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Abstract
Metabolic profiling of urine presents challenges due to the extensive random variation of metabolite
concentrations, and to dilution resulting from changes in the overall urine volume. Thus statistical
analysis methods play a particularly important role, however appropriate choices of these methods
are not straightforward. Here we investigate constant and variance-stabilization normalization of raw
and peak picked spectra, for use with exploratory analysis (principal component analysis) and
confirmatory analysis (ordinary and Empirical Bayes t-test) in 1H NMR-based metabolic profiling
of urine. We compare the performance of these methods using urine samples spiked with known
metabolites according to a Latin square design. We find that analysis of peak picked and log-
transformed spectra is preferred, and that signal processing and statistical analysis steps are
interdependent. While variance-stabilizing transformation is preferred in conjunction with principal
component analysis, constant normalization is more appropriate for use with a t-test. Empirical Bayes
t-test provides more reliable conclusions when the number of samples in each group is relatively
small. Performance of these methods is illustrated using a clinical metabolomics experiment on
patients with type 1 diabetes to evaluate the effect of insulin deprivation.

Keywords
Metabolomics; Metabolite profiling; NMR spectroscopy; Normalization; Moderated t-test;
Logarithmic transformation; Urine; Diabetes

Metabolomics, as well as the related fields of metabolite profiling and metabonomics, is an
indispensable complement to genomics and proteomics in studies of complex biological
mechanisms,1, 2 and in discovery of biomarkers of disease.3, 4 Metabolic profiling of urine is
particularly attractive because urine collection is non-invasive, and urine contains metabolic
signatures of many biochemical pathways.5, 6 However, urine metabolic profiling is hindered
by a great biological variability. Factors such as diseases, drugs, toxins, and diet can cause
changes in individual metabolites as well as the overall urinary volume, which consequently
affects the observed metabolite concentrations. Therefore, urine profiling is quite challenging,
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and requires robust statistical methods that distinguish true changes in concentrations from
random variation.

Nuclear magnetic resonance (NMR) spectroscopy is highly reproducible, and is therefore a
method of choice for studies of samples with high biological variability and strong dilution
effects.7-9 Nevertheless, technological variations such as baseline distortion and peak shifting
can be introduced due to instrument drifts, matrix effect (solvent, pH and ion strength), the
existence of macro molecule signals, imperfections in water suppression, shimming and
acquisition parameters, and sample handling prior to the measurements. These artifacts are
exacerbated when spectra are acquired in multiple batches or labs. Thus, statistical methods
are needed to account for both biological and technological variation.

The goal of this paper is to emphasize the importance of choosing particular statistical analysis
methods for analysis of urine 1H NMR spectra. We clarify the use of the methods theoretically,
evaluate their performance empirically using the experimental spike-in dataset, and illustrate
their application on a clinical experiment.

Statistical methods for analysis of NMR spectra consist of (1) signal processing, specifically
baseline correction, feature detection and quantification, and normalization and scaling, and
(2) exploratory and confirmatory analysis of the quantified features. A variety of methods have
been proposed, all making different assumptions about the properties of the data. When the
assumptions are inappropriate, application of the methods will result in false discoveries and
inaccurate interpretations10.

Signal processing: baseline correction
Baseline distortions can be corrected in frequency domain using methods such as polynomial
fit,11 robust stepwise estimation procedure,12 and statistically motivated Lowess fit.13 The
latter two improve the accuracy at the expense of computational complexity.

Signal processing: feature detection and quantification
This step can be approached from three different perspectives. The first retains the intensities
of all features in the raw spectra, however, this yields a large number of redundant features,
and quantitative comparisons can be negatively affected by horizontal peak shifts. The second
approach involves binning, where the spectra are partitioned into bins of constant or adaptive
width,14, 15 and the resulting features are quantified by integration of the signal in a bin. The
approach partially accounts for the peak shifting by reducing spectral resolution;2 however it
also leads to inaccurate peak quantification when neighboring peaks are assigned to the same
bin, or when a same peak is split across bins. The last approach involves computational peak
picking,16 combined with peak alignment17 that explicitly accounts for the peak shifting. The
features are quantified by either peak area (often after smoothing), or by peak's apex. The
approach can improve the accuracy of quantification, but is more sensitive to specific modeling
assumptions and implementations.

