

NIH Public Access

Author Manuscript

Genet Med. Author manuscript; available in PMC 2010 April 1.

Published in final edited form as:

Genet Med. 2009 April ; 11(4): 241–247. doi:10.1097/GIM.0b013e318197a49a.

Prevalence and non-random distribution of exonic mutations in Interferon Regulatory Factor 6 (*IRF6*) in 307 families with Van der Woude syndrome and 37 families with popliteal pterygium syndrome

Renata L. L. Ferreira de Lima, Ph.D.¹, Sarah A. Hoper², Michella Ghassibe, Ph.D.³, Margaret E. Cooper, Ph.D.⁴, Nicholas K. Rorick, Ph.D.², Shinji Kondo, M.D.², Lori Katz, M.D.², Mary L. Marazita, Ph.D.⁴, John Compton, Ph.D.⁵, Sherri Bale, Ph.D.⁵, Ute Hehr, M.D.⁶, Michael J. Dixon, Ph.D.⁷, Sandra Daack-Hirsch, Ph.D.², Odile Boute, M.D.⁸, Bénédicte Bayet, M.D.⁹, Nicole Revencu, M.D.^{3,10}, Christine Verellen-Dumoulin, M.D.¹⁰, Miikka Vikkula, M.D., Ph.D.³, Antônio Richieri-Costa, M.D.¹¹, Danilo Moretti-Ferreira, Ph.D.¹, Jeffrey C. Murray, M.D.², and Brian C. Schutte, Ph.D.²

¹Serviço de Aconselhamento Genético, UNESP, Botucatu, SP, Brazil

²Department of Pediatrics, University of Iowa, Iowa City, IA, USA

³Laboratory of Human Molecular Genetics, de Duve Institute, Université catholique de Louvain, Brussels, Belgium

⁴Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, and Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA., USA

⁵GeneDx, Rockville, MD, USA

⁶Department of Human Genetics, University of Regensburg, Regensburg, Germany

⁷Faculty of Life Science and School of Dentistry, University of Manchester, Manchester, UK

⁸Consultation de Génétique Clinique, Hôpital Jeanne de Flandre, Lille, France

⁹Centre Labiopalatin, Division of Plastic Surgery, Cliniques universitaires St Luc, Brussels, Belgium

¹⁰Center for Human Genetics, Cliniques universitaires St Luc and Université catholique de Louvain, Brussels, Belgium

¹¹Hospital de Reabilitação de Anomalias Craniofaciais, USP, Bauru, SP, Brazil

Abstract

Purpose—Interferon Regulatory Factor 6 (*IRF6*) encodes a member of the IRF family of transcription factors. Mutations in *IRF6* cause Van der Woude (VWS) and popliteal pterygium syndromes (PPS), two related orofacial clefting disorders. Here, we compared and contrasted the frequency and distribution of exonic mutations in *IRF6* between two large geographically distinct collections of families with VWS and between one collection of families with PPS.

Conflict of Interest

^{*}Current address for corresponding Author Address: Brian C. Schutte, Microbiology & Molecular Genetics, Pediatrics and Human Development, 5162 Biomedical and Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, TEL: 517 884-5346, FAX: (517) 353-8957, schutteb@msu.edu.

The authors have no conflict of interest with the information presented in any submitted manuscript

Methods—We performed direct sequence analysis of *IRF6* exons on samples from three collections, two with VWS and one with PPS.

Results—We identified mutations in *IRF6* exons in 68% of families in both VWS collections and in 97% of families with PPS. In sum, 106 novel disease-causing variants were found. The distribution of mutations in the *IRF6* exons in each collection was not random; exons 3, 4, 7, and 9 accounted for 80%. In the VWS collections, the mutations were evenly divided between protein truncation and missense, whereas most mutations identified in the PPS collection were missense. Further, the missense mutations associated with PPS were localized significantly to exon 4, at residues that are predicted to bind directly to DNA.

Conclusion—The non-random distribution of mutations in the *IRF6* exons suggests a two-tier approach for efficient mutation screens for *IRF6*. The type and distribution of mutations are consistent with the hypothesis that VWS is caused by haploinsufficiency of *IRF6*. On the other hand, the distribution of PPS-associated mutations suggests a different, though not mutually exclusive, effect on IRF6 function.

