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Abstract
Introduction—Recent Food and Drug Administration legislation enables the mandating of product
performance standards for cigarette smoke and the evaluation of manufacturers’ health claims for
modified tobacco products. Laboratory studies used for these evaluations, and also to understand
tobacco smoke toxicology, use machines to generate smoke. The goal of this review is to critically
evaluate methods to assess human smoking behavior and replicate this in the laboratory.

Methods—Smoking behavior and smoking machine studies were identified using PubMed and
publically available databases for internal tobacco company documents.

Results—The smoking machine was developed to generate smoke to allow for comparing cigarette
tar and nicotine yields. The intent was to infer relative human disease risk, but this concept was
flawed because humans tailor their smoking to the product and chemical yields and toxicological
effects change with different smoking profiles. While smoking machines also allow for mechanistic
assessments of smoking-related diseases, the interpretations also are limited. However, available
methods to assess how humans puff could be used to provide better laboratory assessments, but these
need to be validated. Separately, the contribution of smoke mouth-holding and inhalation to dose
need to be assessed, because these parts of smoking are not captured by the smoking machine. Better
comparisons of cigarettes might be done by tailoring human puff profiles to the product based on
human studies and comparing results across regimens.

Conclusions—There are major research gaps that limit the use of smoking machine studies for
informing tobacco control regulation and mechanistic studies.
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INTRODUCTION
In June 2009, the Food and Drug Administration (FDA) received regulatory authority over
tobacco products. The FDA is now empowered to develop product performance standards and
evaluate manufacturers’ health claims for modified tobacco products. Tobacco manufacturers
have publicly focused efforts on lowering cigarette smoke emissions, and may be able to make
health claims following the FDA review of their scientific data. The World Health Organization
Study Group on Tobacco Product Regulation (TobReg) and others also have recognized
potential benefits and pitfalls for tobacco harm reduction strategies (1-10). The Institute of
Medicine (IOM) furthered this harm reduction concept by concluding that harm reduction
through smoke exposure reduction was feasible (11,12). The IOM coined an overarching term,
PREPs, for potential reduced exposure products. (A comprehensive list of existing PREPs can
be found at Tobaccoproducts.org1.) As FDA performance standards to reduce exposure are
developed and implemented, and the manufacturers develop new product designs proposed to
reduce human tobacco toxicant exposure, reliable, validated methods are needed to assess
changes in cigarette smoke chemical yields and toxicological effects. Critical to the laboratory
evaluation of these products is the generation of cigarette smoke by smoking machines, for
example, as have been used to estimate tar and nicotine yields. However, prior uses of the
smoking machine have been invalidated in the context of human risk analysis for comparing
different types of cigarettes because smoking machine protocols do not replicate human
exposure. Thus, current methods preclude an estimation of human exposure and toxicological
effects, challenging new regulatory processes.

The best example of the flawed use of the smoking machine relates to the earlier assumptions
that reduced tar and nicotine yield cigarettes, the so-called “lights”, were less harmful than
higher yield cigarettes (13). Two decades ago, the public health community advocated that for
smokers who could not or would not quit to switch to lower tar yield cigarettes, for example
as recommended by the Surgeon General (14-16). Advertising and marketing by the tobacco
industry reinforced the perceptions that lower tar was less harmful. We now know that smoking
machine yields were misunderstood in relation to human exposure and tobacco companies
intentionally misrepresented the impact of lowering tar yields on smokers’ health (13,17,18).
Development of smoking behavior measurements revealed that compensatory mechanisms for
adjusting to the reduced nicotine yields of reduced yield cigarettes led smokers to increase their
nicotine exposure by increasing cigarette puffing intensity and smoking more cigarettes per
day (19-23). Moreover, human biomarker studies have demonstrated that smokers’ exposures
were not different when smoking cigarettes with different tar yields (24-26). Separately, while
early epidemiology data supported the hypothesis for reduced risk in relation to tar yields, a
recent re-analysis of the data established that the early interpretation were wrong (13,27). As
the realization for the limitations of smoking machine studies became clear, and how the uses
for public health recommendations were based on flawed interpretations, the Federal Trade
Commission (FTC) in November 2008 officially rescinded its widely used guidance for
reporting smoking machine determined tar and nicotine yields2. Thus, today, there are no
recommended smoking machine protocols in the United States that the FDA can use to inform
their decision making processes regarding performance standards and health claims, although
the World Health Organization has made recommendations (see below) (10,28).

In order to develop and validate new smoking machine methods, a better understanding of how
to assess human smoking behavior is needed. Currently, smoking behavior is assessed by
smoking topography devices that record puff profiles (e.g., puff volume, interpuff interval,
puff duration and air flow) and methods to assess inhalation. However, there are limitations to

1www.tobaccoproducts.org
2http://www.ftc.gov/opa/2008/11/cigarettetesting.shtm
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these methods for estimating human exposure, and very few combined these research tools in
the same study, so how to use this data for smoking machine puff profiles is unclear.
Conceptually, these methods could be validated by human biomarker studies, and some studies
have been done. The goal of this review is to critically evaluate methods to assess human
behavior and how best to replicate this on smoking machines. While there will always be
limitations to such studies, certain limitations can be mitigated, and the context for other
limitations can be better understood. This review will summarize the state of the art in smoking
machine protocols and human smoking behavior measurement. These data will be synthesized
to identify research gaps related to laboratory research on cigarette smoke and regulation of
tobacco products. This review is organized into three major sections, followed by a discussion.
The first section provides a review of the technical aspects of machine smoking and the early
development of the standardized smoking machine. This will set the stage to contrast this early
work with what we know about human smoking behavior and how well we measure that. The
third section reviews methods where researchers have tried to apply what we know about
human smoking behavior for smoking machine studies. Last, the discussion provides an overall
summary of the most important points and identifies the research gaps that lead from earlier
work.

METHODS
Smoking behavior and smoking machine studies were identified using PubMed search
strategies. The search keyword strings included “human smoking behavior, smoking
topography, human puff profiles, smoking machines, smoke exposure, and PREPs”, and
combinations of these. All identified studies were reviewed that have been published since
1980, and citation lists were cross-referenced to ensure that the most complete list of
publications was identified. Articles published prior to 1980 with high relevance to the study
of PREPs or low yield cigarettes also were identified and reviewed. Separately, internal tobacco
company documents were reviewed, as identified by searches using
TobaccoDocuments.org3 and the Legacy Tobacco Documents Library4. Studies were
identified that investigated methodological, descriptive, validation and application aspects
related to the assessment of human smoking behavior, human puff and respiration patterns,
biomarkers of acute smoke exposure, and smoking machine regimens and yields as they relate
to exposure. Research publications were compiled to examine: 1) goals of the study; 2) methods
for assessing human smoking behavior or machine smoking protocols; 3) experimental designs
that were used, and; 4) the effects of smoking behavior in relation to the effects of smoking
machine protocols on smoke yields. The information was synthesized to provide usefulness
for the study of cigarettes and identify research gaps. While others have reviewed the origins
and limitations of smoking machine yield testing (29-31), the focus of this manuscript is to
identify how to better replicate human smoking in the laboratory through understanding both
the design of smoking machine and human behavior studies, and identify the research gaps
associated with this.