Signal processing: normalization and scaling
The next step transforms feature abundances to ensure that they are comparable across runs,
and possibly scales the abundances to make them comparable across features.2 All methods
make assumptions regarding various aspects of the biological system, and the choice has a
great impact on the subsequent results.2, 7, 18

The simplest strategy is constant normalization, i.e. division by a constant such as the total
sum of intensity,2 or by the integral of a single or multiple peaks corresponding to internal
standard compounds, e.g. creatinine.2, 19 Specifically, the total sum normalization assumes
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that the total dissolved metabolites are invariable, however this is not always the case in
practice. Creatinine normalization, on the other hand, originates from clinical chemistry and
uses the fact that creatinine clearance in an organism is fairly constant. However, urinary
creatinine concentrations can vary significantly with reference to, e.g., age, gender and time
of urine collection.20-22 Therefore, quantitative metabolite profiling relative to creatinine peak
area may yield inaccurate results. A series of alternative signal-equalizing methods have been
proposed, which include the minimum rank normalization,23 subspace time-domain
normalization,24 probabilistic quotient normalization,25 and histogram matching
normalization.26

Scaling is motivated by the fact that, similarly to the genomic27 and proteomic28 data, a sizable
fraction of metabolomic NMR error is proportional to peak intensity.13, 29 However
comparable variances are often required by subsequent methods such as principal component
analysis (PCA). The discrepancy between peak variances can be partially alleviated by a
logarithm transform, which acts as a global scaling procedure. Alternatively, scaling can be
achieved by subtracting the mean of the log-transformed abundances from each feature, and
by dividing by its standard deviation.

More recent approaches make an explicit use of the multiplicative structure of the data, and
combine normalization and log-based scaling in a single model-based step. Examples are the
generalized log transform developed for NMR-based metabolomics,30 and variance stabilizing
normalization (VSN) originally developed for the analysis of gene expression microarrays.31,
32

Exploratory analysis
Exploratory analysis33 (e.g. PCA) aims at finding patterns in normalized data without using
group labels. It detects samples with similar spectral characteristics in an unsupervised manner,
and reduces the number of dimensions for visualization. The method assumes that the
measurement error of all features is constant, and that the observed difference in variation is
due to biological reasons. Therefore, the analysis will be negatively affected when some
features have larger experimental noise.2, 34 Moreover, PCA lacks formal procedures of
statistical inference, and cannot produce measures of classification accuracy such as sensitivity
or specificity.

Confirmatory analysis
In contrast to exploratory analysis, confirmatory analysis makes an explicit use of group labels.
Examples are per-feature Welch t-test which compares feature abundances between two groups
of samples, and logistic regression which classifies samples based on the observed features.
The methods produce formal statistical inference and measures of accuracy, and do not assume
equal measurement error. However they require their own sets of assumptions. In particular,
t-test assumes that measurement errors are normally distributed. The test is known to be robust
to small deviations from Normality,35 but will produce inaccurate inference when the
assumption is grossly violated.10 An alternative involves resampling inference procedures,
which forgo the assumption of Normality at the expense of a diminished ability of finding true
differences. Although resampling methods are more general they are not assumption-free, and
selecting an appropriate procedure is not straightforward.36 Finally, when the number of
samples in the experiment is small, inference based on the t-test is somewhat unstable.
Empirical Bayes (or moderated) alternative to the t-test, originally developed for gene
expression microarrays, combines the information regarding feature variability across all
features, and improves both sensitivity and specificity of finding the true changes with small
sample size.37
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Evaluation
Given the diversity of assumptions made on signal processing and analysis methods, not all
methods (either in isolation, or when used in combination) may be appropriate for NMR-based
urine profiling. The methods are frequently evaluated using simulated or computer-edited data,
however, such validations may not accurately represent real-life circumstances. We therefore
designed a controlled experiment where metabolites were spiked in known concentrations into
a background urine sample.38 Such spike-in experiments have been extensively used for
calibration of signal processing and analysis of gene expression microarrays39 and mass
spectrometry-based proteomics.40 Our experiment utilizes an efficient Latin square design,37

which allows one to compare the performance of statistical methods using a range of fold
changes over a range of concentration baselines.

Methods
Chemicals

Sodium succinate dibasic, sodium fumarate dibasic, sodium 4-hydroxybenzoate, α-
ketoglutaric acid sodium salt, 4-hydroxyphenylacetic acid, nicotinic acid sodium salt, and 3-
(trimethylsilyl)propionic acid-d4 (TSP) sodium salt were from SigmaAldrich (St. Louis, MO,
USA), and used without further purification.

