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Abstract
In order to find better strategies for tobacco control, it is often critical to know the transitional
probabilities among various stages of tobacco use. Traditionally, such probabilities are estimated by
analyzing data from longitudinal surveys that are often time-consuming and expensive to conduct.
Since cross-sectional surveys are much easier to conduct, it will be much more practical and useful
to estimate transitional probabilities from cross-sectional survey data if possible. However, no
previous research has attempted to do this. In this paper, we propose a method to estimate transitional
probabilities from cross-sectional survey data. The method is novel and is based on a discrete event
system framework. In particular, we introduce state probabilities and transitional probabilities to
conventional discrete event system models. We derive various equations that can be used to estimate
the transitional probabilities. We test the method using cross-sectional data of the National Survey
on Drug Use and Health. The estimated transitional probabilities can be used in predicting the future
smoking behavior for decision-making, planning and evaluation of various tobacco control programs.
The method also allows a sensitivity analysis that can be used to find the most effective way of
tobacco control. Since there are much more cross-sectional survey data in existence than longitudinal
ones, the impact of this new method is expected to be significant.
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I. INTRODUCTION
Reducing tobacco use remains a significant public health challenge in the new millennium
despite decades of efforts in tobacco control. Exposure to tobacco is associated with 440,000
deaths each year in the United States and costs the nation $50 – $75 billion in medical expense
alone [1–9]. The US government aims at reducing current smokers to 16% among adolescents
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and 12% among adults by the year 2010 [2]. However data from the Behavioral Risk Factor
Surveillance System indicate that the adult smoking rate has fluctuated at around 22% since
1990 [1–9]. Data from the Youth Risk Behavior Surveillance System indicate that adolescent
smoking prevalence rate increased from 27.5% in 1991 to 36.4% in 1997 before it started to
decline in 1999 [1–9]. Hence, there is a large gap between the current levels of tobacco use
and the tobacco control objective, underscoring the need for immediate actions to advance
current tobacco control strategy.

Effective tobacco control strategies require a comprehensive understanding of the dynamics
of smoking behavior progression. The continuous development of smoking behavior can be
effectively modeled as a discrete event system (DES), where discrete states describe the
different stages of tobacco use and discrete events describe the transitions from one state (stage)
to another. Much has been documented on various types of smokers (e.g., smoking
experimenters, regular smokers, addicted smokers, quitters etc), reflecting the stages of
smoking. However, data are needed on the transitional (or event) probabilities among various
stages of tobacco use. Traditionally, such probabilities are estimated by performing
longitudinal surveys; that is, by surveying individuals of the same group of randomly sampled
subjects over time. Longitudinal surveys, often time-consuming and expensive, are less
frequently performed. On the other hand, cross-sectional surveys, where random samples of a
population are surveyed at the same time are much easy to perform compared to longitudinal
surveys. Hence many more cross-sectional surveys have been conducted, resulting in abundant
cross-sectional data. Therefore the challenge question is: can we estimate the transitional
probabilities from cross-sectional survey data? Intuitively, one may think that the answer shall
be negative. But, in fact, as we will show in this paper that there is information contained in
cross-sectional surveys that allows us to derive the transitional probabilities. We will develop
a new approach to estimate the transitional probabilities from cross-sectional survey data using
a new framework of discrete event systems. Extracting transitional probabilities from cross-
sectional survey data has never been attempted before. We are the first to suggest this
possibility.

To estimate transitional probabilities from cross-sectional survey data, we will extend the
conventional framework of discrete event systems by introducing state probabilities and
transitional probabilities. To establish the DES method for modeling smoking behavior, we
use the following five states:

• NS – nerve-smoker, a person who has never smoked by the time of the survey.

• EX – experimenter, a person who smokes but not on a regular basis after initiation.

• SS – self stopper, an ex-experimenter who stopped smoking for at least 12 months.

• RS – regular smoker, a smoker who smokes on a daily or regular basis (including
habitual and addicted smokers).

• QU – quitter, an ex-regular smoker who stopped smoking for at least 12 months.

We will establish a set of equations that relate the probabilities of the states defined above with
the transitional probabilities based on data available in cross-sectional surveys. Using
probabilistic discrete event system (PDES) to study smoking behavior is new and our approach
is the first of its kind.

