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Abstract

Purpose—Interferon Regulatory Factor 6 (IRF6) encodes a member of the IRF family of
transcription factors. Mutations in IRF6 cause Van der Woude (VWS) and popliteal pterygium
syndromes (PPS), two related orofacial clefting disorders. Here, we compared and contrasted the
frequency and distribution of exonic mutations in IRF6 between two large geographically distinct
collections of families with VWS and between one collection of families with PPS.
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Methods—We performed direct sequence analysis of IRF6 exons on samples from three collections,
two with VWS and one with PPS.

Results—We identified mutations in IRF6 exons in 68% of families in both VWS collections and
in 97% of families with PPS. In sum, 106 novel disease-causing variants were found. The distribution
of mutations in the IRF6 exons in each collection was not random; exons 3, 4, 7, and 9 accounted
for 80%. In the VWS collections, the mutations were evenly divided between protein truncation and
missense, whereas most mutations identified in the PPS collection were missense. Further, the
missense mutations associated with PPS were localized significantly to exon 4, at residues that are
predicted to bind directly to DNA.

Conclusion—The non-random distribution of mutations in the IRF6 exons suggests a two-tier
approach for efficient mutation screens for IRF6. The type and distribution of mutations are consistent
with the hypothesis that VWS is caused by haploinsufficiency of IRF6. On the other hand, the
distribution of PPS-associated mutations suggests a different, though not mutually exclusive, effect
on IRF6 function.
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Introduction

The prevalence of orofacial clefting varies from 1 in 500 to 1 in 2500 births, depending on
geographic origin, race and socioeconomic background 1-4. About 70% of orofacial clefts occur
as isolated cases and the remainder can be attributed to chromosomal abnormalities, maternal
exposure to teratogens and syndromes where the phenotype includes other developmental or
morphological abnormalities °.

Van der Woude syndrome (VWS, OMIM 119300) is one of the most common oral cleft
syndromes and accounts for ~2% of all cleft lip and palate cases. VWS is clinically
characterized by congenital lower lip pits, cleft lip (CL), cleft lip with or without cleft palate
(CLP), cleft palate only (CPO) and hypodontia. Other, less common, features include
syndactyly of the fingers, syngnathia and ankyloblepheron 6. VWS is inherited as an autosomal
dominant trait with high penetrance (96.7%), but variable expression . The phenotype of the
lower lip varies from a single barely evident depression to bilateral fistulae of the lower lip,
and the orofacial cleft varies from a bifid uvula to a complete cleft lip and palate ©. These facial
anomalies are also seen in individuals with popliteal pterygium syndrome (PPS, OMIM
119500), a disorder that includes other physical signs, including bilateral popliteal webs,
syndactyly, genital anomalies, ankyloblepharon, oral synechiae and nail abnormalities.

The genetic localization for VWS was assigned by linkage analysis 8 and through chromosome
abnormalities involving chromosome 1932-g41 2-11, Overall, there is little evidence for genetic
heterogeneity, although evidence for a second potential VWS locus was reported for
chromosome 1p36-p32 12, Sertie et al. 13 suggested that a gene at chromosome 17p11.2-p11.1,
together with the VWS gene, enhances the probability of CP in an individual carrying two risk
alleles.

Previously, we described a nonsense mutation in the Interferon Regulatory Factor 6 (IRF6)
gene in the affected sib of two monozygotic twins discordant for VWS, suggesting IRF6 as a
candidate for VWS 4. This hypothesis was confirmed in the same study by the detection of
IRF6 mutations in 45 additional unrelated families with VWS. In addition, a unique set of
mutations in IRF6 was discovered in 13 families with PPS, demonstrating that VWS and PPS
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are allelic, as previously suggested 1°. Subsequently, mutations in IRF6 were identified in 56
additional families with VWS and three with PPS 16-36,

The objectives of this paper are to determine the prevalence and distribution of mutations in
the exons of IRF6 in families with VWS and PPS. We describe the complete sequence analysis
of IRF6 exons in two large VWS collections and one PPS collection. Despite geographical
diversity between the two VWS collections, the likelihood of finding an exonic mutation in
IRF6 was similar as was their distribution. The type and distribution in location of PPS
mutations differ significantly from the VWS mutations, but are not mutually exclusive. The
results provide the foundation to identify genotype-phenotype correlations in disorders caused
by mutations in IRF6 and to determine structure-function relationships in the IRF family of
transcription factors.

