Skip to main content
. Author manuscript; available in PMC: 2009 Dec 6.
Published in final edited form as: Parasitology. 2009 Jul 23;136(13):1683–1693. doi: 10.1017/S0031182009006222

Table 1.

Characteristics of studies using GIS, RS and spatial analysis for the mapping and prediction of human schistosomiasis and transmission modelling

Data sources and parameters for GIS
Study aim Study area Spatial
scale
RS environmental
data
Demographic, epidemiological
and socio-economic data
Spatial analysis Reference
To determine the relative risk of schistosomiasis for interactive analysis and planning of control activities Nile delta, Egypt Meso Tmax, Tmin, dT Prevalence data of S. haematobium and S. mansoni Exploratory data analysis Malone et al. (1994)
To develop suitability maps for S. haematobium and S. mansoni at a national scale Zimbabwe Meso NDVI, Tmax, Tmin Prevalence data of S. haematobium and S. mansoni Visualization/mapping Mukaratirwa et al. (1999)
To collate available survey data in a single database to (1) describe schistosome prevalence across Africa, and (2) highlight areas for which further information is required Sub-Saharan Africa Macro n.d. Prevalence data of S. haemabobium and S. mansoni Visualization/mapping Brooker et al. (2000)
To predict the risk of schistosomiasis and to initiate the use of the resulting GIS model for integrated schistosomiasis control Kafr El-Sheikh governorate, Egypt Micro-meso NDVI, Tmax, Tmin, dT Prevalence data of S. mansoni Exploratory data analysis and modelling Abdel-Rahmanet al. (2001)
To develop schistosome prediction maps for spatial targeting of mass drug administration Tanzania Meso LST, NDVI Prevalence data of S. haematobium (reported ‘blood in urine’ used as a proxy measure) Exploratory data analysis and modelling Brooker et al. (2001)
To model the distribution of S. haematobium across the country Cameroon Macro LST, rainfall Prevalence data of S. haematobium Exploratory data analysis and modelling Brooker et al. (2002b)
To develop temperature-suitability maps for schistosomiasis in South Africa South Africa Macro Mdx, Mdn, temperature Prevalence data of S. mansoni and S. haematobium; population data Exploratory data analysis and modelling Moodley et al. (2003)
To examine the spatial distribution of S. mansoni in a single village Fagnampleu, Man region, Côte d'Ivoire Micro n.d. Prevalence data of S. mansoni Exploratory data analysis Utzinger et al. (2003)
To identify risk factors explaining the geographical distribution of S. mansoni infections in the mountainous region of Man Man region, Côte d'Ivoire Meso LST, NDVI, rainfall Prevalence data of S. mansoni Exploratory data analysis and modelling Raso et al. (2005)
To model the distribution of S. mansoni and intermediate host snails in Uganda using satellite sensor data and GIS Uganda Macro LST, NDVI Prevalence data of S. mansoni; Biomphalaria spp. snail data Exploratory data analysis and modelling Stensgaard et al. (2005)
To investigate spatial patterns of urinary schistosomiasis infection in a highly endemic area of coastal Kenya Msambweni division, Kenya Micro Water chemistry, distance to water bodies Prevalence data of S. haematobium; age Exploratory data analysis Clennon et al. (2006)
To model the prevalence of schistosome infections using a Bayesian approach NW Tanzania Macro LST, distance to water bodies Prevalence data of S. mansoni and S. haematobium Exploratory data analysis and modelling Clementset al. (2006a)
To model the regional distribution of intensity of S. mansoni infection using a Bayesian approach East Africa Macro Elevation, distance to water bodies Intensity data of S. mansoni Exploratory data analysis and modelling Clementset al. (2006b)
To model the distribution of schistosomiasis based on a national questionnaire survey and using a Bayesian approach Tanzania Macro LST, NDVI, elevation Prevalence of reported schistosomiasis Exploratory data analysis and modelling Clementset al. (2008a)
To model S. haematobium prevalence and to predict the underlying uncertainty of prediction using a Bayesian approach West Africa Macro LST, distance to water bodies, age, sex Prevalence data of S. haematobium Logistic regression analysis Clementset al. (2008b)

dT, temperature difference; LST, land surface temperature; Mdn, mean daily minimum temperature; Mdx, mean daily maximum temperature; n.d., not determined; NDVI, normalized difference vegetation index; Tmax, maximum temperature; Tmin, minimum temperature.