Keywords

Cleft lip and palate; mutation; haploinsufficiency; dominant negative; cryptic splice site; CpG

Introduction

The prevalence of orofacial clefting varies from 1 in 500 to 1 in 2500 births, depending on geographic origin, race and socioeconomic background ¹⁻⁴. About 70% of orofacial clefts occur as isolated cases and the remainder can be attributed to chromosomal abnormalities, maternal exposure to teratogens and syndromes where the phenotype includes other developmental or morphological abnormalities ⁵.

Van der Woude syndrome (VWS, OMIM 119300) is one of the most common oral cleft syndromes and accounts for ~2% of all cleft lip and palate cases. VWS is clinically characterized by congenital lower lip pits, cleft lip (CL), cleft lip with or without cleft palate (CLP), cleft palate only (CPO) and hypodontia. Other, less common, features include syndactyly of the fingers, syngnathia and ankyloblepheron ⁶. VWS is inherited as an autosomal dominant trait with high penetrance (96.7%), but variable expression ⁷. The phenotype of the lower lip varies from a single barely evident depression to bilateral fistulae of the lower lip, and the orofacial cleft varies from a bifid uvula to a complete cleft lip and palate ⁶. These facial anomalies are also seen in individuals with popliteal pterygium syndrome (PPS, OMIM 119500), a disorder that includes other physical signs, including bilateral popliteal webs, syndactyly, genital anomalies, ankyloblepharon, oral synechiae and nail abnormalities.

The genetic localization for VWS was assigned by linkage analysis ⁸ and through chromosome abnormalities involving chromosome 1q32-q41 ⁹⁻¹¹. Overall, there is little evidence for genetic heterogeneity, although evidence for a second potential VWS locus was reported for chromosome 1p36-p32 ¹². Sertie *et al.* ¹³ suggested that a gene at chromosome 17p11.2-p11.1, together with the VWS gene, enhances the probability of CP in an individual carrying two risk alleles.

Previously, we described a nonsense mutation in the Interferon Regulatory Factor 6 (*IRF6*) gene in the affected sib of two monozygotic twins discordant for VWS, suggesting *IRF6* as a candidate for VWS¹⁴. This hypothesis was confirmed in the same study by the detection of *IRF6* mutations in 45 additional unrelated families with VWS. In addition, a unique set of mutations in *IRF6* was discovered in 13 families with PPS, demonstrating that VWS and PPS

are allelic, as previously suggested ¹⁵. Subsequently, mutations in *IRF6* were identified in 56 additional families with VWS and three with PPS ¹⁶⁻³⁶.

The objectives of this paper are to determine the prevalence and distribution of mutations in the exons of *IRF6* in families with VWS and PPS. We describe the complete sequence analysis of *IRF6* exons in two large VWS collections and one PPS collection. Despite geographical diversity between the two VWS collections, the likelihood of finding an exonic mutation in *IRF6* was similar as was their distribution. The type and distribution in location of PPS mutations differ significantly from the VWS mutations, but are not mutually exclusive. The results provide the foundation to identify genotype-phenotype correlations in disorders caused by mutations in *IRF6* and to determine structure-function relationships in the IRF family of transcription factors.

Materials and Methods

Populations

Each proband was examined by a clinical geneticist or genetic counselor. Two collections of unrelated families affected with VWS were obtained, one from Brazil (N=110) and one of mixed geographic origin (N=197). The collection from Brazil has not been described previously. The geographic origin of the mixed collection is primarily northern Europe, and includes families from the United States (152), Belgium (31), Germany (7), United Kingdom (3), Thailand (2), Phillipines (1) and Brazil (1). Many of these families (175) were described previously ^{14, 16, 21, 23} and were included in this study to provide a comprehensive analysis of the complete collections of families with VWS and PPS. Diagnostic criteria for individuals to be considered affected with VWS included CLP or CPO, and at least one affected individual in the family with an anomaly in the lower lip, generally bilateral pits.