Materials and Methods

Populations

PCR

Each proband was examined by a clinical geneticist or genetic counselor. Two collections of
unrelated families affected with VWS were obtained, one from Brazil (N=110) and one of
mixed geographic origin (N=197). The collection from Brazil has not been described
previously. The geographic origin of the mixed collection is primarily northern Europe, and
includes families from the United States (152), Belgium (31), Germany (7), United Kingdom
(3), Thailand (2), Phillipines (1) and Brazil (1). Many of these families (175) were described
previously 14: 16: 21, 23 and were included in this study to provide a comprehensive analysis
of the complete collections of families with VWS and PPS. Diagnostic criteria for individuals
to be considered affected with VWS included CLP or CPO, and at least one affected individual
in the family with an anomaly in the lower lip, generally bilateral pits.

In addition, a single collection of unrelated families affected with PPS (N=37) was obtained.
The geographic origin of the PPS families was mainly northern Europe, but included one family
from Brazil. Diagnostic criteria for individuals affected with PPS included the VWS criteria
listed above along with the presence of bilateral popliteal webs or a combination of syndactyly,
genital anomalies, ankyloblepharon, oral synechiae and nail abnormalities from one or more
members in a family. Sample collection and processing was performed as described previously
37, We obtained written informed consent from all subjects and approval for all protocols from
the Institutional Review Boards at the University of lowa, the University of Manchester, the
University of S8o Paulo State and CONEP/Brazil, the Université catholique de Louvain, and
Zentrum fur Gynékologische Endokrinologie, Reproduktionsmedizin und Humangenetik,
Regensburg, Germany.

Exons 1-8 and part of exon 9 of IRF6 were amplified by standard PCR using the primers shown
in Table 1. PCR experiments for exons 1-8 were performed in a 10ul total volume mixture
containing 20 ng of genomic DNA, 0.5uM each primer, 200uM dNTPs, 0.25% DMSO, 0.2
unit Bio-X-Act Taq polymerase (Bioline, Reno, NV), and 1X PCR buffer supplied by the
manufacturer. PCR conditions are as follows: initial denaturation 3 min at 94°C, followed by
35 cycles of denaturation at 94°C for 15 sec, annealing at 57°C for 30 sec, elongation at 68°C
for 1min, and final elongation at 68°C for 3 min. Conditions for PCR experiments for exon 9
were performed as above except 0.3uM each primer, Biolase Taq polymerase (Bioline) and
initial denaturation 5 min at 94°C, followed by 35 cycles of denaturation at 94°C for 45 sec,
annealing at 57°C for 45 sec, elongation at 72°C for 45 sec, and final elongation at 72°C for 3
min.
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DNA sequence analysis

The amplified products were sequenced directly using Big Dye sequencing kit (Perkin-Elmer,
Foster City, CA) as recommended. Sequence samples were purified with magnetic beads and
run on an automated sequencer model ABI Prism 3700 (Perkin-Elmer). DNA sequences were
aligned and analyzed using the software PHRED/PHRAP/CONSED 38, Reference sequences
for IRF6 cDNA, genomic DNA and protein were NM_006147.2, RP3-434014 (Genbank
AL022398) and NP_006138, respectively. DNA sequence variants were confirmed by
sequencing the opposite strand in the proband and, if possible, in at least one other affected
family member. To identify non-etiologic polymorphisms, DNA sequence analysis was
performed for all IRF6 exons on a minimum of 200 unaffected control samples derived from
geographically diverse populations 39,

Splice site prediction

The effect of mutations on splicing activity was modeled using Genscan 4°. Wild type and
mutant sequences were compared using default settings.