The transitional probabilities describe the dynamics of smoking behavior progression in a
population. They can also be used to predict future trend of tobacco use as well as the
effectiveness of tobacco control programs at national and state levels. By associating various
tobacco control programs with changes in transitional probabilities, we can determine the
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impact of these programs in reducing tobacco use and obtain useful information for tobacco
control planning in the future.

The results presented in this paper are original and important. (1) We propose a PDES model
for smoking behavior, which has not been previously attempted. This model is very intuitive
and easy to understand. (2) We establish a method to estimate transitional probabilities from
cross-sectional survey data, which has been commonly considered impossible. (3) We use the
proposed estimation method on the actual survey data and obtain the transitional probabilities
from the data for the first time. (4) We use the estimated transitional probabilities to predict
the future smoking behavior, which provides a new tool in tobacco control. (5) We develop
sensitivity analysis using PDES model for smoking behavior, which has never been done
before.

This paper is organized as follows. In Section II, we will discuss advantages and disadvantages
of cross-sectional surveys and longitudinal surveys. We will also discuss tobacco use and
tobacco control. In addition, this section will provide the background and demonstrate the
significance of the problem to be solved. In Section III, we will introduce the mathematical
model of smoking behavior, derive equations for estimating transitional probabilities, and
apply the results to derive the probabilities from cross-sectional surveys. In Section IV, we will
use the transitional probabilities to predict future smoking behavior. Such predictions will help
us to evaluate various tobacco control programs. In Section V, we calculate various sensitivity
functions from the model that we established. We emphasize that although this paper mainly
focus on smoking behavior and tobacco control, the method established in this paper can be
extended to describe other substance use behaviors. Indeed, the method of deriving transitional
probabilities from cross-sectional survey data has a wide range of applications.

II. BACKGROUNDS AND MOTIVATIONS
In general, a longitudinal study or survey is a study that involves observations of the same
subjects over long periods of time. Typically, longitudinal studies are used to study the
progression of a behavior (such as smoking behavior) across the life span. The reason for this
is that longitudinal studies obtain data at the individual level by tracking the same individuals,
and the data can be used to determine the transitional dynamics and probabilities. There are
different types of longitudinal studies. In this paper, we consider cohort studies. Such studies
sample a cohort, defined as a group experiencing same event (birth, in our case) in a given time
period, and make observations of the sampled subjects at intervals through time.

Cross-sectional studies or surveys, on the other hand, involve observation of random samples
of a population at one point in time without follow-ups. They can be thought of as providing
a "snapshot" of the frequency and characteristics of a behavior in a population at a particular
point in time. For example, in a cross-sectional survey, a specific group is looked at to find
predictor variables and outcome variables, such as smoking and lung cancer. Association
analysis will then be conducted to establish the relationship between the predictor variables
and the outcome variable. Also, cross-sectional data from health surveys are often used to
describe health status of a study population, such as the prevalence rate of a disease (e.g.,
cancer) or a health risk behavior (e.g., smoking).

To study smoking behavior and to evaluate tobacco control programs, many surveys have been
conducted in past decades. The majority of these surveys are cross-sectional in nature. In fact,
a huge body of data on tobacco control has been accumulated. These data are often used to
compute prevalence rates of smoking behavior (e.g., percentage of lifetime smoking, current
smoking, or addicted smoking). A few studies examine the progression from nonsmokers to
smokers using self-reported age of smoking onset from cross-sectional data [19–22]. But
prevalence rates and probability of smoking onset alone are not enough, data on smoking
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behavior progression must be added in order to increase the efficiency of tobacco control and
to evaluate program effectivebess, because smoking behavior is an integrated, dynamic, and
progressive process. With smoking progression data, it is possible to assess: a) the impact of
a tobacco control effort (e.g., tobacco taxation, legal restrictions, school-based programs) on
different steps of smoking behavior progression (e.g., from never-smokers to smokers or from
regular smokers to quitters); b) the effect of changes in different steps of smoking progression
(e.g. increasing quitter or reducing experimenters) in reducing the total number of smokers;
and c) the amount of changes needed in different steps of smoking behavior progression in
order to achieve a pre-determined tobacco control objective.