RESULTS
Technical aspects of machine smoking

Smoking machines are intended to generate smoke in a systematic fashion for laboratory
testing, and they have been used to compare cigarette smoke toxicant yields by puffing
cigarettes according to specified settings. Cigarette smoke is a suspension of particles in a
gaseous vapor, and so it can be collected and analyzed in various ways. A recent review

3www.tobaccodocuments.org
4http://legacy.library.ucsf.edu/
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comprehensively describes how smoke is collected for toxicology studies (32). Particles in
smoke can be collected on a Cambridge filter pad, which is composed of glass fibers. The
change in weight of the pad defines the total particulate matter (TPM) or wet total particulate
matter (WTPM). Tar is mathematically derived value defined as TPM minus water and
nicotine. The gas and vapor phase (GVP) passes through the Cambridge filter pad and can be
collected or tested directly. Alternatively, smoke can be collected as a condensate [termed
cigarette smoke condensate (CSC)], usually in a liquid trap or directly assayed as whole smoke
(WS). TPM and CSC are typically used in studies assessing the toxicology of tobacco smoke
in vitro and for animal skin painting studies, and for assessing the chemical constituents. WS
is used to determine the smoke constituents and in inhalational animal studies, although it is
sometimes used for in vitro toxicology studies. While smoking machines have several variables
that can be adjusted, typically the programmable parameters are puff volume, puff frequency,
puff duration, the length of cigarette smoked (butt length) and more recently puff shape.

The first smoking machines with high accuracy and reproducibility were developed by Pfyl
and Bradford et al. in the 1930s (33,34). Today, commercially available analytical smoking
machines having flexibility for controlling puffing parameters are manufactured by various
companies (e.g., Borgwaldt GmbH [www.borgwaldt.de/cms] and Cerulean
[www.cerulean.com]). The analytical cigarette smoking machines of today vary in the number
of ports, how many cigarettes they hold, whether they are in-line or rotary, and by their ability
to capture mainstream or sidestream smoke. Different smoking machine designs are suitable
for different tasks. Rotary machines are ideally suited for smoking a large number of cigarettes
quickly (usually the same type or brand) and the smoke is funneled into a single smoke trapping
system. One major drawback of the rotary machine is that it cannot easily accommodate
modification in the puff interval. Linear smoking machines, on the other hand, are ideally suited
for smoking a number of replicates (same or different types) onto individual smoke trapping
systems and have more flexibility for altering puff profiles.

Most smoking machines use electric lighters to ignite test cigarettes for machine smoking.
However, Adam and coworkers found different yields from the first puff of a cigarette as it is
lit, depending on the lighting device (35). Comparing an electric lighter, a propane/butane gas
lighter, a match, a candle, and the burning zone of another cigarette, they found that the three
open flame sources produced mainly unsaturated hydrocarbons, while the electric lighting
device produced oxygen-containing compounds. Therefore, they suggest that the use of electric
lighters in smoking machines be reconsidered, since human smokers generally use open flame
lighters. Some smoking machines have sensors to determine if the cigarette is lit and they are
programmed to stop smoking once the cigarette is smoke down to a specified distance from
the end of the filter (e.g., by using a laser detector). Less sophisticated machines rely on a string
to mark the stopping point – when the cigarette burns through the string, the puffing mechanism
is deactivated.

The early development of standardized smoking regimens
The development of smoking machine regimens has been extensively reviewed elsewhere
(36-38). In 1936, Bradford, et.al., who worked for the American Tobacco Company, described
the need for standardized smoking parameters that would aid in the characterization and
reproducibility of cigarette smoke experiments in the laboratory (34). However, machine-
measured emissions were not widely publicized until the early 1950's (39,40), when studies
became available linking smoking and lung cancer, and as cigarette manufacturers were racing
to produce lower tar products (commonly referred to as a “tar derby”), making a multitude of
inconsistent, non-comparable claims about tar yields to consumers (31). The tar derby ended
in 1960 with a voluntary agreement by the FTC and the manufacturers to end tar and nicotine
yield claims5. The FTC later reversed this agreement and decided to develop a standardized
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testing method. The initial protocol was largely based on the work of U.S. Department of
Agriculture chemist C.L. Ogg in 1964 (31,41). It appears, however, that this protocol was based
on one person's observations about how people smoked, was not determined with some
systematic method and it actually was very similar to the 1936 method of Bradford and
coworkers (34). However, the protocol was not intended to represent the typical smoker; but
rather to offer a common basis for a comparison among brands.

The FTC puffing protocol prescribes drawing a 35ml puff of 2 second duration, every minute
until the length of the cigarette is no less than 23mm for non-filtered cigarettes or filter overwrap
plus 3mm for filtered cigarettes. Table 1 describes this protocol and others that have been
developed over time. The standard, developed by Ogg et al., also consisted of conditioning of
cigarettes at 23.9 °C and 60% relative humidity for 24 hours (42). At the outset, the FTC method
was intended only to compare tar and nicotine yields across brands, although carbon monoxide
(CO) was added to the protocol in 1980. The analysis of other smoke constituents have never
been specified by the FTC, but the FTC protocol has been widely adopted in analyses of other
constituents for product testing and research

Following the work of the FTC, virtually identical standardized smoking regimens were
developed by the Cooperation Centre for Scientific Research Relative to Tobacco
(CORESTA), and later the International Organization for Standardization (ISO). CORESTA's
initial standardized smoking method was published in 1969 (43). The ISO protocol uses the
same puffing regimen as the FTC method, except that it specifies an air flow of 200mL/min.
Additionally, CORESTA and ISO stipulate standards for physical components of the machine:
the cigarette holders, smoke traps, ports, channels and ashtray specifications (43). It should be
noted that the tobacco companies heavily influenced CORESTA to motivate ISO to set
standards and generate research results in an attempt to preempt regulations (37). While ISO
and CORESTA were seemingly independent, ISO essentially adopted CORESTA's
recommended methods, as the ISO committees overseeing standards development for tobacco
products have been composed mostly of persons affiliated with the tobacco industry (37,44).