Statistical analysis

Frequency tables showed population specific frequency distribution of mutations across the
nine exons. The 2 by 9 tables were analyzed using the Chi-square statistic or Fisher's exact test
when appropriate (e.g. when the expected cell count was less than 5 for at least 20% of the
cells).

Results and Discussion

Prevalence of Exonic Mutations in IRF6

DNA samples were derived from two distinct VWS collections, one from Brazil (N = 110) and
one of mixed origin that was primarily from northern Europe (N = 197). In addition, we
screened a PPS collection of mixed geographical origin (N = 37). The mutation screen used in
the current study was modified slightly from the screen described previously by Kondo et
all4. PCR primers for exon 9 were redesigned (Table 1), and the new primers amplified this
region more robustly and generated DNA sequence more reliably. In the VWS collections, we
identified IRF6 exonic mutations in 77 of 110 (71%) families from Brazil and identified 132
of 197 (67%) families from the mixed collection (Table 2). The likelihoods for finding exonic
mutations in IRF6 between these two diverse VWS collections are not statistically different
(p=0.61) and are consistent with common mutation mechanisms.

Mutations located in the exons of IRF6 have been identified for only 68% of families with
VWS analyzed to date. Several possibilities exist to explain the remaining 32%. IRF6 may
have gross deletions that are not detected by our DNA sequencing strategy. Etiologic mutations
may exist within IRF6, but located outside the exons. Finally, some proportion of the remaining
families may be due to mutations located in some other gene. To date, deletions have been
found in only six families with VWS 10. 11,2429 | general, these have been large deletions
and further studies with more sensitive methods are needed to screen for kilobase-sized
deletions. Despite the lack of linkage evidence for locus heterogeneity in VWS, it is also
possible that VWS-causing mutations may be found in other genes. For example, a polygenic
mechanism might contribute to some cases of VWS, but would be difficult to detect in the
previous linkage studies. The number and size of families that lack an exonic mutation in
IRF6 should be sufficient to test for genetic heterogeneity in the VWS collection.

In the PPS collection, we identified exonic mutations in IRF6 in 36 of 37 unrelated families,
demonstrating that IRF6 is the principal gene involved in this disorder. When combined with
the VWS mutation studies, IRF6 exonic mutations were identified in 249 unrelated families,
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representing 170 total and 106 novel alleles (Table 3: Supplemental data online only). None
of these mutations were observed in our control samples (see Methods), suggesting that they
are etiologic. However, we identified 41 DNA sequence variants from our mutation screen,
including four non-synonymous polymorphisms, Asp19Asn, Ala61Pro, Thr224Ser, Val274lle
(Table 4). As these variants were detected in control cases, they are not etiologic for VWS nor
PPS. However, Val274lle is highly associated with isolated cleft lip and palate 41-46, and
functional studies must be performed to test Val274lle and other alleles as potential
susceptibility alleles.

Non-random Distribution of IRF6 Exonic Mutations in VWS Collections

The distribution of all exonic mutations in IRF6 in the VWS collections is not random
(p<0.0001; Table 5, row A). More mutations were located in exons 3, 4, 7, and 9 than expected,
suggesting a multi-tier approach for mutation screening of IRF6 in VWS cases. This pattern
was observed in both the Brazilian (Figure 1A) and mixed origin (Figure 1B) VWS collections,
suggesting that the mutation mechanisms for IRF6 are independent of origin of the population.

Protein truncation mutations (nonsense and frameshifts) were observed in all exons prior to
the endogenous stop codon inexon 9. Interestingly, we identified point mutations in six families
in exons 1 and 2 that create new start codons in the 5" untranslated region. These new start sites
should not make IRF6 protein as they are in the wrong reading frame, but may not prevent
initiation at the native site. The protein truncation mutations are evenly distributed across the
gene, except for exon 9 (Table 5, row B). The spike in protein truncation mutations in exon 9
appears to be due to one of five mutational hotspots in IRF6 (see below). Overall, the high
prevalence of protein truncation mutations in families with VWS (80 of 207), in addition to
the six known IRF6 deletions®: 11: 14, 24,29 provides further support that VWS can be caused
by haploinsufficiency of IRF6.