To provide data on smoking behavior progression for advanced tobacco control planning and
program effect evaluation, a logic approach is to collect longitudinal data. Longitudinal data
are often used in tobacco research to characterize smoking behaviors. For example, to
characterize the history and trajectories of smoking behavior progression, longitudinal data
have been collected in [46,16–18] to determine the risk factors that are associated with smoking
behavior progression. For example, the California Tobacco Control Program conducted the
California 1993–1996 Teen Longitudinal Survey. Also, the National Longitudinal Survey of
Youth 1997 has collected longitudinal data in great details on smoking behavior progression
and risk factors from subjects born in the years 1980–1984. The Monitoring the Future Studies
has a biannual longitudinal data collection portion from senior high school student sample since
1976 to measure smoking behavior progression among youth. From longitudinal data,
information can be directly derived to measure changes in smoking behavior according to
progression stage and to determine the transitional probabilities that characterize the dynamics
of smoking behavior progression in a population. Besides those examples, longitudinal data
are not routinely collected in tobacco control practice.

Compared to a cross-sectional survey, a longitudinal survey is more time-consuming and
difficult to perform because of the following reasons. (1) To follow up with study participants
through a longitudinal survey is technically demanding even for professional tobacco
researchers. In longitudinal surveys, the same individuals who participated in the baseline
survey must be followed up at the subsequent times for data collection; consequently, strict
and complicated procedures must be set up for correctly tracking the participants at the follow-
ups while ensuring the confidentiality of the participants and the validity of the survey data.
Consequently, compared to a cross-sectional survey, conducting a longitudinal survey needs
more resources and personnel, especially personnel with advanced training and adequate
practice. (2) It is more time-consuming to collect longitudinal data than to collect cross-
sectional data. At least two waves of data collections are needed for a longitudinal survey to
measure smoking behavior progression. It will take longer time to obtain information from a
multi-wave longitudinal survey than from a one-wave cross-sectional survey for tobacco
control planning and program effect evaluation.

There are also significant limitations to longitudinal data if they are used for tobacco control
planning and program effect evaluation because of the following reasons. (1) Selection biases
due to attrition: attrition or loss of follow-up is a common and significant concern with survey
data collected through a longitudinal survey. Data from tobacco research indicate that
participants who missed the follow-up are more likely to be smokers. This selective attrition
will threaten the validity of longitudinal data. (2) Inaccuracy of survey time: for an ideal
longitudinal survey, each wave of data collection should be completed at one time point (e.g.,
January 1, 2005 for wave 1 and January 1, 2006 for wave 2). However, a tobacco control
program usually involves a population with large numbers of participants. Collecting data from
such large samples can not be completed within one or two days, resulting in time errors in
measuring smoking behavior progression even with advanced methodologies. For example, a
participant may be surveyed once on January 1, 2005 and then again on March 1, 2006, instead

Lin and Chen Page 4

Inf Sci (Ny). Author manuscript; available in PMC 2011 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



of January 1, 2006. This will cause a time error. (3) Hawthorne (survey) effect: repeatedly
asking the same subjects the same questions regarding smoking behavior over time may result
in biased data. (4) Recall biases: to obtain data on behavior dynamics, a longitudinal survey
may ask each participant to recall in great details his or her smoking behavior in the past; this
may result in erroneous data due to memory loss. (5) Age range of the subjects in a longitudinal
sample shifts up as the subjects are followed up over time, affecting the use of such data in
tobacco control practice [24–27,35,40,42].

Compared to a longitudinal survey, it will be easier and more cost-effective to conduct a cross-
sectional survey in tobacco control practice. Collecting cross-sectional survey can be
completed within a short period of time. The procedure to collect cross-sectional data is
relatively simpler than to collect longitudinal data. Unlike longitudinal surveys, data from a
cross-sectional survey can be analyzed without waiting for data from another wave. Cross-
sectional data are generally less error-prone because items used in a cross-sectional survey
often target the most recent events of tobacco use, such as smoking in the past 7 days and past
30 days; or events that are proven to be more accurately encoded in memory for recall, such
as whether ever used a tobacco product, age when tried a tobacco product the first time or the
last time in life. The validity of recalled data on these behaviors has been well documented
[24–27]. In addition, data from cross-sectional survey are free from Hawthorne effect because
each wave of the survey is conducted over different samples. Typical examples of cross-
sectional surveys with data on tobacco smoking include National Survey on Drug Use and
Health (NSDUH), Youth Risk Behavior Survey (YRBS), and Behavioral Risk Factor Survey
(BRFS).

