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Abstract
Cell signaling plays a central role in the etiology of cancer. Numerous therapeutics in use or under
development target signaling proteins, however off-target effects often limit assignment of positive
clinical response to the intended target. As direct measurements of signaling protein activity are not
generally feasible during treatment, there is a need for more powerful methods to determine if
therapeutics inhibit their targets and when off-target effects occur.

We have used the Bayesian Decomposition algorithm and data on transcriptional regulation to create
a novel methodology, DESIDE (Differential Expression for SIgnaling DEtermination), for inferring
signaling activity from microarray measurements. We applied DESIDE to deduce signaling activity
in gastrointestinal stromal tumor cell lines treated with the targeted therapeutic imatinib mesylate
(Gleevec). We detected the expected reduced activity in the KIT pathway, as well as unexpected
changes in the P53 pathway. Pursuing these findings, we have determined that imatinib-induced
DNA damage is responsible for the increased activity of P53, identifying a novel off-target activity
for this drug.

We then used DESIDE on data from resected, post-imatinib treatment tumor samples and identified
a pattern in these tumors similar to that at late time points in the cell lines, and this pattern correlated
with initial clinical response. The pattern showed increased activity of ELK1 and STAT3
transcription factors, which are associated with the growth of side population cells.

DESIDE infers the global reprogramming of signaling networks during treatment, permitting
treatment modification that leverages ongoing drug development efforts, which is crucial for
personalized medicine.
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Introduction
Our present understanding of cancer has demonstrated the importance of cell signaling
processes in etiology and treatment response. As signaling proteins, including those with gain-
and loss-of-function mutations, provide a logical target for therapeutic intervention, numerous
compounds targeting signaling proteins are under development (1). The success of imatinib
mesylate (IM) in treating chronic myelogenous leukemia has greatly increased the hope for
targeted therapy and spurred further development of BCR-ABL kinase inhibitors (2), however
the varying specificity of the therapeutics and the potential for reprogramming of cell signaling
in response to treatment make the discovery of predictive biomarkers essential for drug
development and patient treatment.

Gastrointestinal stromal tumors (GIST) are mesenchymal digestive tract tumors (3). The most
common primary sites are the stomach (60-70%) (4), small intestine (25-35%) (5), and colon
and rectum (10%) (6). These tumors contain smooth muscle and neural elements and are
thought to arise from the interstitial cells of Cajal (7,8). GISTs are clinically diagnosed by
immunohistochemical KIT staining by the CD117 antibody. KIT is a receptor tyrosine kinase
(RTK) that can initiate RAS and PI3K signaling. The majority (~70%) of GISTs possess gain-
of-function mutations in KIT, while ~10% possess gain-of-function mutations in the RTK
PDGFRA, with the rest having no such mutations (wild-type) (9,10). The primary treatment
for GIST is surgical resection, however high-risk GIST has a high incidence of recurrence
(11). Since 2002, IM has become a standard treatment for patients with metastatic and/or
unresectable GIST, with objective responses or stable disease obtained in > 80% of patients
(12,13).

The expected specific targeting of IM to KIT in GIST makes it an ideal system for developing
methods to understand therapeutics that target cell signaling processes. The desired effect of
a signaling inhibitor, such as IM, is the loss of propagation of an aberrant signal through a
pathway. The logical method to measure the effect of this inhibitor is to look for changes in
protein post-translational modifications upon treatment, since most signal propagation
involves protein phosphorylation. The ability to make these measurements is presently limited
in vivo during treatment. In addition, such measurements target specific proteins, thus losing
the ability to identify off-target effects and unexpected activation of other signaling processes.