Human Smoking Behavior
Physical Processes Involved in Smoking—In order to understand the limitations and
misuse of the smoking machine measurements, it is important to understand how smokers
smoke their cigarettes. The physical process of smoking a cigarette is continuous, but can be
divided into three phases: puffing, mouth-holding, and inhalation. The smoking cycle is shown
in a diagram reproduced from the British American Tobacco Company (BATCo) research in
1986 (Figure 1) 6. This Figure defines different parameters that can be measured during
smoking. Puffing refers to the act of drawing smoke from the cigarette into the mouth. The act
of puffing draws air through the burning rod that causes an increase in temperature that in turn
consumes some amount of tobacco and the cigarette paper wrap. During puffing, the tongue
contracts down creating a negative pressure to aid the puffing process and the soft palate
contracts, essentially blocking airflow into the nasopharynx and lungs. Puffing is then followed
by a period of mouth-holding before air moves into the lungs, as typically smoke not directly
inhaled from the cigarette through the mouth into the lungs7. Following puffing, as reported
via the BATCo documents, the smoke is either immediately inhaled via nose inhalation into
the lungs, paused in the mouth prior to nose inhalation (perhaps to enhance the sensation and
taste) or paused in the mouth with some exhalation of smoke prior to nose inhalation. According
to BATCo, nose inhalation allows the soft palate to relax providing an easy path for the smoke
to be drawn into the pharynx and nasopharynx 8. The mouth is closed so that the air pressure

5http://www.time.com/time/magazine/article/0,9171,871506,00.html
6http://tobaccodocuments.org/bat_cdc/8652.html
7http://tobaccodocuments.org/bat_cdc/8652.html
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sucking the smoke into the lungs is the same as the pressure from air moving from the nose
into the lungs. Following nose inhalation, exhalation occurs after some period of time. Puffing
resumes after some interpuff interval, and in at least 80% of smokers this takes place during
the exhalation phase of a breath, which can occur at any point during exhalation, e.g., at the
onset, in the middle or at the end of exhalation(45). An example of the various parameters for
puffing and inhalation is shown in Figure 2. Thus, it is the combination of puffing, mouth-
holding, nose inhalation and inhalation time that determines a smoker's internal dose of smoke
toxicants and nicotine. These studies only had a few subjects, measurement was confined to
one setting and this study has not been replicated; a systematic study might show different or
more accurate patterns of inhalation, e.g., mouth inhalation in addition to nose inhalation.

Measuring Puff Topography—Puff profiles are measured by assessing smoking
topography, namely puff volume, puff duration, interpuff interval, flow rate (sometimes also
termed puff velocity), the number of puffs per cigarette, and total puff volume (46-55). These
correspond to parameters that can be programmed on a smoking machine. These are typically
measured by having the cigarette smoked through a small tube that can measure air flow via a
transducer, and the analog signal is converted to a digital signal for recording and interpretation.
Initially, various research groups employed their own puff profile recording devices, such as
the ‘tobacco smoke inhalation testing system’ (TSITS) originally developed by Puustinen and
coworkers in 1986, and then manufactured by the College of Engineering at the University of
Kentucky (56-58). Other early techniques included flow meters (59,60), pneumotachographs
(61), pressure transducers and Grass polygraphs (62), and puff analyzers (63). In parallel,
tobacco industry scientists developed similar devices in the late ‘60s and early 70's, such as
the cigarette-holder flow meter described by Adams and Creighton (64-66). Portable devices
that can be used for at-home monitoring also have been developed (49,66-69).

Although custom-built apparatuses are still used (70), commercially available topography
devices, such as the CReSS units from Plowshare Technologies, Inc.9 and the SODIM SPA/
D and SPA/M smoking topography units10 have largely superseded them. To our knowledge,
there are no published studies using the SODIM topography units and the great majority of
studies assessing human smoking topography have used the Plowshare CReSS and
CReSSmicro units (25,53,71-80). CReSS desktop topography units are capable of real time
recording of individual puffs, including shape and flow rates, for later replication of human
puff profiles on smoking machines (portable devices at the present time cannot do this and
only provide means of the parameters). These units are not only capable of recording ad
libitum smoking, but they also contain the ability to cue the smoker for controlled smoking
conditions, for example cuing them when to puff, puff duration and puff volume. These systems
also can integrate subjective, performance and physiological measures.

Validation of puffing topography recording devices: While there are numerous studies
about puffing topography, there are few studies that have validated the available methods.
Validation would be done in several ways, namely by assessing intra-individual, intra-
laboratory, and inter-laboratory variation, as well as by comparing different methods to assess
topography. Published validation studies for intra-individual and intra-laboratory methods are
limited to the CReSS devices. These studies have conducted repeated measures on different
days, which assesses both intra-laboratory and intra-individual variation measured in the
laboratory, and these have generally shown good reproducibility (53,76,81). For example, Lee
and coworkers found good reliability by intraclass correlation coefficients computed for puff
volume (0.66), puff duration (0.75), and maximum puff velocity (0.68) (53). Hammond et al.

8http://legacy.library.ucsf.edu/tid/zll13f00
9http://www.plowshare.com/products/index.html
10http://www.sodim.com/English.htm
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investigated the smoking topography characteristics with the portable CReSSmicro device on
59 subjects smoking an average of 19 cigarettes per day, reporting similar measures of smoking
topography for the same subject over time (82). For a biomarker assessment, in a study of 180
smokers measuring CO and nicotine boosts for 2 cigarettes one hour apart, the use of the
topography device did not affect the CO or nicotine levels, because these were measured with
and without the topography device in place, although the correlation coefficient with and
without the device for CO was only 0.31 (p<0.001) (Shields, et. al., unpublished data). Similar
results have been reported in a small study by Lee and coworkers (53). Blank and colleagues
recently reported head-to-head comparisons of the desktop and portable CReSS devices versus
observed smoking using a video tape (83). The authors found that measured puff duration and
interpuff interval on both devices, as well as the video correlated were well correlated (r's >
0.70), though there were quantitative differences among the devices for puff volume and
duration, indicating that comparisons of data across devices might not be reliable. Separately,
it has been shown that topography assessments in the laboratory provide similar assessment in
the naturalistic environment, e.g., at home (79,84). Thus, these studies support the reliability
and validity of the CReSS devices for topography measurement.