Although there are many advantages, cross-sectional data have never been used to assess
smoking behavior progression because in any cross-sectional survey, no participants are
followed up at next wave to collect the related data. However, considering one wave of cross-
sectional survey as a snap shot of the smoking behavior dynamics in a population, our analysis
indicates that data does contain information to assess smoking behavior progression. It would
be ideal if a method is available to extract such information from cross-sectional data to measure
the smoking behavior progression. This is indeed possible because at the aggregated level, data
from a cross-sectional survey with a sample of subjects in multiple age groups is analogous to
the data from a longitudinal survey that follows a sample of a birth cohort (born in one year)
for multiple years. Hence information on smoking behavior progression at the aggregated level
can be derived from cross-sectional data if appropriate methods are used.

III. PROBABILISTIC DISCRETE EVENT SYSTEMS
Discrete event system framework [31–34,38,41] provides a nice way to model smoking
behavior progression using cross-sectional data. By incorporating probabilities into
conventional discrete event system, we can derive a probabilistic discrete event system (PDES)
for smoking behavior as

The PDES model is illustrated in Figure 1. In the model, Q is the set of discrete states. In the
smoking behavior model of Figure 1, Q = {NS, EX, SS, RS, QU}. Σ is the set of events. In
Figure 1, Σ = {σ1,σ2,…,σ11}, where each σi is an event describing the transition in smocking
behavior. For example σ2 is the event of starting smoking. δ : Q×Σ→Q is the transitional
function describing what event can occur at which state and the resulting new states. For
example, in Figure 1, δ(NS,σ2)= EX. q0 is the initial state. For the smoking behavior model in
Figure 1, qo = NS. With slight abuse of notation, we also use q to denote the probability of the
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system being at state q and use σi to denote the probability of σi occurring. Therefore, NS also
denotes the probability of being a never-smoker and σ2 also denotes the probability of starting
smoking. If it is important to specify the age, then we will use a to denote age. For
example,σ2 (a) denotes the event or the probability of starting smoking at age a.

From the PDES model of the smoking behavior shown in Figure 1, we can obtain the following
equations.

For example, the first equation above states that the percentage (or probability) of people who
are never-smoker at age a + 1 is equal to the percentage of people who are never-smoker at
age a subtract the percentage of people who are never-smoker at age a times the percentage of
never-smokers who start smoking at age a. The other equations can be interpreted similarly.
In addition, since probabilities must sum up to 1, we have the following obvious equations
(with reference to Figure 1).

Write the above 10 equations in matrix form Aσ = B as Equation 1. Then it can be checked that
the rank of A is 9: rank(A) = 9. Therefore, only 9 equations are independent.

(Equation 1)

Since there are 11 transitional probabilities, σ1(a), σ2 (a), …, σ11 (a), to be solved, we need 2
more independent equations. These equations can be obtained as follows. In the NSDUH
survey, subjects were asked the last time when they smoked. Using the data, we estimate the
portion of the self stoppers who stopped smoke 24 months ago (and hence are self stoppers a
year ago) or “old self stoppers”. Denote the old self stoppers as . Then we have another
equation:
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Similarly, denote the old quitter as  and we have one more equation:

The above 2 equations, plus the 9 independent equations, will allow us to solve for all
transitional probabilities as shown in Equation 2.

(Equation 2)

Let us now use the data from 2000 NSDUH to calculate these transitional probabilities. The
data from age 15 to 21 are shown in Table I. We use the percentages of people in various states
as the state probabilities.

We calculate the transitional probabilities from age 15 to 21 for the data in Table I using
Equation 2. The results are shown in Table II.

These transitional probabilities describe the dynamics of smoking behavior among US
adolescents and young adults in 2000. They can be used to evaluate and hence improve the
tobacco control programs as to be discussed in the next two sections.