In addition, a single collection of unrelated families affected with PPS (N=37) was obtained. The geographic origin of the PPS families was mainly northern Europe, but included one family from Brazil. Diagnostic criteria for individuals affected with PPS included the VWS criteria listed above along with the presence of bilateral popliteal webs or a combination of syndactyly, genital anomalies, ankyloblepharon, oral synechiae and nail abnormalities from one or more members in a family. Sample collection and processing was performed as described previously ³⁷. We obtained written informed consent from all subjects and approval for all protocols from the Institutional Review Boards at the University of Iowa, the University of Manchester, the University of São Paulo State and CONEP/Brazil, the Université catholique de Louvain, and Zentrum fur Gynäkologische Endokrinologie, Reproduktionsmedizin und Humangenetik, Regensburg, Germany.

PCR

Exons 1-8 and part of exon 9 of *IRF6* were amplified by standard PCR using the primers shown in Table 1. PCR experiments for exons 1-8 were performed in a 10µl total volume mixture containing 20 ng of genomic DNA, 0.5µM each primer, 200µM dNTPs, 0.25% DMSO, 0.2 unit Bio-X-Act Taq polymerase (Bioline, Reno, NV), and 1X PCR buffer supplied by the manufacturer. PCR conditions are as follows: initial denaturation 3 min at 94°C, followed by 35 cycles of denaturation at 94°C for 15 sec, annealing at 57°C for 30 sec, elongation at 68°C for 1min, and final elongation at 68°C for 3 min. Conditions for PCR experiments for exon 9 were performed as above except 0.3µM each primer, Biolase Taq polymerase (Bioline) and initial denaturation 5 min at 94°C, followed by 35 cycles of denaturation at 94°C for 45 sec, annealing at 57°C for 45 sec, elongation at 72°C for 45 sec, and final elongation at 72°C for 3 min.

DNA sequence analysis

The amplified products were sequenced directly using Big Dye sequencing kit (Perkin-Elmer, Foster City, CA) as recommended. Sequence samples were purified with magnetic beads and run on an automated sequencer model ABI Prism 3700 (Perkin-Elmer). DNA sequences were aligned and analyzed using the software PHRED/PHRAP/CONSED ³⁸. Reference sequences for *IRF6* cDNA, genomic DNA and protein were NM_006147.2, RP3-434014 (Genbank AL022398) and NP_006138, respectively. DNA sequence variants were confirmed by sequencing the opposite strand in the proband and, if possible, in at least one other affected family member. To identify non-etiologic polymorphisms, DNA sequence analysis was performed for all *IRF6* exons on a minimum of 200 unaffected control samples derived from geographically diverse populations ³⁹.

Splice site prediction

The effect of mutations on splicing activity was modeled using Genscan ⁴⁰. Wild type and mutant sequences were compared using default settings.

Statistical analysis

Frequency tables showed population specific frequency distribution of mutations across the nine exons. The 2 by 9 tables were analyzed using the Chi-square statistic or Fisher's exact test when appropriate (e.g. when the expected cell count was less than 5 for at least 20% of the cells).

Results and Discussion

Prevalence of Exonic Mutations in IRF6

DNA samples were derived from two distinct VWS collections, one from Brazil (N = 110) and one of mixed origin that was primarily from northern Europe (N = 197). In addition, we screened a PPS collection of mixed geographical origin (N = 37). The mutation screen used in the current study was modified slightly from the screen described previously by Kondo et al^{14} . PCR primers for exon 9 were redesigned (Table 1), and the new primers amplified this region more robustly and generated DNA sequence more reliably. In the VWS collections, we identified *IRF6* exonic mutations in 77 of 110 (71%) families from Brazil and identified 132 of 197 (67%) families from the mixed collection (Table 2). The likelihoods for finding exonic mutations in *IRF6* between these two diverse VWS collections are not statistically different (p=0.61) and are consistent with common mutation mechanisms.

Mutations located in the exons of *IRF6* have been identified for only 68% of families with VWS analyzed to date. Several possibilities exist to explain the remaining 32%. *IRF6* may have gross deletions that are not detected by our DNA sequencing strategy. Etiologic mutations may exist within *IRF6*, but located outside the exons. Finally, some proportion of the remaining families may be due to mutations located in some other gene. To date, deletions have been found in only six families with VWS ^{10, 11, 24 29}. In general, these have been large deletions and further studies with more sensitive methods are needed to screen for kilobase-sized deletions. Despite the lack of linkage evidence for locus heterogeneity in VWS, it is also possible that VWS-causing mutations may be found in other genes. For example, a polygenic mechanism might contribute to some cases of VWS, but would be difficult to detect in the previous linkage studies. The number and size of families that lack an exonic mutation in *IRF6* should be sufficient to test for genetic heterogeneity in the VWS collection.