Data Sets
The spike-in dataset is based on 6 samples made from the same urine sample and spiked with
six compounds (spike-ins). The urine sample was collected from a healthy male volunteer. Six
metabolites were spiked into urine according to the Latin square design (Table S1). The 6
samples were diluted using phosphate buffer (PH=7.4, final concentration of 0.2M) to prepare
three sets of mixtures with three dilution levels : a set of 6 non-diluted samples, the same 6
samples diluted two-fold, and the same 6 samples diluted four-fold. Three replicates of each
of the 18 samples were randomized, and used to acquire 54 NMR spectra.

1H NMR analysis was performed on a set of 7 urine samples from diabetic patients whose
insulin treatment had been withdrawn for a period of 8 hours at Mayo Clinic CTSA Clinical
Research Unit as previously reported41 along with 7 age and gender matched control urine
samples from healthy individuals. The samples were collected at the Mayo Clinic medical
center (Rochester, MN), and stored at -80 °C until they were shipped to Purdue over dry ice.
The samples were again stored at -80 °C until they could be analyzed. All samples were
collected, de-identified and analyzed in accordance with Internal Review Board approved
procedures at both the Mayo Clinic and Purdue University. Spectral acquisition was performed
without technical replication, and order of the samples was determined by randomization. This
resulted in 14 NMR spectra.

NMR Spectroscopy
500 μl spiked urine was mixed with 50 μl phosphate buffer (PH=7.4, final concentration 0.2
M), 50 μl D2O containing 0.511 mM TSP. 550 μl of each solution was transferred to individual
5 mm NMR tubes. All 1H NMR experiments were carried out at 25°C on a Bruker DRX 500
MHz spectrometer equipped with an HCN 1H inverse detection probe with triple axis magnetic
field gradients. 1H NMR spectra were acquired using the standard one-dimensional NOESY
pulse sequence with water presaturation during the recycle delay of 3 s and a mixing time of
100 ms. Measurements for each sample were averaged over 32 transients using 32K time
domain points, and Fourier transformed after multiplying by an exponential window function
corresponding to a line broadening of 0.3 Hz, and the spectra were phased using the Bruker
proprietary software XWINNMR version 3.5.
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Statistical Model for the Observed Spectra
We adopt the view that the observed spectra have an additive noise background and a
multiplicative signal.13, 27-29 The model for a single spectrum can be described mathematically
as

(1)

where ω denotes values of chemical shifts on the ppm scale, f(ω) is the signal intensity at the
chemical shift ω, B(ω) is a random quantity due to baseline distortion and background noise,
N is the fixed normalization factor, μ(ω) is the fixed signal of our primary interest, and η(ω)
is the random deviation from the signal due to the biological and instrumental variation. In this
notation, the goal of baseline correction is to remove the effect of nuisance factors B(ω), the
goal of feature detection is to determine the values of chemical shifts ω′ that correspond to the
underlying metabolites, and peak quantification determines baseline-corrected intensity f′(ω
′). The goal of normalization is to remove the effect of the multiplicative factor N, and logarithm
transform is applied to the normalized data to account for the multiplicative effect. Once these
steps are performed, μ(ω′)+η(ω′) is reported for subsequent statistical analyses. Finally, the
goal of the exploratory and confirmatory analysis is to best account for the non-systematic
variation η(ω′) when making conclusions regarding differences in the signal μ(ω′) between
groups.

Baseline correction
For all the analyses below, we utilized the approach by Li,42 and estimated the baseline effect
B(ω) using statistically motivated locally weighted scatterplot smoothing (lowess) regression.

Feature detection and quantification
We compare two approaches The first utilized raw baseline-corrected spectra. The second
employed an in-house two-step peak alignment procedure where a rough spectral alignment
was first performed using the signal of the reference TSP. Locations of the peaks ω′ in the
spectra were then determined using a routine similar to the one in ref.43, which calculates a
mean of all spectra, and determines peak locations based on the mean spectrum profile. The
results were subjected to a refined alignment using the dynamic time warping algorithm, the
algorithm is described in more details in the Supporting Information.44 Finally, background-
corrected intensities f′(ω′) were determined from the apex of the picked peaks ω′. The
procedures were implemented in matlab and R.

