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Abstract – The mite Psoroptes ovis is the causative agent of sheep scab. Although not usually fatal, the
disease can spread rapidly and is a serious animal welfare concern. Vaccine development against
ectoparasites has primarily focussed on two sources of candidate vaccine antigens – ‘‘exposed’’ antigens
that are secreted in saliva during feeding on a host and ‘‘concealed’’ antigens that are usually expressed in
the parasite gut and may be involved in digestion. Here, we sought to identify genes encoding proteins
important for mite feeding and digestion by a subtractive suppressive hybridisation approach comparing
mRNA transcript abundance in ‘‘fed’’ and ‘‘starved’’ mites. The study identified a variety of genes which
are up-regulated by feeding mites. These included group 1, 5, 7 and 13 allergens including the previously
described cysteine protease Pso o 1. In addition, numerous novel genes were identified here including some
encoding potential salivary gland proteins and others encoding proteins which may facilitate feeding such as
a serum opacity factor. An olfactory receptor-like protein was identified in the starved mite population
which may help the mite to identify a host.

Psoroptes / sheep / gene / protein / feeding

1. INTRODUCTION

The mite Psoroptes ovis is the causative
agent of sheep scab which is, arguably, the most
important ectoparasitic disease of sheep in the
United Kingdom. Disease costs in the UK have
been estimated at £8 million per annum [14].
The disease presents as a type I hypersensitivity
reaction with the release of serous exudate
through the skin, which then dries to from the
crusty scabs from which the disease takes its
name e.g. [26]. The clinical signs of sheep scab
include anorexia, weight loss, loss of fleece and
pelt condition, and general loss of production.
Although not usually fatal, the disease can

spread rapidly and is a serious animal welfare
concern.

Disease control has been achieved by annual
dipping of sheep in the UK but this is no longer
compulsory and the available dips have become
more restricted due to risks to operator health
and environmental concerns. As a result of
these changes, the prevalence of sheep scab
has escalated and the disease is now endemic
in both hill and lowland sheep in all areas of
the British Isles, with an estimated 7 000 out-
breaks in 2004 [3].

There have been sustained efforts over the
last 10–15 years to develop new methods of
control, including vaccination. The feasibility
of vaccination is supported by the observation
that prior infestation with the mite leads to* Corresponding author: dave.knox@moredun.ac.uk
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a suppression of lesion development in subse-
quent infestations, indicative of a protective
immune response [26]. Vaccination of sheep
with soluble extracts of P. ovis has resulted in
5-fold reductions in mite numbers and more
than 50% reduction in lesion area [23]. After
further fractionation of this extract, a sub-
fraction was identified which stimulated high
titres of mite-specific serum antibodies, inhib-
ited lesion growth to less than a third of that
seen in controls and reduced mite numbers by
more than 13-fold from 28 days after a chal-
lenge infection in vaccinated sheep [24].

Vaccine development against ectoparasites
has focussed primarily on two sources of candi-
date vaccine antigens – ‘‘exposed’’ antigens that
are secreted in saliva during feeding on a host
and ‘‘concealed’’ antigens that are normally
hidden from the host. The latter are usually
expressed in the parasite gut and may be
involved in feeding, food processing and diges-
tion, the best example being the commercial
vaccine based on Bm86, a midgut membrane-
bound protein of unknown function in the cattle
tick, Rhipicephalus (Boophilus) microplus [28].

A ‘‘concealed antigen’’ approach to P. ovis
vaccine development is also a possibility given
that ovine IgG was detected on the surface of
the gut cells of feeding stages of freshly har-
vested P. ovis [20] and the digestive enzymes
of Psoroptes mites have been proposed as
potential vaccine candidates [15].

Currently, little is known about the digestive
processes in P. ovis although aminopeptidase,
aspartyl and cysteinyl protease activities have
been detected [11, 16] and a small expressed
sequence tag (EST) survey identified several
EST encoding proteases which may be required
for feeding [12]. Suppressive subtractive hybrid-
isation (SSH) can be utilised to compare gene
expression between two similar populations of
cDNA[8] andhasbeen appliedwidely inparasite
biology, for example to identify gender-specific
[5, 17] and stage-specific [19] gene expression.
Here we have used SSH to compare gene
expression between actively feeding and starved
P. ovis, in order to identify genes up-regulated
during feeding. The protein products of these
genes may be essential for mite digestion and,
hence, be good vaccine candidates.