In the PPS collection, we identified exonic mutations in *IRF6* in 36 of 37 unrelated families, demonstrating that *IRF6* is the principal gene involved in this disorder. When combined with the VWS mutation studies, *IRF6* exonic mutations were identified in 249 unrelated families,

representing 170 total and 106 novel alleles (Table 3: Supplemental data online only). None of these mutations were observed in our control samples (see Methods), suggesting that they are etiologic. However, we identified 41 DNA sequence variants from our mutation screen, including four non-synonymous polymorphisms, Asp19Asn, Ala61Pro, Thr224Ser, Val274Ile (Table 4). As these variants were detected in control cases, they are not etiologic for VWS nor PPS. However, Val274Ile is highly associated with isolated cleft lip and palate ⁴¹⁻⁴⁶, and functional studies must be performed to test Val274Ile and other alleles as potential susceptibility alleles.

Non-random Distribution of IRF6 Exonic Mutations in VWS Collections

The distribution of all exonic mutations in *IRF6* in the VWS collections is not random (p<0.0001; Table 5, row A). More mutations were located in exons 3, 4, 7, and 9 than expected, suggesting a multi-tier approach for mutation screening of *IRF6* in VWS cases. This pattern was observed in both the Brazilian (Figure 1A) and mixed origin (Figure 1B) VWS collections, suggesting that the mutation mechanisms for *IRF6* are independent of origin of the population.

Protein truncation mutations (nonsense and frameshifts) were observed in all exons prior to the endogenous stop codon in exon 9. Interestingly, we identified point mutations in six families in exons 1 and 2 that create new start codons in the 5' untranslated region. These new start sites should not make IRF6 protein as they are in the wrong reading frame, but may not prevent initiation at the native site. The protein truncation mutations are evenly distributed across the gene, except for exon 9 (Table 5, row B). The spike in protein truncation mutations in exon 9 appears to be due to one of five mutational hotspots in *IRF6* (see below). Overall, the high prevalence of protein truncation mutations in families with VWS (80 of 207), in addition to the six known *IRF6* deletions^{10, 11, 14, 24, 29}, provides further support that VWS can be caused by haploinsufficiency of *IRF6*.

Nearly all of the 117 mutations that do not truncate the protein (missense and in-frame insertions and deletions) are localized to regions encoding the DNA binding domain (64 families) and the protein binding domain (45 families). The significant over-representation of missense mutations in the DNA binding (exons 3 and 4) and protein binding (exons 7-9) domains (Table 5, row C) reinforces the importance of these domains for IRF6 function.

Non-random Distribution of IRF6 Exonic Mutations in the PPS Collection

The location of mutations identified in families with PPS is non-random (Table 5, row E). In 34 of 36 families with PPS, the mutation is located in exons 3, 4 or 9 (Figure 1C). Like VWS, these observations suggest a multi-tier approach for efficient mutation screens for PPS. However, the distribution of mutations among the exons for the PPS collection differs significantly from the VWS collections (p < 0.0001; Table 5, row A versus E). Another difference is the low frequency of protein truncation mutations in the PPS versus VWS collections (5/36 vs 80/207; p = 0.036), and the high frequency of missense mutations in exon 4 in the PPS versus VWS collections (26/36 vs 42/207; p < 0.0001). In addition, the distribution of missense mutations within the DNA binding domain (exons 3 and 4) is non-random for the PPS collection (Figure 2). Specifically, the missense mutations in the PPS collection are more likely to be located at residues that are predicted to contact DNA, when compared with random chance ($P \le 7 \times 10^{-9}$) and when compared with missense mutations in the VWS collection ($P \le$ 1×10^{-6}). Based on the significant differences in the frequency of the type of mutation and distribution in location of mutations found in the PPS versus the VWS collections, we conclude that the PPS-associated mutations affect IRF6 function differently than VWS-associated mutations.