Normalization and scaling
Creatinine and total sum normalization define N=1/C, where C is the intensity of the creatinine
peak for creatinine normalization, and the total sum of intensities of all peaks for the total sum
normalization. The signal processing combined with constant normalization and logarithm
transform can be described mathematically as

(2)

where ω′ are chemical shifts and f′(ω′) are baseline-corrected intensities of picked peaks, and
C is the normalization factor. Peak intensities normalized this way are typically characterized
by feature-specific variances of noise η(ω), where peaks of low intensity are more variable
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than high-intensity peaks. We compare the performance of the log-transformed data to the
traditional centering and scaling.

We also investigate the performance of VSN.32 It takes as input the baseline-corrected
intensities of peaks f′(ω′), and applies the transformation

(3)

where a and b are parameters estimated from the data by maximum likelihood as part of the
procedure. The transformation is related to the logarithm transform by the relationship

(4)

It coincides with the logarithm for large intensities, but is approximately linear for low
intensities, and smoothly interpolates in between. In contrast with constant normalization, VSN
enforces a constant average variance of noise η(ω), i.e. a variance that does not depend on the
height of the peak. The analysis was implemented in R, and the VSN normalization utilized
the vsn package in R-based project Bioconductor27.

Exploratory statistical analysis
Exploratory analysis was exemplified by PCA implemented in R.

Confirmatory statistical analysis
Confirmatory analysis was exemplified by two procedures. First, the two-sample Welch t-test
was conducted for each normalized peak across sample groups, using the feature-specific test
statistic

(5)

where S1,2 is the pooled estimate of variance for that feature, and n1 and n2 are the number of
spectra in each of the two compared group.

The second confirmatory analysis method is the Empirical Bayes (or moderated) t-test.45 The
moderated t-test has the same interpretation as an ordinary t-test, however it takes advantage
of the large number of tests that are conducted in parallel for all features. It replaces S1,2 (eq.

5) by , where S0 and d0 are estimated from the entire set of peaks and dg
= n1 + n2 − 2, effectively borrowing the information from all features to aid variance estimation
of an individual peak.

The p-values resulting from both regular and moderated t-test were adjusted for multiple
comparisons using the Benjamini and Hochberg procedure controlling for the false discovery
rate (FDR),46 and the overall FDR level was set to 5%. Both analyses were implemented in R,
using limma and multtest packages in R-based project Bioconductor.27
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Analysis of experimental data sets
The spike-in dataset was used to evaluate the performance of the statistical analysis procedures.
For the exploratory analysis, performance of the methods was evaluated according to the PCA
scores and loadings plots. A successful normalization should eliminate systematic differences
between dilutions and between individual spectra. For confirmatory analysis, we evaluated the
sensitivity and specificity of detecting true changes in concentrations of the spiked metabolites
by comparing pairs of the mixtures. Changes in the intensity of peaks from spiked compounds
were examined for five baseline concentrations, and five fold changes. Detection of these
changes is considered true positive discoveries, while detections of changes in peaks from
background urine metabolites are considered false positives. Optimal methods will maximize
the true positive discoveries while controlling the false positive rate.

We illustrate the performance of the methods using the clinical diabetes experiment where the
true status of metabolites is unknown. We evaluate the practical difference between methods
by comparing the scores and loadings plots, as well as by comparing the number and type of
differentially abundant peaks between the two groups.

Results
Spike-in data set

The raw spectra before and after baseline correction are provided in Figure S1. Figure S2 shows
that the coefficient of variation of raw baseline-corrected spectra is roughly constant for all
signal intensities in this dataset, indicating that a multiplicative model of the measurement error
is appropriate. Figure S3 shows the boxplots of raw peak intensities determined from the
spectra, and illustrates that peak intensities of the 6 mixtures have a fairly similar distribution
when a dilution level is fixed. This indicates that baseline correction and peak quantification
performed well.

The three dilution types in Figure S3 have clearly distinct patterns of abundance, as seen from
the differences between the peak intensity quantiles. These differences are artifacts of the
dilution process, and should be normalized in order to avoid mistaking them for biological
signals. Total sum, creatinine and VSN normalizations all account for the dilutions by setting
the medians of peak intensities to a comparable level. VSN normalization produces the
narrowest range of normalized intensities, and results in no outlying low-intensity peaks.