What is known about human puffing patterns?: There is wide inter-individual variation for
smoking behavior, but a low intra-individual variability because smokers in general show a
stable smoking pattern over time (23,54,55,82,85-88). A clear and consistent finding is that
human smoking behavior differs substantially from the commonly used FTC and ISO
parameters, a fact recognized early by the tobacco companies (82,89-91)11. Several factors
have been documented to influence smoking behavior, such as gender, race, psychological
factors and genetic background. In general, men smoke more cigarettes per day than women
and have higher serum cotinine levels (92-96). Although the data is less consistent for smoking
topography, men tend to have larger puffs of longer duration, but women may smoke more
puffs per cigarettes (52,70,71,97,98). Differences in smoking topography have been observed
between Whites and African Americans: the latter group generally reflecting greater exposure
to smoke toxicants (60,70,96,99). Psychological factors, concurrent use of psychoactive drugs,
time of the day and place where a cigarette is smoked also can have an effect on the smoking
topography (88,100,101). Time of day also affects smoking topography (80,102).

Generally, there is a high correlation for various puff parameters, e.g., interpuff interval, puff
duration, and puff volume; all of these directly impact total puff volume per cigarette (85,97,
103,104). However, these parameters are not proxies for each other and so all need to be recoded
when measuring smoking topography (97). Other studies indicate that topography measures
are not kept constant during the course of smoking a cigarette, where puff volume decreases
and inter-puff interval initially increases and then decreases (85,105,106).

The number of cigarettes smoked per day generally do not relate to puffing topography, or
sometimes is positively correlated with longer inter-puff intervals (49,62,82,104,107).
Published studies also are inconsistent for relating puff topography to various biomarkers such
as CO and nicotine/cotinine levels, where different parameters affect these biomarkers
differently (61,104,108-118). For example, puff number and to a lesser extent the puff volume
and duration affect nicotine levels, while CO level are mostly influenced by puff volume and
less by puff number (113). Zacny and coworkers reported that both nicotine and CO increase
proportionally with an increase in puff volume (61). In a study of 180 subjects, there was a

11http://legacy.library.ucsf.edu/tid/xpt60f00; http://legacy.library.ucsf.edu/tid/czv24f00;
http://legacy.library.ucsf.edu/tid/yci66a99/pdf; http://legacy.library.ucsf.edu/tid/lsn86a99/pdf;
http://www.library.ucsf.edu/tobacco/batco/html/13200/13274/index.html; http://legacy.library.ucsf.edu/tid/dss00f00;
http://legacy.library.ucsf.edu/tid/syj51f00: http://www.library.ucsf.edu/tobacco/batco/html/6900/6922/index.htm
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statistically significant correlation for CO boost and puff volume, but not the interpuff interval
(Shields, et, al., unpublished data).

Product Design effects on smoking topography: Physical design characteristics affect
puffing topography when smokers first switch, for example by changes in the draw resistance,
sensation and taste (23,30,82,89). Numerous studies indicate that switching from higher to
lower yield cigarettes increase topography parameters such as puff volume and puffs per
cigarette (61,82,86,111,119-127), while a decrease in puffing intensity or longer time spent on
smoking a cigarette takes place when smokers switch to a higher overall yield cigarette, or
cigarettes with constant tar but increased nicotine content (56,111,128-133). In a 1986 British
American Tobacco study12, 19 subjects who were “low” tar (<10 mg tar yields) and “middle”
tar (>10 mg tar yields) smokers had similar puff topography and inhalation parameters, as
shown in Table 2. The investigators found that puff volume increased when their subjects who
were “middle” tar yield smokers were switched to a low tar cigarette, but decreased for the
opposite test scenario. The investigators concluded that the increased puff volume was due to
decreased draw resistance. In this study, inhalation parameters did not change with switching.
Studies by Benowitz, et al., suggest that during short-term switching studies, smokers that
switch to lower yield cigarettes tend to compensate by changing their behavior by smoking
more vigorously or by increasing cigarettes per day (13,134).

An important design feature of lower yield cigarettes is ventilation via holes punched on the
filter paper that allow smoke to be diluted with air during puffing. However, some smokers
block these ventilation holes by their fingers or lips, which would then result in yields different
than predicted by a smoking machine. In a study of smokers who were trained to uniformly
smoke with a particular puff profile that restricted the puffs per cigarette and puff frequency,
Strasser and coworkers demonstrated that hole blocking resulted in an increase of CO boost,
implying an increase of other tobacco smoke constituents (118). Puff volumes decreased for
both cigarettes with 50% hole blocking. Other switching studies reported similar results but
differed in the magnitude of the CO response depending on the cigarette type that was smoked,
namely the effects are greatest for ultralight smokers (117,135). One explanation for the
difference in results might be the lack of controlling for puff number and puff interval; in the
latter two studies there were many more puffs per cigarettes that might have obscured a
difference. Regardless, it is clear that smoking machine studies that compare cigarettes with
different physical design characteristics using the same puffing profile fail to accommodate
about what happens to smokers who switch or naturally adopt one product versus another.

Filter efficiency is affected by puffing. Increasing smoke flow through the filter, such as with
greater puff volumes and decreasing filter ventilation, but not so much decreasing puff
frequency, will tend to decrease filter efficiency, leading to a narrower range of yields across
brands13. For example, Marlboro UltraSmooth with a novel carbon filter is much less effective
in reducing toxic smoke constituents when smoked under the HC regimen compared to the
FTC method (136).

For many PREPs, design features are varied and switching studies show that smoking behavior
changes (summarized in Table 3). For example, smokers who switched to the Advance cigarette
that has a modified filter took fewer puffs and had higher nicotine levels, while the rest of
puffing characteristics remained unchanged (137,138). Two studies investigating the Accord
electronic smoking system found that subjects had shorter puff intervals and fewer puffs per
cigarette, because this is electronically controlled, and higher puff volume and duration
compared to smoking own brand cigarettes (72,74). . Eclipse smokers, which is designed to

12http://tobaccodocuments.org/bat_cdc/8652.html
13http://legacy.library.ucsf.edu/tid/cbi31d00 and http://legacy.library.ucsf.edu/tid/htu61e00
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heat tobacco rather than burn it, substantially increase their puff volumes, and decrease the
interpuff interval (139-141). For Eclipse, CO levels also increase, and for some smokers the
levels can be quite high (142). Acrolein also is increased. For Quest cigarettes that vary in
nicotine yields, there is compensatory smoking with an increase in the total puff volume and
CO boost (116). Another study reported that switching to Omni cigarettes with a modified
filter results in fewer puffs compared to the usual brand, but there also is an increase in CO
boost and not a significant decrease in carcinogen exposure when compared to conventional
cigarettes (75). When comparing Marlboro UltraSmooth (MUS), employing a modified filter
that includes charcoal particles embedded in cellulose acetate, with two conventional cigarettes
(Marlboro Lights and Ultralights), investigators observed a decrease in number of puffs, but
higher puff volumes (79). The overall conclusion of the study was that there is no significant
change in smoking topography between the MUS and conventional cigarettes; therefore there
will be no reduced exposure among smokers that switch from a conventional brand. Thus,
smoking machine studies that compare PREPs to conventional products using the same puffing
profile could be misleading in terms of relative effects.