Nearly all of the 117 mutations that do not truncate the protein (missense and in-frame
insertions and deletions) are localized to regions encoding the DNA binding domain (64
families) and the protein binding domain (45 families). The significant over-representation of
missense mutations in the DNA binding (exons 3 and 4) and protein binding (exons 7-9)
domains (Table 5, row C) reinforces the importance of these domains for IRF6 function.

Non-random Distribution of IRF6 Exonic Mutations in the PPS Collection

The location of mutations identified in families with PPS is non-random (Table 5, row E). In
34 of 36 families with PPS, the mutation is located in exons 3, 4 or 9 (Figure 1C). Like VWS,
these observations suggest a multi-tier approach for efficient mutation screens for PPS.
However, the distribution of mutations among the exons for the PPS collection differs
significantly from the VWS collections (p < 0.0001; Table 5, row A versus E). Another
difference is the low frequency of protein truncation mutations in the PPS versus VWS
collections (5/36 vs 80/207; p = 0.036), and the high frequency of missense mutations in exon
4 inthe PPS versus VWS collections (26/36 vs 42/207; p < 0.0001). In addition, the distribution
of missense mutations within the DNA binding domain (exons 3 and 4) is non-random for the
PPS collection (Figure 2). Specifically, the missense mutations in the PPS collection are more
likely to be located at residues that are predicted to contact DNA, when compared with random
chance (P< 7x1079) and when compared with missense mutations in the VWS collection (P<
1x10°6). Based on the significant differences in the frequency of the type of mutation and
distribution in location of mutations found in the PPS versus the VWS collections, we conclude
that the PPS-associated mutations affect IRF6 function differently than VWS-associated
mutations.
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How might VWS and PPS-associated mutations affect IRF6 function differently? The
identification of six large deletions of IRF6 10+ 11 24: 29 3long with the high frequency of
protein truncation mutations, demonstrates that VWS can be caused by loss of function of
IRF6. For families with PPS, we hypothesized previously that mutations have a dominant
negative effect on IRF6 14, The rationale for this hypothesis is that the Arg84Cys and Arg84His
mutations abrogate DNA binding 47, but are not predicted to affect protein binding.
Consequently, protein dimers are predicted to form between a wild type isoform and the
Arg84Cys and Arg84His isoform, but such a dimer will not be able to bind DNA. This model
is supported by two main observations. First, in a previous study, mice heterozygous for a PPS-
associated I1rf6 allele (Arg84Cys) had a more severe and more penetrant phenotype than mice
that were heterozygous for a loss of function allele 4" 48, Second, in the current study, we
observed that mutations identified in families with PPS are much more likely to be missense
mutations than in families with VWS, and that mutations are more likely to be located at
residues that are predicted to directly contact the DNA. Such mutations are more likely to affect
DNA binding without affecting protein stability or protein interaction. The most common
examples of this class of mutations are Arg84Cys and Arg84His (Table 3: Supplemental data
online only).

However, current data do not fully support a simple model whereby VWS is caused by IRF6
loss-of-function mutations and PPS is caused by IRF6 dominant negative mutations. Foremost,
the same mutations were identified in patients with VWS and with PPS. For example, we
identified missense mutations at Arg84 in seven families diagnosed with VWS and 21 with
PPS (Table 3: Supplemental data online only). The mutations Arg84Cys and Arg84His were
found in five families diagnosed with VWS. Moreover, individuals with VWS and PPS have
been diagnosed in the same family 21, These data suggest that while the association between
the Arg84Cys and Arg84His mutations and PPS is strong, it is not absolute. In sum, the data
is most consistent with the model that VWS is most likely caused by loss (or partial loss) of
function mutations, but can also be caused by dominant negative mutations and that PPS is
most likely caused by dominant negative mutations but can also be caused by loss (or partial
loss) of function mutations. The range of phenotypes for VWS and PPS, including their overlap,
suggests the likely contributions of stochastic events and genetic modifiers 13 for IRF6-related
disorders.