How might VWS and PPS-associated mutations affect IRF6 function differently? The identification of six large deletions of IRF6 10, 11, 24, 29, along with the high frequency of protein truncation mutations, demonstrates that VWS can be caused by loss of function of IRF6. For families with PPS, we hypothesized previously that mutations have a dominant negative effect on IRF6¹⁴. The rationale for this hypothesis is that the Arg84Cys and Arg84His mutations abrogate DNA binding ⁴⁷, but are not predicted to affect protein binding. Consequently, protein dimers are predicted to form between a wild type isoform and the Arg84Cys and Arg84His isoform, but such a dimer will not be able to bind DNA. This model is supported by two main observations. First, in a previous study, mice heterozygous for a PPSassociated Irf6 allele (Arg84Cys) had a more severe and more penetrant phenotype than mice that were heterozygous for a loss of function allele ^{47, 48}. Second, in the current study, we observed that mutations identified in families with PPS are much more likely to be missense mutations than in families with VWS, and that mutations are more likely to be located at residues that are predicted to directly contact the DNA. Such mutations are more likely to affect DNA binding without affecting protein stability or protein interaction. The most common examples of this class of mutations are Arg84Cys and Arg84His (Table 3: Supplemental data online only).

However, current data do not fully support a simple model whereby VWS is caused by IRF6 loss-of-function mutations and PPS is caused by IRF6 dominant negative mutations. Foremost, the same mutations were identified in patients with VWS and with PPS. For example, we identified missense mutations at Arg84 in seven families diagnosed with VWS and 21 with PPS (Table 3: Supplemental data online only). The mutations Arg84Cys and Arg84His were found in five families diagnosed with VWS. Moreover, individuals with VWS and PPS have been diagnosed in the same family ²¹. These data suggest that while the association between the Arg84Cys and Arg84His mutations and PPS is strong, it is not absolute. In sum, the data is most consistent with the model that VWS is most likely caused by loss (or partial loss) of function mutations, but can also be caused by dominant negative mutations and that PPS is most likely caused by dominant negative mutations but can also be caused by loss (or partial loss) of function mutations. The range of phenotypes for VWS and PPS, including their overlap, suggests the likely contributions of stochastic events and genetic modifiers ¹³ for *IRF6*-related disorders.

Three other observations are relevant to the effect of VWS and PPS mutations on *IRF6* function. First, we identified a novel missense change at Arg84, Arg84Pro, in two families where affected individuals were diagnosed with VWS. In addition, Item et al., ²² identified an Arg84Gly mutation in a family where both affected individuals were diagnosed with VWS. The Arg84Pro and Arg84Gly mutations challenge the dominant negative hypothesis, since this residue is predicted to contact the DNA but these mutations are only found in individuals with VWS. However, the residue Arg84 is located in the middle of helix 3 in IRF6. The amino acids proline and glycine are known to disrupt alpha helices ⁴⁹. Consequently, the Arg84Pro and Arg84Gly mutations are predicted to disrupt the secondary and/or tertiary structure of IRF6, whereas Arg84Cys and Arg84His would not. Thus, we hypothesize that the Arg84Pro and Arg84Gly alleles cause complete loss of IRF6 function and result in VWS through haploinsufficiency of IRF6. Further biochemical and molecular studies are needed to test this hypothesis.

Secondly, the splicing mutations at the 5' splice site of intron 3 and the protein truncation mutations in exon 9 also challenge the dominant negative hypothesis for mutations that cause PPS. To produce a dominant negative allele, a defective, but stable protein must be produced. We hypothesize that the splicing mutations at the 5' splice site of intron 3 activate a cryptic splice site that produces a mutant IRF6 allele that is stable, but unable to bind DNA. To test this hypothesis, we used Genscan ⁴⁰, a program that predicts splice sites, to model the effect of the four splicing mutations at intron 3. For the two mutations at the highly conserved position

+1 of intron 3, Genscan analysis predicts the loss of the endogenous splice site and the use of a cryptic splice site in the middle of exon 3 (Figure 3). Moreover, the cryptic splice site rejoins exon 4 in frame, but deletes 41 amino acids from the DNA binding region encoded in exon 3. Thus, these splicing mutations create a potentially stable protein with a mutation in the DNA binding domain and are consistent with the dominant negative model for PPS mutations. However, like the Arg84Cys and Arg84His mutations, these mutations do not always cause PPS, as one of these mutations was identified in a family with VWS. Also, for the other two splice mutations in intron 3 found in families with PPS, Genscan did not predict loss of the endogenous splice site (Figure 2).