Figure 1 illustrates the ability of the experiment to quantify changes in concentrations of the
spiked metabolites for a series of fold changes, starting from a baseline of 800 uM. As can be
seen, observed fold changes agree with the expectation for all normalization methods.
Metabolites with the absolute log fold changes of 2 and above typically produce observed
changes that are beyond random variation. The results are consistent with the spike-in
experiments obtained, e.g. for gene expression microarrays.39 VSN produces the narrowest
range of variation.

Exploratory analysis: effect of normalization
Figure 2 shows PCA score plots of peak-picked and log-transformed data. The plot obtained
from non-normalized intensities clearly reveals the structure of the experiment. The first
principal component can be interpreted as the effect of the dilution (i.e. nuisance variation),
and explains 59.7% of the overall variation between samples. The second principal component
can be interpreted as the effect of the mixture type (i.e. the variation of interest), but explains
only 19.6% of the overall variation. Thus the nuisance dilution-induced variation is thus three
times bigger than the spike-induced variation of interest.
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VSN shows the best performance in maximizing between-group separation while minimizing
the variation within groups, and the first two principal components explain the largest
proportion of total variation. With all normalization methods, two-fold and four-fold diluted
samples are clustered more closely together for each mixture type than the undiluted samples.
We discuss possible reasons for this in the next section.

Exploratory analysis: effect of feature quantification and scaling
PCA score plots of raw spectra, which make no use of peak picking and log transform, are
shown in Figure S4A. Here PCA fails separating mixture types in clear stand-alone groups (as
compared, e.g. to the VSN normalization in Figure 2), and the first two principal components
explain a smaller percentage of total variation. The same procedure combined with auto scaling
fails distinguishing between mixture types (Figure S4B), and PCA applied to peak picked data
on the original scale also produces inferior results (Figure S5). This indicates that a combination
of peak picking and (a generalized) log transform is preferred for PCA.

Confirmatory analysis: effect of normalization
Confirmatory data analysis was performed on two sets of pair-wise comparisons of the
mixtures. Set A mimics urine-like comparisons, where samples from one disease group can be
systematically more diluted than samples from the other group. The set contains 90 pairwise
comparisons between mixtures. Set B mimics blood-like comparisons between samples. It
contains 45 pair-wise comparisons of mixtures, where all samples have the same level of
dilution.

Figure 3A displays the average false positive rate (FPR) of comparisons in set A versus the
number of differentially abundant peaks. The false positive rates of a regular t-test applied to
the non-normalized peak intensities are well above the values of FPR after normalization.
Creatinine normalization leads to the lowest FPR curve among all normalization methods,
indicating its superior performance. Regardless of the normalization method, the moderated t-
test tends to outperform ordinary t-test.

Figure 3B displays a similar plot for the blood-like comparison set. The overall false positive
rate is systematically lower for all normalization methods and for both t-tests in absence of
dilution. Although non-normalized peak intensities appear to minimize FPR in the plot, we do
not recommend forgoing the normalization. In this dataset all compounds were spiked to the
same background urine sample, and the mixtures contain no true biological replication. In
absence of dilution, normalization appears to over-correct the differences between very similar
spectra, and this will not be the case in a real dataset. As in the previous case, the moderated
t-test outperforms the regular t-test for this set of comparisons.

Confirmatory analysis: effect of feature quantification and scaling
Figure S6 plots results of all pairwise comparisons of the 6 mixtures after creatinine
normalization for the spiked metabolites, using raw versus peak picked spectra. Working with
raw spectra increases the total number of tests, and therefore requires a stronger adjustment
for multiple comparisons. As can be seen from Figure S6, this results in systematically larger
p-values (i.e. systematically smaller values on the −log scale) of tests for differential abundance
in spiked metabolites.

The assumption of Normality underlying t-test was investigated using quantile-quantile plots
for a randomly selected set of background peaks. The results (not shown for lack of space)
indicate that some deviations from Normality exist, however the deviations are rarely severe.
Log transformation improves the overall sensitivity and the specificity of the t-tests (Figure
S7).
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Clinical diabetes data set
Since overall urine volumes, as well as the concentrations of individual metabolites, vary
dramatically in urine samples between diabetic patients and healthy controls,5 diabetes is an
excellent test case for studies on normalization and data exploration. The application of NMR
spectroscopy has already proved successful in numerous studies of diabetes.5, 8, 47-50

