Table 1.
Characteristics of studies using GIS, RS and spatial analysis for the mapping and prediction of human schistosomiasis and transmission modelling
Data sources and parameters for GIS |
||||||
---|---|---|---|---|---|---|
Study aim | Study area | Spatial scale |
RS environmental data |
Demographic, epidemiological and socio-economic data |
Spatial analysis | Reference |
To determine the relative risk of schistosomiasis for interactive analysis and planning of control activities | Nile delta, Egypt | Meso | Tmax, Tmin, dT | Prevalence data of S. haematobium and S. mansoni | Exploratory data analysis | Malone et al. (1994) |
To develop suitability maps for S. haematobium and S. mansoni at a national scale | Zimbabwe | Meso | NDVI, Tmax, Tmin | Prevalence data of S. haematobium and S. mansoni | Visualization/mapping | Mukaratirwa et al. (1999) |
To collate available survey data in a single database to (1) describe schistosome prevalence across Africa, and (2) highlight areas for which further information is required | Sub-Saharan Africa | Macro | n.d. | Prevalence data of S. haemabobium and S. mansoni | Visualization/mapping | Brooker et al. (2000) |
To predict the risk of schistosomiasis and to initiate the use of the resulting GIS model for integrated schistosomiasis control | Kafr El-Sheikh governorate, Egypt | Micro-meso | NDVI, Tmax, Tmin, dT | Prevalence data of S. mansoni | Exploratory data analysis and modelling | Abdel-Rahmanet al. (2001) |
To develop schistosome prediction maps for spatial targeting of mass drug administration | Tanzania | Meso | LST, NDVI | Prevalence data of S. haematobium (reported ‘blood in urine’ used as a proxy measure) | Exploratory data analysis and modelling | Brooker et al. (2001) |
To model the distribution of S. haematobium across the country | Cameroon | Macro | LST, rainfall | Prevalence data of S. haematobium | Exploratory data analysis and modelling | Brooker et al. (2002b) |
To develop temperature-suitability maps for schistosomiasis in South Africa | South Africa | Macro | Mdx, Mdn, temperature | Prevalence data of S. mansoni and S. haematobium; population data | Exploratory data analysis and modelling | Moodley et al. (2003) |
To examine the spatial distribution of S. mansoni in a single village | Fagnampleu, Man region, Côte d'Ivoire | Micro | n.d. | Prevalence data of S. mansoni | Exploratory data analysis | Utzinger et al. (2003) |
To identify risk factors explaining the geographical distribution of S. mansoni infections in the mountainous region of Man | Man region, Côte d'Ivoire | Meso | LST, NDVI, rainfall | Prevalence data of S. mansoni | Exploratory data analysis and modelling | Raso et al. (2005) |
To model the distribution of S. mansoni and intermediate host snails in Uganda using satellite sensor data and GIS | Uganda | Macro | LST, NDVI | Prevalence data of S. mansoni; Biomphalaria spp. snail data | Exploratory data analysis and modelling | Stensgaard et al. (2005) |
To investigate spatial patterns of urinary schistosomiasis infection in a highly endemic area of coastal Kenya | Msambweni division, Kenya | Micro | Water chemistry, distance to water bodies | Prevalence data of S. haematobium; age | Exploratory data analysis | Clennon et al. (2006) |
To model the prevalence of schistosome infections using a Bayesian approach | NW Tanzania | Macro | LST, distance to water bodies | Prevalence data of S. mansoni and S. haematobium | Exploratory data analysis and modelling | Clementset al. (2006a) |
To model the regional distribution of intensity of S. mansoni infection using a Bayesian approach | East Africa | Macro | Elevation, distance to water bodies | Intensity data of S. mansoni | Exploratory data analysis and modelling | Clementset al. (2006b) |
To model the distribution of schistosomiasis based on a national questionnaire survey and using a Bayesian approach | Tanzania | Macro | LST, NDVI, elevation | Prevalence of reported schistosomiasis | Exploratory data analysis and modelling | Clementset al. (2008a) |
To model S. haematobium prevalence and to predict the underlying uncertainty of prediction using a Bayesian approach | West Africa | Macro | LST, distance to water bodies, age, sex | Prevalence data of S. haematobium | Logistic regression analysis | Clementset al. (2008b) |
dT, temperature difference; LST, land surface temperature; Mdn, mean daily minimum temperature; Mdx, mean daily maximum temperature; n.d., not determined; NDVI, normalized difference vegetation index; Tmax, maximum temperature; Tmin, minimum temperature.