Measuring Inhalation and exhalation—Smoking behavior also involves not only
assessing puffing behavior, but also inhalation, which more closely relates to biological dose.
Several techniques have been developed for measuring times and volumes for inhalation and
exhalation. Some early methods were reviewed in a report from Imperial Tobacco Ltd14. These
techniques are summarized in Table 4. The main conclusion was that these devices were
accurate in measuring the physical mechanics of inhalation and exhalation, but they did not
permit studies in the naturalistic setting and they imposed restrictions on free smoking behavior.
Chest plethysmography, combined with a cigarette holder-flow meter to assess topography,
appeared to be the best. Tobin and coworkers used this method to assess the pattern of inhalation
in smokers to compare with the smokers’ subjective reports for inhalation (143). They found
that smokers inaccurately perceived their inhalation patterns. In another study, Tobin and
Sackner used the same system to assess switching from high to low tar cigarettes, showing that
there was no change in the inhalation characteristics (129).

The most widely used device by the tobacco industry to assess smoke inhalation by inductive
respiratory plethysmography has been the RespiTrace, developed for assessing respiratory
function and disease (NonInvasive Monitoring Systems Inc.) (144). The system consists of
insulated coils enclosed in elastic bands applied on the rib cage and abdomen of the subject,
registering the changes in respiratory movements that alter the self-inductance of the coils. The
device must be calibrated for tidal volume with the use of a spirometer (145). BATCo used the
RespiTrace system in the studies discussed above to discern the physical process of
smoking15. Research has been conducted to assess whether smoking machine tar and nicotine
yields affects inhalation in two studies, but one reported no effect and the other found a positive
relationship (123,146).

The effects of inhalation on dose measured via biomarkers has received little attention. Zacny
and coworkers trained smokers to smoke their cigarettes according to a controlled smoking
regimen for inhalation depth and time (61). They measured CO and nicotine boosts, and showed
that post-puff inhalation volume and duration under ad libitum and controlled smoking
conditions had no effect on the CO and nicotine levels. Similarly, Herning and coworkers found
that nicotine blood levels where not related to inhalation (103). In a third study, nicotine
retention was almost complete even at low inhalation volumes (147). These studies indicate
that nicotine absorption is very quick and so unrelated to inhalation, but, it may be that other
tobacco smoke constituents would be affected by inhalation. This has received even less

14http://legacy.library.ucsf.edu/tid/kjn70f00
15http://legacy.library.ucsf.edu/tid/zll13f00; http://tobaccodocuments.org/bat_cdc/8652.html
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attention, but one study has reported that the retention of solanesol was related to inhalation
volume (147). In a study by Philip Morris scientists, a novel method was used to measure the
estimated intake into the lungs by having smokers exhale through a Cambridge filter pad
(148). The difference between the estimated chemical yield, as measured by a smoking
machine, and the amount of the chemical constituent on the pad was considered retained in the
smoker. Under controlled smoking conditions where the smokers varied their depth of
inhalation, they found similar results as above for no relation of inhalation to nicotine retention
(61), but that the retention of tobacco specific nitrosamines (TSNAs) was greater with deeper
breaths. For the gas vapor phase, however, depth of inhalation had little effect on retention.
Thus, inhalation can be an important parameter for some smoke constituents such as TSNAs.

In summary, smoking behavior is complex and many of the individual components co-vary,
so that affecting one might affect each other. These are directly affected by cigarette designs.
However, the various aspects of smoking also affect smoking machine yields and smoke
toxicant effects, as indicated below. Some parts of human smoking are not captured at all by
the smoking machine, while some variables such as puff velocity and puff shape are usually
not considered. Smokers vary their puffing behavior during the course of their cigarette, by
day, and by who they are. These added variables make it impossible to replicate a typical
smoker using one smoking machine regimen.

Smoking machine profiles: mimicking human smoking behavior?
As evidence accumulated that smokers’ behaviors and exposures were distinct from machine-
measured yields, increased interest was placed on altering machine smoking methods to better
reflect smoker practices. The 1981 Surgeon General Report, for example, acknowledged that
the FTC testing method needed to account for compensatory smoking (via larger and more
frequent puffs) and ventilation hole blocking (16). A National Cancer Institute ad hoc expert
committee convened in 1996 came to similar conclusions (88). Research on alternative testing
regimens was ongoing in the public health/regulatory community. For example, Rickert and
coworkers tested smoke yields under ISO conditions and two more intensive conditions and
reported that the yields of tar, nicotine, and carbon monoxide more than doubled when
cigarettes were smoked under the intensive regimens compared to the standard one (149).
Djordjevic, et al. determined the actual human puff profiles of 133 smokers and replicated the
profiles of a randomly chosen subset of 72 on the smoking machine (110). The investigators
found that the yields of tobacco-specific N’-nitrosamines and benzo(a)pyrene (BaP) increased
by two fold, while the nicotine and tar levels increased more than two-fold compared to the
FTC measures yields.

In 1996, the Massachusetts Department of Public Health (MDPH) Tobacco Control Program
began a research project to establish a machine smoking regimen that more resemble human
smoking. Initially, two sets of smoking regimens were chosen, derived from 32 studies on ad
libitum smoking topography presented in the 1988 Surgeon General's report (150). One was
termed the “average smoker” protocol and the other a more intense “heavy smoker” protocol.
The former had a 45mL puff volume every 30 seconds, with a puff duration of 2 seconds and
taping closed 50% of the ventilation holes. The MDPH 50% hole blocking in particular was
recommended in the context that smokers will block ventilation holes when they smoke, for
example with their fingers or lips (20,21,151-153). The initial proposal also included an
“intense,” or “heavy,” smoking condition (60-ml puff every 26 seconds, 100% vent blocking),
but this was dropped from the final plans. From 1997, cigarette manufacturers have been
required to report results to the MDPH under the “average” protocol, along with levels of filter
ventilation, tobacco nicotine content, and smoke “pH” (154). It should be noted that derivation
of ‘average’ and ‘intense’ smoking for this protocol reflected topographical data available prior
to 1988 and not necessarily reflective of today's products’ design and smokers’ behavior.
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In the same year (1996) as the MDPH, Health Canada (HC) began work on amending its
tobacco regulatory authority and convened an Expert Committee on cigarette modifications.
Discussions on reducing the harmfulness of cigarettes led to a formal exploration of alternative
smoking conditions (155). In this report, Rickert noted that puff volume and interpuff interval
are the key variables to consider in a new machine smoking regimen. This resulted in the
proposal of an HC protocol with a 56mL puff volume with a 2 second duration and a 26 second
interpuff interval; the ventilation holes would be fully blocked. Other elements of the ISO
protocol (conditioning, duration, butt length) were retained. The 100% hole blocking was
adopted in order to directly compare the performance of cigarettes removing the strongest
predictor of tar and nicotine yields. The report concluded that testing under two conditions
(ISO and HC) would be sufficient to capture the range of deliveries that might be experienced
by smokers (and later adopted by the World Health Organization TobReg (10)). In June 1998,
the Health Protection Branch of Health Canada outlined proposed reporting requirements of
40 constituents in mainstream smoke based on the standard and extreme regimens. The
Tobacco Act of 2000 made the new regimen official. During the regulatory purposes, the
parameters were changed to a 55mL puff volume of 2 second duration and a 30 second puff
frequency (150).