An alternative approach is to use a mature technology capable of global measurements, such
as microarrays, to obtain a full picture of the cellular response. Since transcriptional changes
resulting from activation or suppression of transcriptional regulators are primary endpoints for
many signaling processes, microarrays provide a potential tool for exploring signaling globally.
There are three primary impediments to this approach. First, the “wiring diagrams” for cell
signaling processes are not fully determined and vary between cell types. Second, the
transcriptional response to a signal is convoluted with the responses to other biological drivers
of transcription, with most if not all genes under the control of multiple transcriptional
regulators. Third, a good statistic for measuring the probability of activity of a regulator (or
transcription factor, TF) that accounts for the multiple regulation of genes has not been
developed.

Although the wiring diagrams defining cell signaling relationships (protein-protein
interactions) are far from complete, several core pathways affecting disease have been detailed,
especially in cancer studies (1,14). The determination that these pathways play critical roles
in embryogenesis has led to a substantial knowledge-base for understanding basic signaling
(15), and these can be specialized to cells of interest by manual review of the literature (16).
In this way a core signaling network can be created for a system of interest, with the critical
pathways linked to TFs.
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There has been intensive development of analysis methods to address multiple regulation. Our
own work on Bayesian Decomposition (BD) for spectroscopic imaging (17) and later for
microarrays (18), was followed by non-negative matrix factorization (NMF) for imaging
(19) and later for microarrays (20,21). Similar approaches were developed in statistics (22)
and machine learning (23). These methods provide a set of tools for isolating transcriptional
responses related to individual TFs, or more accurately, to sets of TFs that are active in the
same samples in the data, since these approaches are data driven.

Statistical methods have been developed to look at enhancement of gene sets in microarray
data. Initially, hypergeometric tests were used to determine if a gene set (e.g., a gene ontology
category) was overrepresented in a sample (24). The development of gene set enrichment
analysis (25) allowed the overall ranks of genes within a set to play a role in the statistic.
However, these methods do not handle multiple regulation or inclusion of uncertainty. As genes
vary strongly in the degree of transcriptional regulation, there are order of magnitude
differences in the variances that transcript levels show related to phenotypic response (26). By
including uncertainty levels, this issue can be addressed, as we demonstrate in this work.

We present here the results of the novel technique, DESIDE, for identifying changes in
signaling activity during intervention with targeted therapeutics. Other modeling approaches
to signaling are in use. These include ordinary differential equation (ODE) models (27) and
reconstruction of small networks from protein measurements (28) or prior data (29). In contrast,
we wish to estimate changes in signaling on a larger network and confine our method by
assuming the connectivity is known, while minimizing the need for a large number of
biochemical constants. In addition, by focusing on downstream effectors of pathways and
genome-wide microarray measurements, we can discover novel signaling activity that is not
initially in the model and is beyond the capability of ODE and proteomics-based methods to
discover due to limited coverage. Recent developments in generation of mRNA from frozen
core needle biopsies also suggests that routine clinical pathology can provide our method with
the data needed to move into clinical practice (30).

Materials and Methods
GIST-T1 Cell Culture and Microarray Hybridization

GIST-T1 cells (31) were grown in triplicate cultures and treated with 10 μM IM. Cells were
harvested at nine time points during treatment (details in supplemental file 1), and total RNA
was isolated from the samples using TRIzol reagent (Invitrogen). Microarrays were processed
using standard Agilent protocols and using RNeasy from Qiagen.

Agilent Microarray Scanning and Data Preprocessing
Microarrays were scanned using an Agilent G2505B Scanner, and Agilent summary files were
preprocessed with R/Bioconductor (version 2.4.1) using the limma package (version 2.9.13)
(32). Standard limma normalization procedures were performed, providing relative transcript
levels for 44,000 probes across 26 conditions, comprising triplicate measurements at all time
points except 24 hr, where only duplicate measurements were made.