2. MATERIALS AND METHODS

2.1. Parasite material

Mites, sufficient to fill a 1.5 mL microfuge tube,
were collected from infested sheep fleeces immedi-
ately after post mortem and divided into two groups.
One group (Fed) was immediately snap frozen in
liquid nitrogen, and the other (starved) was trans-
ferred to a 500 mL capacity, vented-cap tissue culture
flask. This flask was kept at high relative humidity, at
25 �C for 4 days, and then live mites were removed
from the tissue culture flask and snap frozen.

2.2. Suppressive subtractive hybridisation

Total RNA was extracted from both groups of
mites as described previously [18] and cDNA was
synthesised from 2 lg of total RNA from either fed
or starved mites using the Super SMARTTM PCR
cDNA Synthesis Kit and amplified by PCR
(15 cycles) according to the kit instructions (Clon-
tech, Europe1). The resultant products were purified
using Clontech Chroma-spinTM-100 columns. The
cDNA was then digested with Rsa-I, adaptors were
ligated according to the kit instructions and then the
fed mite (tester) cDNAwas hybridized with an excess
of unfed mite cDNA (driver) to remove common
cDNA transcripts from the adapter-ligated fed mite
cDNA, generating the ‘‘fed mite-library’’. The reci-
procal procedure was performed using unfed-tester
cDNA and fed-driver cDNA to construct an
‘‘unfed-library’’. The hybridised cDNA populations
were then diluted in dH2O, amplified by PCR with
primers to the adaptor sequences (Clontech) and the
resultant products purified using a QIAquick PCR
Purification kit (Qiagen, Crawley, UK2). The prod-
ucts were then ligated into the pGEM�-T Easy clon-
ing vector (Promega, Southampton, UK) and the
reaction products used to transform competent
Escherichia coli (strain JM109) cells as described
in the manufacturer’s protocol (Promega). On the
basis of blue/white colour selection, 100 white colo-
nies resulting from the forward subtraction (fed), and
50 colonies from the reverse subtraction (unfed) were
picked and inserts were confirmed by colony PCR.
The corresponding positive colonies were used to
grow 5 mL overnight cultures in Luria Bertani med-
ium (LB) for producing plasmid DNA using a
Wizard miniprep kit. Plasmid DNA was then
sequenced using a Mega BACE capillary sequencer.

1 www.clontech-europe.com.
2 www.qiagen.com.
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2.3. Sequence analysis

Nucleotide sequences were compared with those
in public databases including the GenBank non-
redundant database, using the Basic Local Alignment
Search Tool (BLASTn and BLASTx, [1]) pro-
gramme from the National Center for Biotechnology
Information. Sequence alignments were performed
using CLUSTAL W3.

2.4. Semi-quantitative PCR

Confirmation of cDNA subtraction from the SSH
analysis was sought using semi-quantitative reverse
transcriptase PCR (RT-PCR). Template RNA from
fed or starved mites was transcribed to cDNA and
then amplified using a Super Script 1 Step RT-PCR
kit (Invitrogen, Renfrew, UK4), and gene specific oli-
gonucleotide primers to target genes identified in the
subtraction analyses (primer sequences available
from authors on request). PCR reaction mixes com-
prised 1· reaction mix (Invitrogen; containing
1.2 mM MgSO4 and 0.2 mM of each dNTP),
0.5 lg template RNA, 2 lM forward primer, 2 lM
reverse primer, and 200 U of Super Script II reverse
transcriptase (Invitrogen). Reactions were incubated
at 50 �C for 30 min, followed by 94 �C for 2 min,
before 15, 20, 25, and 30 cycles of 94 �C for 15 s,
57.5 �C for 30 s, and 72 �C for 1 min. This was fol-
lowed by a final extension period of 72 �C for
10 min before cooling to 4 �C. PCR products were
analysed by separation on 1% agarose gels contain-
ing Gel Red (Biotium, USA) to visualise DNA.

3. RESULTS

Subtractive hybridisation was applied to
identify genes associated with feeding in the
sheep scab mite Psoroptes ovis by comparing
gene transcription in fed and starved mites.
The sequences obtained for each population
were submitted to BLAST searches, and the
information gathered is summarised in Figures
1A (fed) and 1B (starved); Tables I (fed) and
II (starved).