In 2004, an ISO Working Group (ISO/TC126/WG9) was convened to craft an alternative
smoking regimen that more closely hewed to human smoking behaviors (150). The ISO was
faced with the overwhelming evidence that the ISO/FTC regimen inadequately characterized
modern cigarette exposures, that there were emerging test methods in different jurisdictions,
and the prospect of impending regulations under Articles 9 and 10 of the Framework
Convention on Tobacco Control (FCTC)16. The group, which included members affiliated
with the tobacco industry, reviewed published literature on smoking topography from 1956 to
2004, and used 100 datasets comprising 2432 subjects (156). They derived summary statistics
for puff volume, duration, interval, number of puffs per cigarette and how these vary with
cigarette tar yield as determined by the ISO/FTC smoking regimen. Significant differences
were noted between the experimentally-derived average human puffing profiles (HPPs) and
the ISO/FTC parameters, as summarized in Table 5. Ultimately the Working Group proposed
3 different smoking machine protocols for testing, as shown in Table 1. These were determined
by grouping the human puffing profiles according to machine-smoked ISO/FTC cigarette “tar”
yield ranges. The work of Working Group 9 was set aside in May 2006 and Working Group
10 was established. The work of Working Group 10 is ongoing because this group was
convened to serve as a forum for exchange of information between WHO (the public health
sector in general) and the tobacco industry scientists. For this, and given that industry labs are
precluded from participating in the validation work of TobLabNet, the WG 10 is an important
forum. No tangible products have yet come out of WG10 because the purpose is for information
exchange.

In 1997, the FTC announced plans to revise its cigarette testing method with a public comment
period (Federal Register 62/177, 9/12/97). In addition to the standard method, a more intense
method was being considered (a 2-sec, 55-ml puff every 30 sec). However, no action was taken
at that time. Later, in 2008, the FTC proposed rescinding in its entirety their 40-year guidance
for smoking machine testing, rather than recommending a second and more intense puffing
regimen. The Agency stated: “Today, however, the scientific consensus is that machine-based
measurements of tar and nicotine yields based on the Cambridge Filter Method do not provide
meaningful information on the amounts of tar and nicotine smokers receive from cigarettes or
on the relative amounts of tar and nicotine they are likely to receive from smoking different
brands of cigarettes. The primary reason for this is smoker compensation – that is, smokers

16http://www.who.int/fctc/en
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alter their smoking behavior in order to obtain the necessary nicotine dosage17. After a 60 day
public comment period, the FTC followed-through and rescinded its guidance, drawing the era
of “FTC” yields to a close.

Changes in yields by smoking regimen—Changing specific parameters of the puff
profile independently can directly affect smoke yields. For example, decreasing puff volume,
increasing puff frequency (decrease inter-puff interval), and increasing filter ventilation
decrease tar and chemical yields on a per cigarette basis (157)18. (In smokers, though, using
higher ventilated cigarettes generally results in larger puff volumes.) Toxicology studies also
show the influence of puff volume, ventilation and ventilation hole blocking (158)19. The ISO/
FTC, MDPH and HC methods use different puff volumes, puff frequency and ventilation hole
blocking, and increases in these variables result in increased tar, nicotine and other constituent
yields on a per cigarette basis (110,149,159-161).

The data indicate that the relative rankings of different products, on a per cigarette basis, will
generally be preserved across regimens although the gap in toxicant emissions with more
intense protocol is reduced. Counts and colleagues from Philip Morris published a large survey
of emissions from international brands tested under ISO, MDPH, and HC conditions (160),
showing that the ratios of constituents to total tar were dependent on the puffing profile, and
mostly driven by filter ventilation. For example, when cigarettes were grouped broadly by filter
ventilation, the yields of individual constituents relative to tar changed differently as the
different profiles were compared. This effect was greater for vapor phase compared to
particulate phase constituents. However, the effect was least for the cigarettes with lower
ventilation and higher tar yields. Separately, Hammond and O'Connor examined the
relationships between yields under the ISO and HC regimens for the 2004 Canadian market
and showed that the increased intensity of the HC system changes the absolute concentrations
of constituents, but also their concentrations relative to nicotine (159).

Both Philip Morris and RJ Reynolds Tobacco companies, as early as 1974, developed the
capability to capture human topography data and mimic this on a smoking machine, and it was
shown that the yields predicted for different smokers substantially varied among them, and
higher than the FTC predicted yields20. In a 1982 report by RJ Reynolds’ scientists, an analysis
indicated that using 5 variables within the puff for flow velocity at different times of the puff
and the time to reach maximum velocity that 6 types of shapes could be described21. While,
each smoker would vary their shape within a cigarette, it was reported that 12 patterns would
characterize all 550 smokers.

Whether changing the shape of the puff affects yields is unclear, and there are no recently
published studies, although a 1968 report from Brown and Williamson demonstrated that when
air flow peaked (early versus late), different yields were obtained22. The parameters that affect
the shape of the puff or the variability for the puff-by-puff profile are unknown, but it appears
that filter ventilation does not affect the latter23. None of the above studies, however, measured
specific chemical constituents. New commercial topography devices have the capability to
record puff-by-puff data, including the change of airflow within a puff. Today, smoking
machines also can be programmed with the use of specialized pumps and software to better

17http://www2.ftc.gov/opa/2008/07/cigarettefyi.shtm
18http://legacy.library.ucsf.edu/tid/aob34c00; http://legacy.library.ucsf.edu/tid/cbi31d00; http://legacy.library.ucsf.edu/tid/qtp03f00;
http://legacy.library.ucsf.edu/tid/rto73d00; http://legacy.library.ucsf.edu/tid/gkb11d00
19http://legacy.library.ucsf.edu/tid/mxa35d00; http://tobaccodocuments.org/rjr/508352445-2461.html.
20http://legacy.library.ucsf.edu/tid/fgo46b00; http://legacy.library.ucsf.edu/tid/pgr81b00
21http://legacy.library.ucsf.edu/tid/irp93a00
22http://legacy.library.ucsf.edu/tid/rwu69d00; http://legacy.library.ucsf.edu/tid/bmp84a99
23http://legacy.library.ucsf.edu/tid/aob34c00
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replicate the human-type puff on a puff-by-puff basis. However, whether this new technology
affects the smoke yields and is provides better replication of human smoking remains to be
determined.