Therefore, selection of an appropriate processing method may be important for further
optimizing the sensitivity and the reproducibility of the results. Due to the nature of the disease,
the glucose region was removed from the raw spectra prior to normalization and analysis.
Figures 4 and S8 show results of PCA on peak picked and log transformed data. Although all
normalization methods clearly separate diabetic patients from controls, they produce different
patterns on both scores and loading plots. Figure 5 displays the number of differentially
abundant peaks detected when using different normalization methods, and using ordinary and
moderated t-test at the estimated FDR of 5%. Different normalization algorithms share a large
portion of detected features arising from metabolites such as 3-hydroxybutyrate, acetone and
acetoacetate. However, conclusions regarding the differential abundance of metabolites such
as dimethylamine and formate depended on the normalization procedure, indicating that the
choice can have important implications for interpretation of the results. The total sum
normalization produces noticeably more differentiating features than creatinine and VSN,
however the true proportion of false positives in this dataset is unknown. The moderated t-test
produces comparable results to the ordinary t-test in this dataset.

Discussion
Results of the spike-in experiment and of the clinical dataset lead us to the following
conclusions.

Conclusion I: Different signal processing and normalization methods produce different
results

For exploratory data analysis such as PCA, samples cluster differently on the scores plot after
different signal processing and normalization methods. For confirmatory data analysis with
the t-test, signal processing and normalization affect both the identity and the error rates of the
differentially abundant metabolites. Consequently, the selection of a robust normalization
method is quite important.

Conclusion II: Working with peak picked and log-transformed data improves the accuracy
of the results

Peak picked data combined with the log transform result in a stronger difference between
sample groups with PCA, and improved sensitivity and specificity of the t-tests, for two
reasons. First, peak picking reduces the overall number of features. For PCA, this simplifies
the problem by looking for patterns in the lower-dimensional data. For t-test, this reduces the
conservative effect of correction for multiple testing. The conclusions are conditional on the
correctly performed peak detection, quantification and alignment, and these procedures should
be carefully implemented and calibrated. Second, (a generalized) log transform explicitly takes
into account the multiplicative structure of the data, and translates it into additive signal. As
can be seen from the Figure S9A, dependence of the measurement error on the mean signal is
much weaker on the log scale. However lower-abundant peaks tend to have larger variation
on the log scale. This is preferred to autoscaling, which standardizes each feature by feature-
specific standard deviation, and is therefore more likely to remove the true biological signal.
Log transform can also help satisfy the assumption of Normality and constant variance of a
feature across groups required by the t-test. As we discuss next, these properties of the data,
combined with appropriate normalization, improve the accuracy of the results.
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Conclusion III: Optimal normalization depends on the subsequent statistical analysis
On the basis of the spike-in dataset, VSN was preferred in combination with PCA, and a
constant normalization is preferred in combination with the t-test. This result is not surprising
given that PCA and t-test are based on different distributional assumptions, and the
normalization methods enforce different distributional properties on the normalized peaks. To
illustrate the point, Figures S9B∼C and S10 demonstrate that an increased variance of lower-
abundant peaks on the log scale persists after creatinine and total sum normalizations. The
relationship has important implications for PCA, which considers all peaks simultaneously and
reflects the patterns of largest variation. Therefore, PCA combined with constant normalization
is unduly influenced by noisy and low-abundant peaks. This fact is further demonstrated by
Figure S11, which shows that features with low average intensities have systematically stronger
loadings, regardless of their spike-in status, for the case of constant normalization.

VSN, on the other hand, is designed to enforce roughly equal variances on all peaks, regardless
of their mean intensity. Since the same transformation is applied to all features simultaneously,
it is more likely to reflect the true biological variation than scaling, which standardizes each
feature separately by the feature-specific standard deviation. Figure S11 shows that with VSN
the loadings of the spike-in metabolites tend to be stronger than the loadings of the background
peaks, and this is true for all mean intensities of peaks.

The situation is reversed for the t-test, which is performed separately for each feature, and does
not require the assumption of constant variance of all features. When using VSN in conjunction
with a t-test the variance of each feature is estimated twice, once as part of the normalization
procedure, and once as part of the test. This double estimation results in overfitting, and is
responsible for the inferior performance of VSN.

Conclusion IV: The moderated t-test is preferred to the ordinary t-test for analysis of small
data sets

Despite a relatively small number of peaks in an NMR metabolomic experiment as compared
to gene expression microrrays, the moderated t-test minimizes the FPR regardless of
normalization. While the ordinary t-test calculates the variance of each peak separately,
Empirical Bayes analysis combines peak-specific variance with a “summary” variance over
all peaks (Equation 5). Since we typically observe several hundred peaks, the “summary”
variance over all peaks is more reliable, and results in a more accurate outcome of the test.