Three other observations are relevant to the effect of VWS and PPS mutations on IRF6 function.
First, we identified a novel missense change at Arg84, Arg84Pro, in two families where affected
individuals were diagnosed with VWS. In addition, Item et al., 22 identified an Arg84Gly
mutation in a family where both affected individuals were diagnosed with VWS. The Arg84Pro
and Arg84Gly mutations challenge the dominant negative hypothesis, since this residue is
predicted to contact the DNA but these mutations are only found in individuals with VWS.
However, the residue Arg84 is located in the middle of helix 3 in IRF6. The amino acids proline
and glycine are known to disrupt alpha helices 4°. Consequently, the Arg84Pro and Arg84Gly
mutations are predicted to disrupt the secondary and/or tertiary structure of IRF6, whereas
Arg84Cys and Arg84His would not. Thus, we hypothesize that the Arg84Pro and Arg84Gly
alleles cause complete loss of IRF6 function and result in VWS through haploinsufficiency of
IRF6. Further biochemical and molecular studies are needed to test this hypothesis.

Secondly, the splicing mutations at the 5’ splice site of intron 3 and the protein truncation
mutations in exon 9 also challenge the dominant negative hypothesis for mutations that cause
PPS. To produce a dominant negative allele, a defective, but stable protein must be produced.
We hypothesize that the splicing mutations at the 5’ splice site of intron 3 activate a cryptic
splice site that produces a mutant IRF6 allele that is stable, but unable to bind DNA. To test
this hypothesis, we used Genscan 40, a program that predicts splice sites, to model the effect
of the four splicing mutations at intron 3. For the two mutations at the highly conserved position
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+1 of intron 3, Genscan analysis predicts the loss of the endogenous splice site and the use of
a cryptic splice site in the middle of exon 3 (Figure 3). Moreover, the cryptic splice site rejoins
exon 4 in frame, but deletes 41 amino acids from the DNA binding region encoded in exon 3.
Thus, these splicing mutations create a potentially stable protein with a mutation in the DNA
binding domain and are consistent with the dominant negative model for PPS mutations.
However, like the Arg84Cys and Arg84His mutations, these mutations do not always cause
PPS, as one of these mutations was identified in a family with VWS. Also, for the other two
splice mutations in intron 3 found in families with PPS, Genscan did not predict loss of the
endogenous splice site (Figure 2).

Thirdly, protein truncation mutations in exon 9 were identified in families with either VWS or
PPS. While the effect of these mutations on IRF6 function is not known, previous studies with
the other members of the IRF family showed that the C terminus contains an auto-inhibitory
domain 0. Recently, we discovered that IRF6 binds to maspin, a tumor suppressor gene, and
that the C terminus blocks this interaction °1. Additional molecular and biochemical studies
are needed to understand the effects of the PPS-causing mutations in exon 9.

Source of exonic mutations in IRF6

To date, we identified IRF6 exonic mutations in 249 unrelated families and represent 170
different disease-causing alleles in IRF6. Thus, 68% of exonic mutations in IRF6 are private
and represent a wide array of potential mutational mechanisms. However, we identified five
apparent hotspots. Mutations in the codons for Arg6, Arg84, Arg250, Arg400 and Arg412 were
identified in 6, 26, 11, 7 and 14 unrelated families, respectively. The codon sequence for each
of these residues contains a CpG dinucleotide. In humans, approximately one third of germline
mutations result from loss of the CpG dinucleotide, and 90% of those are consistent with a
mutation mechanism of cytosine methylation and deamination 2. Similarly, in this report, 55
of 64 (86%) of the mutations in these CpG codons were consistent with the cytosine
methylation/deamination mechanism.