Probes were assigned to Unigene clusters (33), using the ASAP annotation tool (34). At each
time point, we combined all probes across the replicate arrays measuring the same Unigene
gene, obtaining mean values and standard deviations for 20,656 genes. We annotated all genes
using TRANSFAC (35) version 2008.4 based on physical evidence of regulation, providing
1363 genes linked to TFs. Raw data is provided in the Gene Expression Omnibus (GSE17018),
and the processed data used for analysis is provided in supplementary file 2.
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Estimation of Signaling Activity
We estimated signaling activity by use of BD (see (36) for a statistical or (18) for a biology-
focused description of the algorithm), production of a p-value from a Z-score for each TF, and
linking of signaling pathway activity to TF activity.

We applied BD to identify transcriptional signatures within the data. Our data matrix, D,
comprised 1363 rows (genes) by 9 columns (time-points) and was factored into two lower
dimensional matrices, a P matrix whose rows provide P patterns and an A matrix that
apportions the behavior of the genes to these patterns. Mathematically, BD performs a
decomposition using Markov chain Monte Carlo (37) as

(1)

where the genes are indexed by i, the conditions by j, and the patterns by p. As for PCA (38),
issues remain in choosing P, however we used our previously described approach to identify
five patterns as suitable (39). We performed three separate runs of BD to address variability
and potential lack of convergence criteria.

For estimating TF activity, we introduced a Z-score based statistic that, unlike a hypergeometric
test, is independent of threshold and utilizes variance measures.. For each transcriptional
regulator, we defined the gene set Gt with gi ∈Gt if and only if gi is regulated by the TF t. We
then obtain a statistic for the TF with R known targets,

(2)

where r indexes the target gene, t the TF, p the pattern, A is the mean in the A matrix, and σ
the uncertainty on the mean. This provides a statistic for the overrepresentation of target genes
of a transcriptional regulator in a pattern, which we converted to a p-value through random
sample tests for each transcriptional regulator with more than five known targets. This provided
probability estimates of regulatory activity for 230 regulators in each pattern.

To link the probability of TF activity to signaling, we created a simplified model of KIT
signaling in GIST, including IGF1R based on its role in GIST (40,41). As multiple regulators
lie downstream in these pathways, we interpreted the results across the three varying patterns
by visualizing p-values. For display, we rescaled the values such that p < 0.5 → 0 – 1 for
overrepresentation and p < 0.5 → −1 – 0 for underrepresentation of TF targets.

COMET Assays, qRT-PCR, and Western Blots
For the COMET assay, GIST-T1 cells were treated with either 10 μM of IM for 48 hours, 4
Gy of gamma-irradiation followed by a 2 hour recovery, or with IM followed by irradiation.
Standard COMET assay protocols were followed to obtain CometSlides (Trevigen). The DNA
was stained with SYBR fluorescent dye and visualized with an immunofluorescent microscope.
At least 75 comets were counted for each treatment, and at least three independent comets
assays were carried out. For qRT-PCR, RNA was isolated from GIST-T1 cell lines at six time
points, reverse transcribed to cDNA, and measured by real-time PCR for three target genes
and the endogenous control gene, HPRT. All data were normalized to HPRT expression. For
immunoblotting, whole cell extracts were prepared and the proteins evaluated as previously
described (42).
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Tumor Samples and Analysis
63 patients with primary or recurrent operable GIST were enrolled onto the Radiation Therapy
Oncology Group (RTOG) 0132 trial from 18 institutions (43). All patients signed informed
consent following IRB approval for this study. Tumor samples were obtained from the surgical
specimens obtained at the time of resection following neoadjuvant/preoperative IM. Fresh-
frozen samples were collected from all participating institutions and shipped to the RTOG
tissue bank prior to evaluation. Total RNA was isolated from frozen tissue samples using
TRIzol reagent according to standard protocols. Due to patients leaving the study and poor
RNA quality, only 22 samples were analyzed by microarray with 21 having initial tumor
response measurements.