Semi-quantitative RT-PCR (Fig. 2) and dot-
blot macroarray analyses (not shown) indicated
that the majority of the genes selected were
expressed in both populations but at a higher

level in the ‘‘fed’’ population. In the fed popu-
lation, 44 of 100 selected sequences were con-
firmed, by macroarray, as up-regulated.

A large proportion (30%) of the genes
identified in the fed mite dataset were highly
homologous to allergens, either from P. ovis
itself, or from house dust mites or storage mites.
The most abundant transcript in the fed mite
dataset was Pso o I, the P. ovis homolog of the
housedustmite group1allergen,which appeared
8 times. Other allergens identified were homo-
logues of the group 5, group 7, and group 13
allergens.

Several putative secreted proteins were also
identified in the fed mite pool, including homo-
logues of proteins localised to the salivary
glands of the deer tick, Ixodes scapularis, the
mosquito Anopheles gambiae and the oesopha-
geal glands of a nematode Heterodera glycines.

4. DISCUSSION

By using suppressive subtractive hybridisa-
tion it has been possible to identify a group of
genes that are up-regulated in P. ovis during
feeding, and thus which may encode proteins
directly involved in digestion. The proposed
biological functions of the proteins encoded
by these genes expressed by fed mites are illus-
trated in Figure 1A. Feeding-induced genes
included those encoding allergens, secreted pro-
teins, antioxidant enzymes, carbohydrate and
lipid degrading enzymes, proteins involved in
cellular processes, and also some homologues
of blood-meal digesting proteins from ticks
and nematodes. The genes up-regulated in
starved mites (see Fig. 1B) included one encod-
ing an olfactory receptor protein which may
help the mite to locate a host or feeding site
or to initiate feeding behaviour.

Some genes were exclusively expressed by
fed mites (e.g. a homologue of a cuticle protein
Dfp-1 (Fig. 2 and Tab. I)) but, for the majority,
approximately 5-fold up regulation was evident
(e.g. Fig. 2, Pso-1, salivary gland protein). The
efficiency of subtractive hybridization depends
upon a variety of factors such as driver:
tester ratio, or DNA and salt concentrations.
Nonetheless, the lack of functional overlap

3 www.ebi.ac.uk/Tools.
4 http://www.invitrogen.com.
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amongst the genes selected in the two popula-
tions confirms the utility of SSH for this type
of analysis.

A large proportion of the genes identified
(30%) in the fed mite population were highly
homologous to allergens, either from P. ovis
itself, or from house dust mites or storage mites
(Fig. 1A and Tab. I). The most abundant EST in
the fed mite dataset was Pso o 1, a cysteine pro-
teinase and a homologue of the house dust mite
group 1 allergen Der p 1. Pso o 1 is likely to

play a part in digestion [11] being expressed in
the mite gut and present in mite excretions [18].

Homologues of the group 5 and 7 allergens,
two of the most immunoreactive house dust
mite allergens [25, 27] were also enriched in
fed mites. The functions of these two allergen
groups remain undefined, but the group 5 aller-
gen has been localised to the midgut and faecal
pellets of the house dust mite Blomia tropicalis
[9], possibly indicative of a role in digestion.
Moreover, a homologue of the house dust mite

Immune function
Carbohydrate degradation
Antioxidant enzymes
Lipid degradation
Other
Secreted proteins

Cell processes
Immunomodulation/host feeding

Allergens

Olfaction

Unknown

Viral replication

Antibiotic
resistance

Cellular processes

A

B

Figure 1. Classification of proposed functions of genes identified in SSH libraries representing fed (Panel
A) and starved (Panel B) sheep scab mites (P. ovis). (A color version of this figure is available at
www.vetres.org.)
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group 13 allergen was also enriched in fed
mites. Group 13 allergens are fatty acid binding
proteins (FABP) [21], which are involved in
lipid metabolism and can act as carriers of lipids
across membranes. Given that P. ovis mites live
in a lipid rich skin environment, the FABP may
be required for the supply of essential lipids to
the mite. Other parasites, for example nema-
todes, are unable to synthesise complex lipids
and must acquire them from their host [2].

