of the body during imaging.
However, body volume is only one of a number of variables that can be measured from a 3-D
body imaging system. Its combination with other standard variables may offer better
predictions for the development of new equations to estimate percent body fat.

Note that for the development and validation of the system described in this paper raw images
were taken by the eight-camera system and retained for analysis. For actual use, to ensure the
privacy of the subjects, the images will be encoded by bit twiddling and automatically deleted
when the computation is complete.

5 Conclusions
A portable, economical 3-D body imaging system for body composition assessment was
presented. The goal was to develop an instrument that would have applications for use in
clinical and field settings such as physician’s offices, mobile testing centers, athletic facilities,
and health clubs. This new stereo vision technology offers the benefits of low cost, portability,
and minimal setup with instantaneous data acquisition. The technique was created by
implementing algorithms for system calibration, stereo matching, surface reconstruction, and
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body measurement. The accuracy and reliability of the system were investigated by multiple
means to determine its feasibility for use in human subjects. The system was shown to be a
valid method of body fat and anthropometric measurements. In addition, the repeatability of
the apparatus was validated. Future studies should compare this new technology to other
criterion methods such as DXA, hydrodensitometry, and laser 3-D imaging as well as collect
data on larger and more diverse populations.

The potential of the applications of 3-D body imaging in public health is enormous. For
example, it will be of great value if new indices for estimation of the distribution of body fat
can be utilized for comparisons to biomarkers and subsequent predictions of health risks. This
technology is also ideal for monitoring changes in body size and shape over time and exploring
possible associations with related health conditions.
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Fig. 1.
Schematic of the system setup.
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Fig. 2.
Data flow diagram of the system.
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Fig. 3.
Example of a pair of stereo images.
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Fig. 4.
Flowchart of the stereo matching algorithm.
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Fig. 5.
Example of stereo matching: (a) foreground segmentation and coarse disparity map and (b)
refined disparity map.
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Fig. 6.
Example of surface reconstruction: (a) original 3-D data points of a human subject, (b)
reconstructed 3-D surface model, and (c) close-up views of gap filling for the armpit and foot.
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Fig. 7.
Examples of body measurement on two human subjects: (a) body segmentation and (b) body
measurement.

Xu et al. Page 23

Opt Eng. Author manuscript; available in PMC 2009 December 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 8.
Test on a plywood box: (a) a reconstructed 3-D model and (b) a top view of the cross section
marked in (a).
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Fig. 9.
Examples of 3-D surface models of human subjects.
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Fig. 10.
Linear regression of body volume measured by 3-D body imaging (3D) and ADP.
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Fig. 11.
Linear regression and Bland-Altman plots of percent body fat (%BF) measured by 3-D body
imaging (3D) and ADP.
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Table 2

Characteristics of the human subjects (10 males and 10 females; 13 Caucasians and 7 Asians).

Mean SD Range

Age (yr) 32.2 6.2 24–51
Height (cm) 171.7 8.4 156.0–193.0
Weight (kg) 79.5 31.3 47.9–169.5
BMI (kg/m2) 26.6 8.5 18.9–47.8
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Table 4

Comparison of dimensions and volume measured by 3-D body imaging (3-D) and tape, anthropometer, or ADP
in 20 human subjects (10 males and 10 females).

Tape, anthropometer, or ADP 3-D Difference P

Waist
 Circumf. (mm) 884.3±217.6 880.2±222.5 −4.1±29.4 0.543
 Breadth (mm) 314.8±79.2 306.3±65.7 −8.5±24.9 0.152
 Depth (mm) 227.0±83.3 240.1±74.5 13.1±25.5 0.038
Hip circumf. (mm) 1051.2±180.4 1065.1±176.8 13.9±29.2 0.046
Volume (L) 76.834±32.445 76.669±32.284 −0.165±0.692 0.300

Note: The P values were from paired-sample t tests.
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Table 5

Linear regression analysis on dimensions and volume measured by 3D body imaging, and tape, anthropometer
or air displacement plethysmography in 20 human subjects (10 males and 10 females).

a b r2 SEE

Waist
 Circum. (mm) 1.014 16.351 0.9827 30.0
 Breadth (mm) 0.795 55.954 0.9179 19.4
 Depth (mm) 0.854 46.332 0.9097 23.0
Hip circum. (mm) 0.967 48.210 0.9739 29.3
Volume (L) 0.995 0.233 0.9996 0.690

Note: The prediction equations are expressed as y=ax+b. SEE is standard error of the estimate.
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Table 6

Bland-Altman analysis of percent body fat measured by 3-D body imaging (3-D) and ADP.

Bias SD Limits of Agreement P

3-D-ADP −0.789 4.178 ±8.189 0.409

Note: Limits of agreement are defined as ±1.96 SD. The P values were from paired-sample t tests.
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