IV. PREDICTING SMOKING BEHAVIOR FOR TOBACCO CONTROL
PROGRAMS

The transitional probabilities provide information on the likelihood that a person may start
smoking, progress toward a regular smoker, quit smoking, etc. These transitional probabilities
are influenced by the environment which the person is in. Various tobacco control programs,
such as tobacco taxation, restriction of smoking in public places, restriction of tobacco sales
to minors, school-based programs, and media campaigns, are intended to change the
environment and hence the transitional probabilities. Different tobacco control programs have
different impacts on the transitional probabilities. For example, restrictions of tobacco sales to
minors and school-based programs have greater impact on σ2(a) than on other transitional
probabilities. The goal of tobacco control programs is to reduce smoking among adolescents
and adults. In terms of PDES, the goal is to reduce the (state) probability RS. To qualitatively
assess the impact of a tobacco control program to RS, we need to do some prediction on how
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transitional probabilities σi(a)impact on probability RS. This can be done as follows. Suppose
σi(a) is changed to σ'i(a). Denote the new transition matrix as

Let the state probabilities at ages a and a + 1 under the new transitional probabilities π' (a) be
denoted by

respectively. Then we can predicate the state probabilities of smocking behavior at different
ages as follows.

For example, if a tobacco control program can decrease the probability of σ2 by 10%, then we
can recalculated the transitional probabilities from age 15 to 21 and predict the state
probabilities of smocking behavior accordingly. The predicated results are shown in Table III.
By comparing Table III with Table I, we can estimate the effects of the tobacco control program.

V. SENSITIVITY ANALYSIS
To further understand the impact of transitional probabilities σi(a) at age a on state probabilities
q(b) at age b ( q can be any state), we would like to find the sensitivities from σi(a) to q(b),

which is represented by . Derivative  tells us how the change in σi(a) at age a will
affect q(b) at age b>a. To this end, let us write the smoking behavior equation as

Then

Since
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and some σi(a) depends on some other σj(a),  is calculated by first replacing dependency
of σi(a) and then taking derivative. For example, for transition σ2(a),

Using the data in Table I and Table II, we can calculate sensitivities . For example, let

a=15 and b=17, 19, 21, we can calculate  as follows.

To see the percentage reduction of σ2(a) (less initiation of smoking) on the percentage of never-
smokers NS(a), we calculate the following sensitivity function from σ2(a) to NS(a)

Using the data in Table I and Table II, the results are as follows.

Similarly, we can calculate the sensitivity function from σ2(a) to RS(a) as follows.

Clearly from these sensitivities, we can conclude that reducing σ2(a) (less initiation of smoking)
will substantially increase the number of never-smokers and substantially decrease the number
of regular smokers, although the impacts are different at different age.
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VI. CONCLUSION
In this paper, we reported a new approach to investigate longitudinal smoking behavior
progression using cross-sectional data. We derived a smoking behavior model based on PDES.
Using this model, we then estimated the transitional probabilities from the survey data of 2000
NSDUH. There are several important applications of this model. Using the estimated
transitional probabilities, we can predict the smoking behavior with respect to the changes in
transitional probabilities for certain age groups. Knowing the effects of tobacco control
programs to the transitional probabilities, we can then evaluate various tobacco control
programs and hence provide assistance to the policy makers in their decision making. We also
derived sensitivity functions of various transitional probabilities to the state probabilities.
These functions can serve as analytical tools for comparing the effects of different transitional
probabilities on the final outcome of tobacco control. Overall, the paper shows that transitional
probabilities can be estimated from cross-sectional survey data and hence to describe the
dynamics of behavior progression systems. The establishment of this method will open a new
direction in behavior science research beyond tobacco smoking.

Acknowledgments
This research is supported in part by National Science Foundation under grants ECS-0624828 and ECS-0823865, and
by National Institute of Health under grant 1R01DA022730-01A2. We would like to thank George Yin for several
inspiring discussions on the subject.

REFERENCES
1. CDC. U.S. DHHS, CDC National Center for Chronic Disease Prevention and Health Promotion.

Atlanta, GA: Office on Smoking and Health; 1999. Best Practices for Comprehensive Tobacco Control
Programs - August 1999.

2. CDC. US DHHS Office of Disease Prevention and Health Promotion. Rockville, MD: 2000. Healthy
People 2010.

3. CDC. Introduction to Program Evaluation for Comprehensive Tobacco Control Programs. Atlanta,
GA: U.S. DHHS; 2001.

4. CDC. Global Tobacco Control Program. Atlanta, GA: CDC Office on Smoking and Health; 2004.
5. DHHS, U. US DHHS, Office on Smoking and Health, Centers for Disease Control and Prevention.

Atlanta, GA: 1992. Reducing the Health Consequences of Smoking: 25 Years of Progress - A Report
of the Surgeon General.