This study shows that exonic mutations in IRF6 are found in 68% of families with VVan der
Woude syndrome and nearly all families with popliteal pterygium syndrome. A few percent
of families with VWS are caused by microdeletions of IRF6. Although the majority of the
mutations are private, the distributions of exonic mutations suggest that future mutation
searches should focus on exons 3, 4, 7 and 9 for families with VWS and on exons 3, 4 and 9
for families with PPS. In addition, since the distribution of mutations is consistent between
geographically distinct populations, this multi-tier approach for mutation discovery should be
widely applicable. Further, the distributions of mutations in the VWS and PPS collections
suggest some limited guides for risk assessment and suggest a molecular rationale for clinical
heterogeneity caused by genetic variation in IRF6.
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Figure 1.

Distribution of exonic mutations in IRF6. Each panel shows the genomic structure for IRF6.
Exons (rectangles) are color coded as untranslated (gray), encode DNA binding domain
(yellow), or encode the protein binding domain (green). The introns (space between exons) are
not drawn to scale. The relative position of protein truncation mutations (red triangle), missense
mutations (blue triangle) and splicing mutations (black triangle) is shown. Below each genomic
structure is the distribution of missense (blue; includes in-frame deletions and insertions),
protein trunctation (red; includes nonsense, frameshift and large deletions), and splicing (white)
mutations in each exon for each population. A) Mutations found in VWS collection from Brazil.
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B) Mutations found in VWS collection from mixed geographic origin. C) Mutations found in
PPS collection.
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Figure 2.

Distribution of missense mutations in the DNA binding domain of IRF6. Mutations were
identified in families with VWS (closed circles) and families with PPS (open circles). Amino
acids predicted to directly contact DNA (underline) are based on crystal structure of IRF1 (see
text). The expected number of mutations that contact DNA is based on the ratio of 17 amino
acids that are predicted to contact the DNA (underlined, see text) out of 120 total amino acids
in the DNA binding domain.
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DNA sequence Clinical Genescan
Allele name EXON intron Diagnosis Prediction
Consensus splice site MAG gtragt wt
IRF6 i3 AAG gtaaag Unaffected wt
IRF6 i3 +1 g>t AAG ttaaag PPS& cryptic
IRF6i3 +1 g>a AAG ataaag VWS Cryptic
IRF6 x3 174 G>A AAA gtaaag PPS wt
IRF6 i3 +3 a>c AAG gtcaag PPS wt

DNA variant is underlined.

.. .ATGGCC. ..CCCAGGTGGA. . .TAAAGgtaaag

. IRF6 3 (wild type) —
0.0 1.0 2.0 3.0 4.0

.. .ATGGCC...CCCAGgtgga. . .taaagttaaag

\ﬂ/ IRF6i3 +1 g>t (PPS associated)
%

0.0

1.0 2.0 3.0 4.0

Figure 3.

Cryptic splice site in exon 3 revealed by computer modeling. The wild type (wt) and mutant
sequences for the 5’ splice site for intron 3 are shown below the consensus sequence. In the
consensus, M represents A or C and r represents G or A. The panel below contains the output
from GENESCAN and shows the cryptic splice site in exon 3 revealed by the mutation at the
endogenous site.
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Table 1

PCR primers used to amplify IRF6 exons

Page 15

Exon Domain? Direction® Primer sequence (5'-3") Product size (bp)
1 5'UTR R at ct ggaaaagggcgacagg 537
1 F agaagcggaggagt agggt g
2 5'UTR R aaagtt at ggaaacagcaac 382
2 F ttattctagggcttctgagce
3 DBD R cat gcccccaaaagaggaat 560
3 F ggct agagcat gaagt gt aa
4 DBD R aggctttcttgctttatcca 512
4 F gct ct gggcaat gat aggac
5 Proline-rich R tgctttcagggcagt ggt gg 425
5 F cagt gaat ct agggaggt cc
6 Proline-rich R tttacttcttccctggtgac 432
6 F cagtgtttggttcttgtcta
7 SMIR R ctt gacct cct ccagact aa 650
7 F agt ggccttcctgaatgatg
8 SMIR R gtttcagcaagact ct aagg 436
8 F aaagat ggt attt gttgagt
9 S/T-rich R gtcttcctcagggectcttt 446
9 F ggcat at tt ggat cacaaac
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Table 4
DNA variants in IRF6 that do not cause VWS or PPS.