BD analysis was performed on the microarray data from the 22 samples. Preprocessing as
described above for the cell line data was used to obtain data for the same 1363 genes. Using
the methodology described above, we estimated 11 dimensions to fully describe the data.
Analysis of the patterns revealed three with significant correlation with volume of initial tumor
shrinkage.. Significant correlation was defined as greater than one standard deviation away
from mean correlation with response across all 11 patterns (mean = -1.4 × 10-3, standard
deviation = 0.28). To compare to clinical response, logistic regression was performed on these
patterns in terms of initial clinical response, as defined previously in (44). These patterns were
compared for transcription factor activity estimates with patterns identified in the cell line data.
Raw data are provided in the Gene Expression Omnibus (GSE15966), and the processed data
used for analysis is provided in supplementary file 3.

Results
Five transcriptional patterns capture all time-dependent behavior in imatinib treated GIST-
T1 cells

We created a time series cell line data set for analysis using the normalized Agilent data for
the IM treatment of GIST-T1 cells. Probes were combined by Unigene ID, and we retained
genes with a known TF in TRANSFAC Professional 2008.4. We analyzed this data of transcript
levels for 1363 genes across 9 time points using BD, positing three to seven patterns. We chose
five patterns based on consistency, using methods developed previously (45). We then applied
BD three times to this data generating 500,000 MCMC samples each time, obtaining
normalized χ2 fits of 19246, 19267, and 19272.

The mean values for each of the three applications of BD for the five patterns are pictured in
Figure 1. Error bars represent the standard deviation from the Markov chain sampling for the
patterns varying during IM treatment. Two patterns are basically constant across the time
points. The other three patterns varied with treatment: pattern 1) falling with IM treatment and
reaching a low at 24 hours, pattern 2) transiently rising with a peak between 9 and 18 hours,
and pattern 3) rising continuously after 6 hours. For each pattern, there is a strength of
assignment of each gene, together with a standard deviation on that strength. Although we do
not focus on behavior of individual genes, we validated our microarray measurements by qRT-
PCR measurements at six time points on three well-studied targets of the TFs of interest
(CDC25A, JAK3, and SOCS3) in IM-treated GIST-T1 cell culture, verifying that the arrays
were correctly estimating relative expression levels (supplementary file 4).

Statistical analysis identifies significant changes in transcription factor activities
In order to infer the activity of transcriptional regulators, we generated a Z-score for each
regulator in TRANSFAC that had more than five known targets (230 transcriptional
regulators). We modified the TRANSFAC list for two TFs of special interest in our network
model. For the FOXO family we combined all members, since there is strong overlap in
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potential targets (46). For CREB1, we combined the lists for CREB and CREB1, as these refer
to the same factor. First, a Z-score for each gene in each pattern was generated. Then, the Z-
score for a regulator was defined as the average Z-score of all targets of the regulator (Equation
2), and statistical significance was determined by generating Z-scores for random sets of genes
from the associated pattern. We performed 500 random draws, thus permutation testing sets a
limit of p ≥ 0.002. Since the random samples provide a limit for both chance overrepresentation
and underrepresentation of targets, comparison of the Z-score to the distribution from random
draws provided an indication of increased or decreased activity (Figure 2).

The results for TFs rated significantly greater than expected by this procedure in two of the
three BD analyses for a threshold α = 0.05 are presented in Table 1. The full list for each of
the three runs is presented in supplementary file 5. We discuss the link to the signaling network
in detail in the next section, however we note that a number of key transcription factors related
to signaling processes affected in cancer are present. ELK1, the downstream effector of the
MAPK pathway, shows an initial decline and then recovery. The oncogene MYC appears in
the pattern declining with IM, and it is not significantly represented in the pattern that rises
later. The DNA damage response regulator P53 is the strongest detection in the transient
response, although it also shows up in the pattern that declines initially with IM treatment.
Although not included initially due to having too few known targets, we analyzed P63 and P73
by the same method. Both were significantly upregulated in the transient pattern, but only P63
was significantly upregulated in the decreasing pattern.