6. US DHHS. US DHHS, Centers for Disease Control and Prevention, National Center for Chronic
Disease Prevention and Health Promotion. Atlanta, GA: Office on Smoking and Health; 1994.
Preventing Tobacco Use among Young People - A Report of the Surgeon General.

7. US DHHS. US DHHS, Centers for Disease Control and Prevention, National Center for Chronic
Disease Prevention and Health Promotion. Atlanta, GA: Office on Smoking and Health; 2000.
Reducing Tobacco Use: A Report of the Surgeon General.

8. US DHHS. US DHHS, Centers for Disease Control and Prevention, National Center for Chronic
Disease Prevention and Health Promotion. Atlanta, GA: Office on Smoking and Health; 2004. The
Health Consequences of Smoking - A Report of the Surgeon General.

9. US Department of Agriculture. U.S. Department of Agriculture. Springfield, VA: Economic Research
Services; 2003. Tobacco Outlook.

10. Bauman KE, Ennett ST. Validity of adolescent self-reports of cigarette smoking. Am J Public Health
1998;88(2):309–310. [PubMed: 9491034]

11. Bernstein DM, Whittlesea BW, Loftus EF. Increasing confidence in remote autobiographical memory
and general knowledge: extensions of the revelation effect. Mem Cognit 2002;30(3):432–438.

12. Bhowal P, Sarkar D, Mukhopadhyay S, Basu A. Fault diagnosis in discrete time hybrid systems - A
case study. Information Sciences 2007;177(5):1290–1308.

Lin and Chen Page 10

Inf Sci (Ny). Author manuscript; available in PMC 2011 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



13. Brauer LH, Hatsukami D, Hanson K, Shiffman S. Smoking topography in tobacco chippers and
dependent smokers. Addict Behav 1996;21(2):233–238. [PubMed: 8730526]

14. California Department of Health Services. Cancer Prevention and Control Unit. La Jolla, CA:
University of California, San Diego; 1999. California Tobacco Survey: 1993–1996 Teen
Longitudinal Survey.

15. Chaloupka FJ, Wechsler H. Price, tobacco control policies and smoking among young adults. J Health
Econ 1997;16(3):359–373. [PubMed: 10169306]

16. Chassin L, Presson CC, Sherman SJ, Edwards DA. The natural history of cigarette smoking: predicting
young-adult smoking outcomes from adolescent smoking patterns. Health Psychol 1990;9(6):701–
716. [PubMed: 2286181]

17. Chassin L, Presson CC, Pitts SC, Sherman SJ. The natural history of cigarette smoking from
adolescence to adulthood in a midwestern community sample: multiple trajectories and their
psychosocial correlates. Health Psychol 2000;19(3):223–231. [PubMed: 10868766]

18. Chen K, Kandel DB. The natural history of drug use from adolescence to the mid-thirties in a general
population sample. Am J Public Health 1995;85(1):41–47. [PubMed: 7832260]

19. Chen X, Li G, Unger JB, Liu X, Johnson CA. Secular trends in adolescent never smoking from 1990
to 1999 in California: an age-period-cohort analysis. Am J Public Health 2003;93(12):2099–2104.
[PubMed: 14652341]

20. Chen X, Stanton B, Shankaran S, Li X. Age of smoking onset as a predictor of smoking cessation
during pregnancy. American Journal of Health Behavior. 2006 In press.

21. Chen X, Li X, Stanton B, Mao R, Sun Z, Zhang H, Qu M, Wang J, Thomas R. Patterns of cigarette
smoking among students from 19 colleges and universities in Jiangsu Province, China: a latent class
analysis. Drug Alcohol Depend 2004;76(2):153–163. [PubMed: 15488339]

22. Chen X, Li Y, Unger JB, Gong J, Johnson CA, Guo Q. Hazard of smoking initiation by age among
adolescents in Wuhan. China. Prev Med 2001;32(5):437–445.

23. Ignjatović J, Ćirić M, Stojan Bogdanović S. Determinization of fuzzy automata with membership
values in complete residuated lattices. Information Sciences 2008;178(1):164–180.