Location2 SNP amino acid MAFb (%) Sequence

promoter -156 G>A 35 AGGGT GGGACRCT GGACGGAC

promoter -134 G>C 36 CCGCTGEECCSGECAGCCCAG

promoter -50 T>A 18 CT GCGAGGCCOGWEECCEEECEG

promoter -39 AST 18 GCGCCEEECEEW GCGAAGGCT
1i -4 A>G 2 TTTTCTCCATRCAGAATCTTT
2e -73T>C 46 CCATACAGAAYCTTTGAGCGG
2i +102 T>C 1 CCTTTAGITGYCTTGITTAAA
2i -73G>C 2 AGATGGGAAASGT GGCTGGGA
3e 9C>T L3L 3 TCATGGCCCTYCACCCCCGCA
3e 55 G>A D19N 1 GGCCCAGGTGRATAGT GGCCT
3i +36 TT>T 24 CCTTTCTGGATTTTTTTITTTI
3i -138 G>C 12 TGATGGGGCASTCATGCAAAA
3i -84 GTGT>GT 12 GIGTGIGIGIGITTGTGICTA
3i -5C>G 49 GITTCTTGTTSTCAGGCCTGG
4e 181 C>G AB1P 5 TCAGGCCTGGSCTGTAGAGAC
4e 339G>T V113V 2 TATATCAAGTKTGTGACATCC
4 -174 A>G 1 AGGTCCTTCCRTGAGAGAAGT
4 -155 C>T 9 GTGTTCATTCYCTTGATTCTC
4 -106 C>T 1 TGTACTGAACYTGAGGAGCCT
4 -102 G>A 1 CTGAACCTGARGAGCCTCTGG
5e 459 G>T S153S 25 TGGATCAGT CKCAGCACCATG
5i +55 A>C 32 AGGAGT TTTGMCCTTGGGACT
6i +27 C>G 40 CTTTCTTGCTSGGICTTCTGC
7e 671 C>G T224S 2 CTTGCAGTGASTGACCTGGAC
7e 711 C>T Y237Y 1 GGAAGGAGTAYGGGCAGACCA
7e 726 C>T T242T 2 AGACCATGACYGTGAGCAACC
7e 820 G>A V2741 13 CCTGGAGCAGRTCAAATTCCC
7i +37C>T 21 GTGGGAATCAYTCTCTGGAAG
7i -75 A>T 47 TGTAATGGACWECATAAAAGA
8e 1153 T>C L385L 5 TGGGAAACCAYTGGAAAGGAA
8i +34 T>C 2 CAACTCTTCAYCTTTTTGCCA
8i +42 A>C 1 CATCTTTTTGMCAATGCTTAA
8i +93 G>T 3 GCATCCATCAKCCCATGTAGG
% 1608 C>T 2 TTCAAATCTCYTAATGGTAGT
% 1692 A>T 4 CTTTGCTTCCAATGTGACCTT
% 1703 G>A 2 ATGTGACCTTRAACAAGTCCT
% 1751 A>T 5 TTATAAAGTGNGAGATTGGA
% 1757 T>C 1 AGTGAAGAGAYTGGAGTAGT G
% 1855 A>G 11 ATCCTTCTGCRTTGTTCTTGT
% 1922 C>T 1 TGTCCAGGATYGAGCTCTGIT
% 1962 C>T 4 AGTAAGCTGGYTCCCTGATGG

a . . - . ;
Mutations are located upstream of exon 1 (promoter) or in the indicated intron (i) and exon (e).

bMinor Allele Frequency (MAF) is based on CEPH diversity panel.

Promotcr

intron
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