Thirdly, protein truncation mutations in exon 9 were identified in families with either VWS or PPS. While the effect of these mutations on IRF6 function is not known, previous studies with the other members of the IRF family showed that the C terminus contains an auto-inhibitory domain ⁵⁰. Recently, we discovered that IRF6 binds to maspin, a tumor suppressor gene, and that the C terminus blocks this interaction ⁵¹. Additional molecular and biochemical studies are needed to understand the effects of the PPS-causing mutations in exon 9.

Source of exonic mutations in IRF6

To date, we identified *IRF6* exonic mutations in 249 unrelated families and represent 170 different disease-causing alleles in *IRF6*. Thus, 68% of exonic mutations in *IRF6* are private and represent a wide array of potential mutational mechanisms. However, we identified five apparent hotspots. Mutations in the codons for Arg6, Arg84, Arg250, Arg400 and Arg412 were identified in 6, 26, 11, 7 and 14 unrelated families, respectively. The codon sequence for each of these residues contains a CpG dinucleotide. In humans, approximately one third of germline mutations result from loss of the CpG dinucleotide, and 90% of those are consistent with a mutation mechanism of cytosine methylation and deamination ⁵². Similarly, in this report, 55 of 64 (86%) of the mutations in these CpG codons were consistent with the cytosine methylation/deamination mechanism.

This study shows that exonic mutations in *IRF6* are found in 68% of families with Van der Woude syndrome and nearly all families with popliteal pterygium syndrome. A few percent of families with VWS are caused by microdeletions of *IRF6*. Although the majority of the mutations are private, the distributions of exonic mutations suggest that future mutation searches should focus on exons 3, 4, 7 and 9 for families with VWS and on exons 3, 4 and 9 for families with PPS. In addition, since the distribution of mutations is consistent between geographically distinct populations, this multi-tier approach for mutation discovery should be widely applicable. Further, the distributions of mutations in the VWS and PPS collections suggest some limited guides for risk assessment and suggest a molecular rationale for clinical heterogeneity caused by genetic variation in *IRF6*.

Acknowledgments

The authors thank the families that participated in this study, Amy Mach and Jamie L'Heureux for administrative assistance with samples, Kristin Orr, Sally Santiago, Marla Johnson and Theresa Zucchero for technical assistance, and the following clinicians for participating in this study, Melissa Lees, Koen Devriendt, Geert Mortier, Lionel van Maldergem, Mieke Bouma, David Genevieve, Aurora Sanchez. This work was supported in part by NIH grants R01-DE013513 (BCS, MJD), R01-DE08559 (JCM) and P50-DE016215 (BCS, JCM, MLM, MJD) and by the Fonds Spéciaux de Recherche - Université catholique de Louvain, the Fonds national de la recherche scientifique (F.N.R.S.) (to M.V., a "Maître de recherches du F.N.R.S."). M. Ghassibé was supported by a fellowship from F.R.I.A. (Fonds pour la formation à la recherche dans l'industrie et dans l'agriculture).

Funding for this work was received from NIH, the Fonds Spéciaux de Recherche - Université catholique de Louvain, the Fonds national de la recherche scientifique and Fonds pour la formation à la recherche dans l'industrie et dans l'agriculture.