24. Janson H. Longitudinal patterns of tobacco smoking from childhood to middle age. Addict Behav
1999;24(2):239–249. [PubMed: 10336105]

25. Johnson TP, Mott JA. The reliability of self-reported age of onset of tobacco, alcohol and illicit drug
use. Addiction 2001;96(8):1187–1198. [PubMed: 11487424]

26. Kaplan RM, Ake CF, Emery SL, Navarro AM. Simulated effect of tobacco tax variation on population
health in California. Am J Public Health 2001;91(2):239–244. [PubMed: 11211632]

27. Korkeila K, Suominen S, Ahvenainen J, Ojanlatva A, Rautava P, Helenius H, Koskenvuo M. Non-
response and related factors in a nation-wide health survey. Eur J Epidemiol 2001;17(11):991–999.
[PubMed: 12380710]

28. Kilic E. Diagnosability of fuzzy discrete event systems. Information Sciences 2008;178(3):858–870.
29. Lei H, Li Y. Minimization of states in automata theory based on finite lattice-ordered monoid.

Information Sciences 2007;177(6):1413–1421.
30. Liu J, Li Y. The relationship of controllability between classical and fuzzy discrete-event Systems.

Information Sciences 2008;178(2):4142–4151.
31. Lin F, Wonham WM. “On observability of discrete-event systems, ”. Information Sciences 1988;44

(3):173–198.
32. F Lin F, Wonham WM. “Decentralized supervisory control of discrete-event systems,”. Information

Sciences 1988;44(3):199–224.
33. Lin F, Ying H, MacArthur RD, Cohn JA, Barth -Jones DC, Ye H, Crane LR. “Theory for a control

architecture of fuzzy discrete event systems for decision making,”. Information Science
2007;177:3749–3763.

34. Mortazavian H, Lin F. “Decentralized supervisory control of discrete event systems with
nonhomogeneous control structure, ”. Information Sciences 1993;68(3):233–246. 1993.

35. Murray M, Swan AV, Kiryluk S, Clarke GC. The Hawthorne effect in the measurement of adolescent
smoking. J Epidemiol Community Health 1988;42(3):304–306. [PubMed: 3251014]

Lin and Chen Page 11

Inf Sci (Ny). Author manuscript; available in PMC 2011 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



36. Prochaska JO, DiClemente CC. Stages and processes of self-change of smoking: toward an integrative
model of change. J Consult Clin Psychol 1983;51(3):390–395. [PubMed: 6863699]

37. Ramadge PJ, Wonham WM. Supervisory control of a class of discrete event processes. SIAM Journal
of Control and Optimization 1987;25(1):206–230.

38. Ramadge PJ, Wonham WM. The control of discrete event systems. Proceedings of the IEEE 1989;77
(1):81–98.

39. SAMHA. Overview of Key Findings, 2004. Rockville, MD: U.S. DHHS; 2005. Monitoring the Future
National Results on Adolescent Drug Use.

40. Singer, JD.; Willett, JB. Applied Longitudinal Data Analysis. New York: Oxford University Press;
2003.

41. Shu S, Lin F, Ying H, Chen X. “State estimation and detectability of probabilistic discrete event
systems,”. Automatica 2008;44(12):3054–3060. [PubMed: 19956775]

42. Stanton WR, McClelland M, Elwood C, Ferry D, Silva PA. Prevalence, reliability and bias of
adolescents' reports of smoking and quitting. Addiction 1996;91(11):1705–1714. [PubMed:
8972928]

43. Starr, G.; Rogers, T.; Schooley, M.; Porter, S.; Wiesen, E.; Jasmison, N. Centers for Disease Control
and Prevention. Atlanta, GA: 2005. Key Outcome Indicators for Evaluating Comprehensive Tobacco
Control Programs.

44. van der Weide, ThP; van Bommel, P. Measuring the incremental information value of documents.
Information Sciences 2006;176(2):91–119.

45. Weinberger DA, Tublin SK, Ford ME, Feldman SS. Preadolescents' social-emotional adjustment and
selective attrition in family research. Child Dev 1990;61(5):1374–1386. [PubMed: 2245731]

46. White HR, Pandina RJ, Chen PH. Developmental trajectories of cigarette use from early adolescence
into young adulthood. Drug Alcohol Depend 2002;65(2):167–178. [PubMed: 11772478]

Lin and Chen Page 12

Inf Sci (Ny). Author manuscript; available in PMC 2011 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
Probabilistic discrete event system model of the smoking behavior. States are: NS - nerve
smoker, EX - experimenter, SS - self stopper, RS - regular smoker, and QU - quitter. σi are
events and corresponding probabilities of transitions among states. NS is the initial state.
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