This study identified several transcripts, in
the fed mite cDNA pool encoding proteins with
a putative glandular origin, implying secretion
(Tab. I). These included homologues of a sali-
vary gland protein of the deer tick, Ixodes scap-
ularis [22], a salivary gland protein from
Anopheles gambiae and two sequences which
were homologous to oesophageal gland pro-
teins from the plant nematode Heterodera gly-
cines. P. ovis does not penetrate the host, and
has not been shown conclusively to possess sal-
ivary or oesophageal glands, however, a recent
report [13], described a putative secreted/
excreted peroxiredoxin in P. ovis which was
localised to a region immediately posterior to

the mouthparts which the authors suggested
could be a rudimentary salivary gland.

Several sequences showed high similarity to
genes with a possible role in blood meal diges-
tion. One of these, a serum opacity-like factor
from the deer tick, I. scapularis, is an orthologue
ofbacterial apolipoproteinaseswhichmakes host
bloodcells becomeopaqueandbinds tomamma-
lianfibronectin andfibrinogen [6, 10]. Scabmites
have not been observed to ingest red blood cells,
but they have been shown to ingest host eosino-
phils and immunoglobulins [20]. If these are
taken up by the mite and move to its gut then it
is possible that other blood cell types are also
taken up for digestion and a serum opacity-like
factor may play a role in this process.

Alpha-haemolysin-like homologues appea-
red three times in the fed mite dataset (Tab. I)
with two sequences showing homology to
sequences from the deer tick I. scapularis and
one to a protein from Ascaris suum. Alpha
haemolysin is a bacterial virulence factor which
lyses red blood cells, and is also cytotoxic to
leukocytes and fibroblasts [4]. By analogy to
studies in bacteria, these alpha-haemolysins

Table II. Sequence analysis of clones up-regulated in the unfed mite population. Sequences were BLAST
searched against the NCBI and TIGR databases. The E value is a statistical value of the similarity of the two
sequences being compared calculated by the BLAST programme. The percentage identity is the percentage
of identical amino acids between the submitted sequence and the homologue. The percentage similarity is
the percentage of similar amino acids shared between the two sequences [1]. The length of the alignment
describes the length (in number of amino acids) of the region of similarity between the two sequences.

Classification N Function Homologue E
value

Identity
(%)

Similarity
(%)

Length of
alignment

Cellular
processes

2 Cadherin 8 Mus musculus 6e-04 78 78 66
Signal recognition
docking protein

Ixodes scapularis 2e-06 77 77 103

Viral replication 2 Matrix protein Rabies virus 2e-86 98 98 155

Unknown 3 Hypothetical
protein

Ixodes scapularis 2e-74 79 79 189

Hypothetical
protein

Plasmodium
falciparum

2e-42 89 91 87

Olfaction 1 Olfactory
receptor-like

protein

Ixodes scapularis 1e-36 68 68 153

Antibiotic
resistance

2 Beta lactamase Escherichia coli 1e-89 87 22 36
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may help the mite to counteract potentially
damaging effects which may accrue from the
intensive eosinophil infiltration of the infection
site in the sheep.

In starved mites, a very limited number of
genes were expressed at a sufficiently higher
level than in fed. One differentially up-regulated
transcript worthy of note was a homologue of an
olfactory receptor protein of I. scapularis. Little
is known about olfactory receptors in ticks and
mites, but in insects they are located on the
maxillary palps and antennae [7] and are
involved in locating food sources. The mites
could use olfactory receptors to help locate the
host or a preferred feeding site. This dataset also

contained a homologue of a signal peptide
docking protein. These proteins act as signal
peptide receptors in the rough endoplasmic retic-
ulum and homologues are present in Ixodes spp.
EST datasets5. The viral replication proteins
show homology to matrix proteins andmay play
a role in transcription and replication. Alterna-
tively, and perhaps most likely because of the
low numbers, these sequences and the antibiotic
resistance homologues detected may simply
reflect microbial colonisation of mites which
is masked in fed mites by up regulation of
genes associated with feeding and downstream
processes.

To summarise, the genes shown to be
up-regulated in actively feeding mites encoded
a wide variety of proteins, many of which
may potentially be involved in feeding. These
included several allergens, secreted proteins
(some from salivary glands) and proteins
involved in the breakdown of blood cells. On
the other hand, genes up-regulated by starved
mites encoded mostly housekeeping proteins,
with the exception of homologues of an olfac-
tory receptor gene and a viral matrix protein.
By using suppressive subtractive hybridisation
we have been able to identify several proteins
which may be involved in the mite’s digestion,
and thus would make interesting candidate vac-
cine antigens.
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