References

- 1. Cooper ME, Stone RA, Liu Y, Hu DN, Melnick M, Marazita ML. Descriptive epidemiology of nonsyndromic cleft lip with or without cleft palate in Shanghai, China, from 1980 to 1989. Cleft Palate Craniofac J May;2000 37(3):274–280. [PubMed: 10830807]
- 2. Murray JC, Daack-Hirsch S, Buetow KH, et al. Clinical and epidemiologic studies of cleft lip and palate in the Philippines. Cleft Palate-Craniofacial Journal 1997;34(1):7–10. [PubMed: 9003905]
- Tolarova MM, Cervenka J. Classification and birth prevalence of orofacial clefts. Am J Med Genet Jan 13;1998 75(2):126–137. [PubMed: 9450872]
- 4. Vanderas AP. Incidence of cleft lip, cleft palate, and cleft lip and palate among races: a review. Cleft Palate J 1987;24(3):216–225. [PubMed: 3308178]
- Jugessur A, Murray JC. Orofacial clefting: recent insights into a complex trait. Curr Opin Genet Dev Jun;2005 15(3):270–278. [PubMed: 15917202]
- Gorlin, RJ.; Cohen, AA.; Hennekam, RCM. Syndromes of the head and neck. Vol. 4th. Oxford: Oxford University Press; 2001.
- Cheney ML, Cheney WR, LeJeune FE Jr. Familial incidence of labial pits. Am J Otolaryngol 1986;7 (4):311–313. [PubMed: 3752391]
- Murray JC, Nishimura DY, Buetow KH, et al. Linkage of an autosomal dominant clefting syndrome (Van der Woude) to loci on chromosome 1q. Am J Hum Genet 1990;46(3):486–491. [PubMed: 2309700]
- 9. Bocian M, Walker AP. Lip pits and deletion 1q32-q41. Am J Med Genet 1987;26(2):437–443. [PubMed: 3812594]
- Sander A, Schmelzle R, Murray J. Evidence for a microdeletion in 1q32-41 involving the gene responsible for Van der Woude syndrome. Hum Mol Genet 1994;3(4):575–578. [PubMed: 8069301]
- 11. Schutte BC, Basart AM, Watanabe Y, et al. Microdeletions at chromosome bands 1q32-q41 as a cause of Van der Woude syndrome. Am J Med Genet 1999;84(2):145–150. [PubMed: 10323740]
- 12. Koillinen H, Wong FK, Rautio J, et al. Mapping of the second locus for the Van der Woude syndrome to chromosome 1p34. Eur J Hum Genet Oct;2001 9(10):747–752. [PubMed: 11781685]
- Sertie AL, Sousa AV, Steman S, Pavanello RC, Passos-Bueno MR. Linkage analysis in a large Brazilian family with van der Woude syndrome suggests the existence of a susceptibility locus for cleft palate at 17p11.2-11.1. Am J Hum Genet 1999;65(2):433–440. [PubMed: 10417286]
- 14. Kondo S, Schutte BC, Richardson RJ, et al. Mutations in IRF6 cause Van der Woude and popliteal pterygium syndromes. Nat Genet. Sep 3;2002 In press
- Lees MM, Winter RM, Malcolm S, Saal HM, Chitty L. Popliteal pterygium syndrome: a clinical study of three families and report of linkage to the Van der Woude syndrome locus on 1q32. J Med Genet 1999;36(12):888–892. [PubMed: 10593995]
- Brosch S, Baur M, Blin N, Reinert S, Pfister M. A novel IRF6 nonsense mutation (Y67X) in a German family with Van der Woude syndrome. Int J Mol Med Jul;2007 20(1):85–89. [PubMed: 17549393]
- de Medeiros F, Hansen L, Mawlad E, et al. A novel mutation in IRF6 resulting in VWS-PPS spectrum disorder with renal aplasia. Am J Med Genet A Jun 15;2008 146A(12):1605–1608. [PubMed: 18478600]
- Del Frari B, Amort M, Janecke AR, Schutte BC, Piza-Katzer H. Van-der-Woude Syndrome. Klin Padiatr Jan-Feb;2008 220(1):26–28. [PubMed: 18095255]
- Du X, Tang W, Tian W, et al. Novel IRF6 mutations in Chinese patients with Van der Woude syndrome. J Dent Res Oct;2006 85(10):937–940. [PubMed: 16998136]
- 20. Gatta V, Scarciolla O, Cupaioli M, Palka C, Chiesa PL, Stuppia L. A novel mutation of the IRF6 gene in an Italian family with Van der Woude syndrome. Mutat Res Mar 22;2004 547(12):49–53. [PubMed: 15013698]
- 21. Ghassibe M, Revencu N, Bayet B, et al. Six families with van der Woude and/or popliteal pterygium syndrome: all with a mutation in the IRF6 gene. J Med Genet Feb;2004 41(2):e15. [PubMed: 14757865]
- Item CB, Turhani D, Thurnher D, et al. Van Der Woude syndrome: variable penetrance of a novel mutation (p.Arg 84Gly) of the IRF6 gene in a Turkish family. Int J Mol Med Feb;2005 15(2):247– 251. [PubMed: 15647839]