Additional comments
In the course of our experiment we also found that, when using PCA, two-fold and four-fold
diluted samples were clustered more closely together than the undiluted samples, and this
pattern was particularly strong for constant normalization. The pattern can be attributed to the
peaks that exhibit non-linear changes in intensity with increasing dilution.

It is generally assumed that dilution proportionally affects concentrations of all metabolites
and of the spectral intensities. This has been used in previous normalization studies in which
the dilution factors were computationally synthesized.26 Here, we experimentally diluted
spiked urine samples, and observed that dilution can potentially induce non-linear variations
in some peaks. Figure S12 shows raw NMR spectra and peak integral values for several such
non-linearly behaving peaks in the spike-in dataset for one mixture at three dilution levels.
Expected peak integral values are also plotted for the three dilution levels. One can see that
the selected peaks have bigger or smaller integral than expected after dilution (Figure
S12A∼C). The integrals of such peaks are relatively small compared to most peaks in the
spectrum (Figure S1), but this unusual behavior can give rise to large PC1 loadings (Figure
S11). This pattern differs from the majority of the metabolite peaks in the spectra, which
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generally decrease in intensity with dilution, as expected (Figure S12D). Due to the fact that
urine composition is extremely complex, the reason for such non-linear behavior is not clear
at present. Upon dilution, even under careful buffer control, factors such as pH, ion strength,
macromolecular or paramagnetic metal binding could all vary, and thus affect the
physicochemical behavior of molecules (small or large) in urine. When such non-linearities
are present, they create a confounding effect, i.e. cannot be distinguished from the true
biological differences. This confounding will adversely affect all the normalization procedures.
We will further investigate this result in our future work.

In summary, signal processing and data analysis are key to the success of metabolic profiling
experiments, in particular when involving highly variable samples such as urine. Although
signal processing and data analysis are frequently considered as separate and independent steps,
selection of a signal processing method should depend on the subsequent analysis steps, and
should be selected to satisfy the assumptions necessary for the subsequent analysis most
closely. In particular, peak picking and logarithm transform are beneficial. VSN transformation
is a preferred normalization for exploratory analysis such as PCA, and creatinine normalization
is preferred for t-test. The moderated t-test is superior to the regular t-test in experiments when
the number of biological samples in each group is relatively small. Statistical methods
evaluated on urine data in this work are also applicable to serum and plasma. Although the
dilution effects are relatively small thanks to homeostasis of biological systems ensures stable
blood content, they can be introduced experimentally when addition of buffer is needed to
reach a measurable volume.
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Figure 1.
Observed log fold changes are plotted against nominal log fold changes for all metabolites,
separately for each dilution. The fold changes are taken with respect to a baseline concentration
of 800uM. The solid line represents the expected pattern. The dotted lines denote the 75th

quantile of standard deviations of the background metabolites. Colors indicate dilution types.
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Figure 2.
PCA score plots for the 54 spectra in the spike-in dataset. X and Y axes are the first and the
second principal components, respectively. Colors indicate the six mixture types, and shapes
indicate the three dilution levels. VSN gives rise to the best performance in minimizing the
dilution effect.
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Figure 3.
False positive rate (FPR) for detecting differentially abundant peaks. X-axis: number of
detected differentially abundant peaks. Y-axis: average false positive rate, calculated over all
pairs of mixtures in a comparison set. Shapes indicate normalization types. Colors indicate
ordinary and moderated t-tests. (A) 90 urine-like pairwise comparisons of mixture types.
Samples from different mixtures also differ in dilution. (B) 45 blood-like comparisons of
mixture types. Samples from different mixtures have identical dilution.
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Figure 4.
PCA scores plots for the diabetes data set. X and Y axes indicate the first and the second
principal components, respectively. Black dots indicate samples from diabetic patients. Open
circles indicate samples from healthy controls. The choice of normalization procedure impacts
the appearance of the PCA score plots.
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Figure 5.
Venn diagrams of differentially abundant peaks detected for the diabetic urine data set at the
false discovery rate of 5%. Total sum normalization produces the highest number of
differentiating peaks, while the choice of ordinary or moderated t-test has little impact on this
data set.
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