The transcriptional effectors of the signaling network respond initially as expected to
imatinib treatment

We estimate activity of signaling pathways by looking at the overall changes of known
downstream effectors of pathway activity, as in Figure 3, produced with Cytoscape (47). In
the square boxes in this figure, yellow represents TFs with a p-value close to 0 when testing
for overrepresentation of targets in the pattern, while blue represents TFs with a p-value close
to 0 when testing for underrepresentation of targets in the pattern. We have rescaled the values
such that p < 0.5 → 0 – 1 for overrepresentation and p < 0.5 → —1 – 0 for underrepresentation.
For each of the three patterns varying with IM treatment, we show the values obtained from
each of the three BD analyses. The top three squares under each regulator are for pattern 1:
declining with IM treatment, the middle three are for pattern 2: rising transiently with IM
treatment, and the bottom three are for pattern 3: increasing with IM treatment.

In pattern 1, which declines upon treatment with IM (top box), the effectors of RAS-RAF
signaling, ELK1 and MYC, show high activity. FOXO, the directly repressed target of AKT1,
shows low activity, while the targets effectively upregulated by AKT1 (through repression of
the repressor GSK3B), E2F1, AP-1, and CREB1, show high activity. Taken as a whole, this
is consistent with identifying pattern 1 as associated with active KIT signaling. Since pattern
1 declines during IM treatment, this verifies that the downstream effectors of constituitively
activated KIT show declining activity with IM treatment, as expected.

The p53 transcription factor is highly active at 9 - 18 hours and is responding to unexpected
DNA damage

In pattern 2, the transient response pattern (middle box), P53 shows a strong signal for activity.
The increased activity in P53 suggested a DNA damage response, and we predicted therefore
that IM unexpectedly damages DNA.

In order to validate our prediction that IM treatment of GIST-T1 cells leads to DNA damage,
we used COMET assays on GIST-T1 cells treated with control, IM, radiation, and IM together
with radiation, as shown in Figure 4a&b. The radiation is known to induce DNA damage, so
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it functions as a positive control. The IM treatment causes a somewhat larger though
statistically similar amount of damage as the radiation treatment, and there is some indication
of increased damage if both IM and radiation are used together, suggesting possible
sensitization of the cells by IM. It is clear that IM induces DNA damage, as predicted by our
analysis from the microarray data.

To verify that P53 response was generated via DNA damage, we performed immunoblotting
of p-H2AX, p-ATR, p-CHK2, and p-P53 together with KIT and p-KIT. As shown in Figure
4c, the DNA damage response proteins rise following IM treatment as p-KIT declines, with p-
ATR peaking at 6 hr, immediately before our measured P53 transcriptional response. Other
components remain phosphorylated, although the transcriptional response declines.

The GIST-T1 cell line shows increased activity of ELK1 and STAT3 within 24 hours of imatinib
treatment

In pattern 3, which increases after ~6 hr (bottom box), we see a return to high activity in ELK1,
though not in MYC nor in coordinated changes in targets of AKT1 signaling. In addition,
STAT3 shows increased activity. Interestingly, activity of MEK (and thus ELK1) and STAT3,
coupled to mTOR (FRAP) activation, which cannot be determined by this technique, have been
identified as hallmarks of side population cells (48), which are considered highly enriched for
stem cells. To verify the activation, we performed immunoblotting of p-ELK1 and p-STAT3,
which showed increased phosphorylation beginning at 6 – 12 hours (see supplemental file 6).

The strength of a pattern in tumors similar to the late time point pattern in GIST-T1 cells
correlates with initial tumor response

Using BD and positing 11 patterns based on consistency, we analyzed the data from resected
IM-treated patient tumors collected in the RTOG 0132 trial. Three patterns showed significant
correlation with initial tumor shrinkage, defined as at least one standard deviation of correlation
away from the mean for all 11 patterns. In order to determine clinical significance, we used
logistic regression in terms of clinical initial response as defined in (44). In Figure 5, the results
for these three patterns are shown together with pattern 3 from the cell line data (i.e., increasing
with IM treatment, rising with IM line in Figure 1, bottom row in Figure 3).