A more meaningful comparison might come from an assessment using different puff profiles
tailored to the product as it might be used by smokers. For example, a method has been proposed
based on nicotine yields by Kozlowski and O'Connor (153). They proposed a two-step system
where the first step would use the traditional ISO/FTC yield on a per cigarette basis, while a
second step would use puff parameters adjusted to yield the same nicotine levels, for example
by adjusting the puff volume. Later, Hammond and colleagues revised this recommendation
to propose a system whereby puffing profiles would be iteratively adjusted so that all brands
yielded a specific nicotine level. In both cases, the goal would be to better simulate
compensatory smoking by humans within the limitations of machines. However, little work
has been done to operationalize these methods. It should be noted that the above methods adjust
smoking machine parameters based on total cigarette yields and not on a per mg of tar basis
and assumes that the chemical composition of tars are similar, however this is known not to
be true (159,161,162)

Hammond and coworkers attempted to examine this issue by comparing the smoke yields
produced under ISO, MDPH, HC and the two-stage compensatory regimen described above
to the average of actual topography measures for 51 smokers of the usual brand and 21 switched
to ultralights (human mimic profiles) (30). Ventilation hole blocking was 50% for the MDPH
and compensatory and human mimic profiles, while it was 100% for the HC method. None of
the yields for the four smoking regimens replicated the human mimic conditions. Tar, nicotine
and CO yields obtained for the regular tar smokers under the mimic protocol were double of
those obtained with the ISO and compensatory regimens, but lower than the HC regimen. For
the ultralight switchers, the human mimic yields were three to four times greater than the ISO
and MDPH regimens, but slightly lower than the HC regimen and similar to the compensatory
regimen. Importantly, none of the standardized machine determined nicotine yields predicted
levels of salivary cotinine, except for the human mimic regimen. Thus, it is likely that no single
smoking regimen can adequately characterize smoking.

Philip Morris has proposed another method for comparing products, which is to characterize
human smoking behavior on a smoking machine based on several regimens statistically
modeled based on topography data and urinary nicotine metabolites (163). The method uses
the determined 10th percentile, mean and the 90th percentile of the puff volumes, and the other
parameters were modeled. Thus they proposed testing cigarettes with a low (25 mL puff
volume, 0.8 s puff duration, 2.4/min puff frequency), a medium (48 mL puff volume, 1.3 s puff
duration, 1.8/min puff frequency), and a high (65 mL puff volume, 1.6 s puff duration, 1.9/min
puff frequency) puffing profile. However, we are unaware of any actual implementation of this
proposal.

Data on comparative emissions for PREPs are rare. A specific example of a PREP for the utility
of testing under multiple smoking machine methods is the Eclipse cigarette, which is claimed
to heat rather than burn tobacco under the FTC conditions. When smoked on a machine in a
way more similar what smokers do, the tobacco becomes significantly charred and the smoke
chemistry differences compared to conventional cigarettes become much less24.

24http://legacy.library.ucsf.edu/tid/kqm60a99; http://legacy.library.ucsf.edu/tid/pkd56a00
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DISCUSSION
The need for validated laboratory methods to assess tobacco smoke for chemical constituents
and toxic effects has recently been underscored by the new FDA authority to enact product
performance standards and evaluate manufacturer health claims for modified tobacco products.
Prior uses of smoking machine results led to misinterpretations and misunderstandings about
cigarette comparisons and their relationship to human health (13,27). As a result, smoking
machine data are regarded as poor indicators of health risk, leading the FTC to rescind its
imprimatur from the method25. However, smoking machines will continue to be used for
laboratory screening of product design changes and the assessment of performance standards,
and so better methods need to be developed (10,28). Critical to the development of new
smoking machine methods is a better understanding of human smoking behavior, including
how interindividual variation in puffing, mouth-holding and inhalation affect exposure. These
studies can then inform the use of cross-regimen comparisons, for example as previously
described (30,153,163), which may better reflect the differences among human exposure for
specific product comparisons about product design. This would lead to tailoring puff profiles
to particular products as used by smokers. Thus, there are several research gaps that need to
be addressed in order to maximally apply and interpret smoking machine studies.

Currently, almost all methods for assessing human puffing that can be extrapolated to smoking
machine protocols is through commercial topography devices. Data from such studies suggest
that topography may differ by gender and race (52,60,70,70,71,92-96,96-99). However, there
are many other likely determinants, such as age, co-morbidities, prior smoking history, nicotine
metabolism, genetics and psychological factors that have been studied even less in the context
of topography and application to smoking machine studies (88,100,101,164-172). Other
variables include smoking environment at time of measurement (naturalistic versus
laboratory), time of day and circadian rhythms (80,102). Without a better understanding of
how much these variables affect the range of human exposures, it will be difficult to know if
future smoking machine regimens are sufficiently mimicking human exposure.

While there are some data demonstrating the replicability of smoking behavior using these
devices (53,76,81,82), additional studies are needed to compare different commercial units and
to validate them. It is unknown if these devices are measuring accurately air flow and volumes,
and so a major limitation for validating topography measurements is the comparison to some
“gold standard”. But, none exists. Validation of topography as an indicator of exposure requires
statistically significant and consistent correlation with biomarkers that have been validated for
smoking (142), but the data thus far for comparing topography to biomarkers have produced
conflicting results. Biomarkers of exposure reflect not only puff topography but also mouth
holding and inhalation, and so it may be that a biomarker comparison is not valid, assuming
that varying mouth holding and inhalation affect the dose to smokers. Thus, additional studies
are needed to assess mouth-holding and inhalation to determine how much, if any, these
components of smoking affect exposure. However, methods to assess mouth-holding and
inhalation are poorly developed, and so better technologies are needed that can be applied to
human studies. Once developed, controlled smoking and cross-sectional studies can be
conducted with biomarkers to determine how much puffing, mouth-holding and inhalation
contribute to variance in human smoke exposure.

The current designs for smoking machine puffing profiles have been developed considering
each parameter as independent effects, but changing one actually influences the others (85,
105,106). So, a better understanding of the impact of changing one parameter on others is
needed, both for topography and for smoking machine studies. It is known that many of the

25http://www.ftc.gov/opa/2008/11/cigarettetesting.shtm
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various topography parameters co-vary (85,97,103,104), but a systematic study has not been
done to identify the extent of this. Another parameter that is only partially characterized is
blocking ventilation holes (54,117,118,135). To determine how people block holes, how much
and how often has been insufficiently studied. However, filter ventilation affecting smoke
dilution and also impacting puff volume is critical for determining smoke yields. Thus, better
technologies are needed to determine ventilation hole blocking and incorporate them into
human studies that assess topography.