The first pattern from the tumor samples is positively correlated with initial response (r =
0.34, logistic p = 0.06) and is highly similar to the pattern from the cell line data. The main
differences are the high activity of AP-1 in the tumors compared to the cell line, and slightly
weaker activity in SP1 and MYC. Importantly this pattern shows high activity in ELK1 and
STAT3, as would be expected if side population cells were forming a significant percentage
of harvested cells.

Other patterns for tumors showing correlation with initial response are not similar to cell line
patterns

The second pattern from the tumors shows negative correlation (r = −0.36, logistic p-value =
0.17) with initial response, while the third pattern shows positive correlation (r = 0.52, logistic
p-value = 0.09). Neither shows strong consistency with any cell line pattern. The second pattern
shows significantly lower activity in SP1 and E2F1, with no heightened activity from ELK1
or STAT3. The third pattern shows little activity of any of the transcriptional effectors of the
network, and it likely represents a behavior unrelated to these signaling processes. Plots of
pattern strength against clinical response are shown in supplemental file 7.
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Discussion
Cell signaling processes have been implicated in human disease etiology, and signaling
proteins and their interactions have become targets of therapeutic development. Presently, there
are hundreds of compounds in development, and high-throughput searches for inhibitors of
kinases, which often function in signaling pathways, are being undertaken (49). In vivo these
compounds often hit multiple targets, and sometimes do not affect the intended target, either
due to mutations in those targets or delivery and competitive binding issues. This makes
development of methods to identify targets of new molecular medicines essential for drug
development, personalized treatment, and development of combination therapies that can hit
multiple pathways simultaneously.

We have demonstrated here the ability to use Bayesian Decomposition coupled to a novel
metric of enrichment of known transcriptional targets to infer pathway activity that drives
changes in the activity levels of transcriptional regulators. As these are often the primary
effectors of signaling processes, this approach allows us to infer when inhibitors have had the
desired effect, turning off a pathway. With this approach, we have shown that imatinib mesylate
(IM) downregulates constituitively activated KIT in GIST-T1 cells, including its downstream
transcriptional effectors. Importantly, since we have used a global measure of transcriptional
response, we have also identified unexpected changes in signaling, including increased activity
of P53 after 9 - 18 hr of IM treatment. We predicted that this increased activity was due to
unexpected DNA damage from IM, and we confirmed this by comet assay and immunoblotting.

In the late time points, increased activity of STAT3 and ELK1 appears, two hallmarks of side
population cells enriched for cancer stem cells. The third hallmark, upregulation of mTOR,
cannot be detected by our method. The MYC transcription factor does not show a return to
high activity at late time points, which may be due to continued suppression by the ongoing
IM treatment. We also analyzed resected tumors from patients receiving presurgical IM
treatment to reduce tumor volume. We identified within these patients a pattern that is similar
to this cell line pattern and that correlates with initial clinical response during IM treatment.
Although the analysis did not reach standard statistical significance, this likely reflects the very
small sample size of post surgical specimens. Importantly the pattern includes increased
activity of STAT3 and ELK1. This suggests that tumors may respond well to initial treatment,
but that a reserve population of stem-like cells may then become active. This could explain the
lack of correlation between initial tumor response and long-term progression free survival
(PFS) observed in RTOG 0132. We identified additional patterns that showed correlation with
initial tumor shrinkage though poorer correlation with initial clinical response, including one
pattern that showed very little increase or decrease in transcription factor activity related to the
core signaling pathways.

The lack of an ability to determine mTOR activity here highlights the desirability of having
multiple types of measurements available in systems under study. While we could look for side
population cells using targeted proteomics, that would only give a partial picture.
Measurements on the transcriptional regulators through their targets by microarrays can
provide information on whether signals have been modified downstream of the protein whose
state is measured directly. Overall, this suggests an ideal study might be a mixture of targeted
experiments to test specific hypotheses and global measurements to identify unexpected
behaviors.

While we have used information from TRANSFAC to drive our statistical analysis, this
approach is also promising for inferring regulation that is not yet identified in TRANSFAC or
which contradicts such information. As transcriptional regulation of any gene is likely to be
context specific (e.g., cell line, present state of a cell, etc.) (50), we can use inconsistencies in
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prior information from TRANSFAC to refine our knowledge of transcriptional regulation in
specific cases. This should lead directly to an ability to tailor treatments to specific individuals
based on the signaling activity in individual tumors.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The five patterns identified by BD in the cell line data. The curves show the rows of the P
matrix for five patterns, for each of the three analyses, a) χ2 = 19267, b) χ2 = 19246, c) χ2 =
19272. Error bars (three varying patterns) represent standard deviations from the Markov chain
sampling. The patterns that vary significantly with IM treatment show a decline with treatment,
a transient peak at ~9 - 18 hr, and an increase with treatment beginning at ~6 hr.
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Figure 2.
The permutations for Z-score significance testing, produced by random draws from each
pattern showing variation with IM. The top panel (a - b) provides sample histograms of the Z-
score for random draws of 10 genes, and the bottom panel (c - d) provides those for 50 genes.
Panel (d) shows where significant Z-scores would fall.
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Figure 3.
Transcription factor (TF) responses. The square boxes provide a color representation of activity
of the TF, with deeper yellow indicating high activity and deeper blue lack of activity and
potential suppression. The top boxes are for the pattern declining during IM treatment, the
middle boxes are for the transient pattern peaking at ~9 - 18 hours, and the bottom boxes are
for the pattern rising with treatment. The first column is associated with Figure 1(a), the second
with 1(b), and the third with 1(c).
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Figure 4.
The results of IM treatment on DNA damage and repair pathways response in GIST cells. Panel
(a) shows a COMET assay to assess DNA damage to GIST-T1 cells untreated, treated with
10 μM IM for 48 hr, treated with 4 Gy of gamma radiation followed by recovery, or the
combination of both. The data across replicate measurements is summarized in (b) and confirms
the prediction based on P53 activity that DNA is damaged during IM treatment. To determine
whether DNA damage repair pathways are activated in response to IM-induced DNA damage,
immunoblotting of various pathway components was performed after either IM treatment or
IR exposure followed by recovery (positive control) for the times indicated (c).
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Figure 5.
The transcription factor responses for tumors compared to the increasing pattern in the cell
line. The three boxes on top give the activity estimates for the cell line, while the individual
boxes give the estimates for three of the patterns in tumors. The top box has a pattern similar
to that of the cell line, except for SP-1 activity. This pattern correlates with initial clinical
response with p = 0.06. The second and third pattern do not correspond to cell line patterns,
and are anticorrelated and correlated respectively with initial tumor response.
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Table 1

The transcription factors with significant activity in the three patterns. Complete details for all 230 transcriptional
regulators are presented in supplemental file 5.

Falling with IM Transient Rise with IM Rising with IM
Elk-1 Elk-1-isoform1 SRF

PEA3 RPB-Jκ SRF-L
c-Myc Egr-1 NF-E2p45
Clock-BMAL1 Smad3
c-Fos:c-Jun E2F:DP

p53-isoform1 HSF-1 Nrf-2
c-Jun HIF-1 ATF2

p53 p53-isoform1 PEA3 Erm c-Fos:c-Jun
δCREB ATF3 FOSB

NF-YA NF-Y E2F:DP
NF-YB Smad3 Sp3 GKLF

GLI HES-1 Egr-2

Elk-1 RPB-Jκ SRF-L
HIF-1α STAT1α NERF-1a

ATF-2 RelA:p65 Egr-2
NFκB SRF ELF-1
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