There is sufficient data to know that different machine puff profiles cause cigarettes to burn
differently and have different chemical yields and biological activity, and that this would also
result in different exposures in humans (173,174)26. Thus, smoking machines need to better
mimic human smoking, including methods to replicate puff-by-puff parameters, and studies
need to be done to determine if the shape of the puff significantly affects yields. How to model
the diversity of human smoking behavior needs to be developed. Then, better methods to
compare cigarettes and product design changes through cross-regimen comparisons are
needed. Whether this is done using topography data or by standardizing for nicotine yields
needs to be developed, and there is sufficient rationale to indicate that both methods might
have utility.

Since the passing of the FDA legislation and the IOM report conclusion that risk reduction
through PREPs is a feasible approach (11), a comprehensive framework for studying tobacco
products, including PREPs, is needed. This would include studies ranging from premarket
assessments using laboratory studies to population surveillance. It would use integrative
approaches by examining individual smoking behavior for new products and establish their
relationship with actual delivered dosages of nicotine and a select panel of toxic and
carcinogenic agents. An iterative process would therefore be used, where product design
changes are tested first in the laboratory for increases in smoking yields and toxicity, followed
by human use in short term studies, and then replication of human use in the laboratory to
confirm the yield and toxicity changes. Central to this process is the understanding of human
smoking behavior and how to replicate this in the laboratory, but current knowledge and
methods are insufficient to do this. Additional research, however, can fill in the research gaps
to improve tobacco product assessment. Having validated methods for assessing tobacco
products in the laboratory is vital for the fulfillment of the promise of regulatory oversight to
protect the public health.
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Figure 1. Schematic Representation of the Puff and Inhalation/Exhalation Pattern
Reproduced from a British American Tobacco Company document30, simultaneous
measurements were assessed for inhalation/exhalation and smoking topography. The following
parameters are defined from this figure: puff volume (ml) - integration of puff pressure curve
from A to C; lit draw resistance (cm H2O/ml) - the ration of integrated pressure to puff volume;
puff duration - time from A to C; inhalation delay time (sec) - the time from completion of the
puff to the start of inhalation from C to E; inspiratory time (sec) - the duration of time from E
to F; breath hold time (sec) - the delay from the end of active inhalation to start of exhalation
from F to G; expiratory time (sec) - the time for exhalation from G to H; inhalation volume
(ml) - the volume difference from E1 to F1; exhalation volume (ml) - the volume difference
from G1 to H1; volume change prior to inhalation (ml) - volume shift in the lungs (usually
exhalation) that occurs during the puff and inhalation delay period from D to E1; volume change
after puff (ml) - volume change after the puff but before the inhalation, from C1 to E1.

30http://tobaccodocuments.org/bat_cdc/8652.html
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Figure 2. Puffing and inhalation patterns showing interindividual variation during the interval
between puffing and inhalation31
Puffing begins during exhalation from points A to B. For some smokers, the smoke is
immediately inhaled from the mouth into the pharynx and lungs and completed at point C (A);
for others, there is a mouth holding period where point C marks the beginning of the inhalation
and completed at D (B); for others, there is an immediate inhalation until point C then an
exhalation followed by an larger inhalation at point D (C); others have an immediate exhalation
followed by an inhalation from points C to D (D).

31http://legacy.library.ucsf.edu/tid/zll13f00
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Table 4

Summary of inhalation/exhalation monitoring methods used for assessing human smoking behavior (excerpted
from internal company documents28)

Author/Year Method Variables measured Limitations
Cinkotai F.F. 196729 Partial Body

Plethysmography
Puff volumes and duration
determined with a modified
cigarette holder as a flow
meter

-volume of the puff
-duration of the puff
-holding time of the puff in the mouth
-lung volume at the beginning of the puff
-time of inhalation
-volume of air inhaled with the puff
-volume of exhaled air
-time of exhalation.

Discomfort
leading to high
puff by puff
variation observed
in the breathing
patterns of
individual
smokers and
abnormal tidal
breathing caused
by stress

Creighton D.E. 1978(66) Impedance Pneumography
Puff profiles and puff
volumes measured with a
special cigarette holder and
a pressure transducer

-puff profiles and puff volumes
-semi-quantitative estimates of breathing patterns

Needs calibration
against a partial
body
plethysmograph
before each use.
Non linear
response and day-
to-day variations
for individual and
variation between
subjects.

Guillerm R. and Radziszewski E.
1975(175)

The Guillerm and
Radziszewski Method
A flow meter constructed
from a classic cigarette
holder with a bead placed
between the two snap-in-
parts of the holder
connected by flexible
polyvinyl tubing to a
differential tr ansducer. A
special infrared pyrometer
used to measured the
temperature variations of
the combustion cone of the
cigarette.

-puff volume and duration
-number of and intervals between puffs
-volume of air taken between puffs
-volume of air inhaled immediately after the puff
-location of the puff in the ventilatory cycle
- the breathing pattern was measured at the same time as the puff
analysis

The puff volume
recorded did not
always correspond
to the true inhaled
puff volume and
the technique
imposed some
physical
restrictions on the
subject,
particularly
concerning the
cigarette holder.

Rawbone R.G. 1978(176) Mercury Strain Gauge
Chest
Pneumography
The puff parameters were
obtained from
measurements of the
pressure drop across a
small resistance inserted
between the cigarette and
the smoker. The depth of
inhalation was measured by
recording movements of
the chest wall with a
mercury strain gauge chest
pneumogram.

-puff volumes,
-puff duration
-inter-puff interval
-semi-quantitative estimates of breathing patterns

Calibration was
required before
each study.

Sackner M. A. 1980(177) Tobin M.
J. 1982(129,143)

Respiratory Inductive
Plethysmography
Consisting in two coils of
Teflon-insulated wire,
which were sown into
elastic bands encircling the
rib cage and the abdomen
and connected to an
oscillator module. Tidal
volume measured by
spirometry.

-number of puffs
-puff duration,
-puff volumes,
-integrated puff pressure.
-accurate estimation of breathing patterns

Accuracy of the
results depended
on the initial
calibration and the
stability of the
calibration during
changes in body
positions and lung
volumes.

28http://legacy.library.ucsf.edu/tid/zll13f00; http://legacy.library.ucsf.edu/tid/kjn70f00
29http://legacy.library.ucsf.edu/tid/hos00f00
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