- 23. Kantaputra PN, Limwongse C, Assawamakin A, et al. A novel mutation in IRF6 underlies hearing loss, pulp stones, large craniofacial sinuses, and limb anomalies in Van der Woude Syndrome patients. Oral Biosciences & Medicine 2004;4:277–282.
- 24. Kayano S, Kure S, Suzuki Y, et al. Novel IRF6 mutations in Japanese patients with Van der Woude syndrome: two missense mutations (R45Q and P396S) and a 17-kb deletion. J Hum Genet 2003;48 (12):622–628. [PubMed: 14618417]
- 25. Kim Y, Park JY, Lee TJ, Yoo HW. Identification of two novel mutations of IRF6 in Korean families affected with Van der Woude syndrome. Int J Mol Med Oct;2003 12(4):465–468. [PubMed: 12964020]
- 26. Matsuzawa N, Shimozato K, Natsume N, Niikawa N, Yoshiura K. A novel missense mutation in Van der Woude syndrome: usefulness of fingernail DNA for genetic analysis. J Dent Res Dec;2006 85 (12):1143–1146. [PubMed: 17122170]
- 27. Matsuzawa N, Yoshiura K, Machida J, et al. Two missense mutations in the IRF6 gene in two Japanese families with Van der Woude syndrome. Oral Surg Oral Med Oral Pathol Oral Radiol Endod Oct; 2004 98(4):414–417. [PubMed: 15472655]
- 28. Mostowska A, Wojcicki P, Kobus K, Trzeciak WH. Gene symbol: IRF6. Disease: Van der Woude syndrome. Hum Genet May;2005 116(6):534. [PubMed: 15988826]
- 29. Osoegawa K, Vessere GM, Utami KH, et al. Identification of novel candidate genes associated with cleft lip and palate using array comparative genomic hybridisation. J Med Genet Feb;2008 45(2):81–86. [PubMed: 17873121]
- 30. Peyrard-Janvid M, Pegelow M, Koillinen H, et al. Novel and de novo mutations of the IRF6 gene detected in patients with Van der Woude or popliteal pterygium syndrome. Eur J Hum Genet. Sep 14;2005
- 31. Shotelersuk V, Srichomthong C, Yoshiura K, Niikawa N. A novel mutation, 1234del(C), of the IRF6 in a Thai family with Van der Woude syndrome. Int J Mol Med Apr;2003 11(4):505–507. [PubMed: 12632105]
- 32. Tan EC, Lim EC, Yap SH, et al. Identification of IRF6 gene variants in three families with Van der Woude syndrome. Int J Mol Med Jun;2008 21(6):747–751. [PubMed: 18506368]
- Wang X, Liu J, Zhang H, et al. Novel mutations in the IRF6 gene for Van der Woude syndrome. Hum Genet Oct;2003 113(5):382–386. [PubMed: 12920575]
- 34. Ye XQ, Jin HX, Shi LS, et al. Identification of novel mutations of IRF6 gene in Chinese families with Van der Woude syndrome. Int J Mol Med Nov;2005 16(5):851–856. [PubMed: 16211254]
- 35. Zechi-Ceide RM, Guion-Almeida ML, de Oliveira Rodini ES, Jesus Oliveira NA, Passos-Bueno MR. Hydrocephalus and moderate mental retardation in a boy with Van der Woude phenotype and IRF6 gene mutation. Clin Dysmorphol Jul;2007 16(3):163–166. [PubMed: 17551329]
- Bertele G, Mercanti M, Gangini GN, Carletti V. A familiar case of popliteal pterygium syndrome. Minerva Stomatol Jun;2008 57(6):309–322. [PubMed: 18617879]
- Schutte BC, Bjork BC, Coppage KB, et al. A Preliminary Gene Map for the Van der Woude Syndrome Critical Region Derived from 900 kb of Genomic Sequence at 1q32-q41. Genome Res 2000;10(1): 81–94. [PubMed: 10645953]
- Ewing B, Hillier L, Wendl MC, Green P. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res Mar;1998 8(3):175–185. [PubMed: 9521921]
- 39. Cann HM, de Toma C, Cazes L, et al. A human genome diversity cell line panel. Science Apr 12;2002 296(5566):261–262. [PubMed: 11954565]
- Burge C, Karlin S. Prediction of complete gene structures in human genomic DNA. J Mol Biol 1997;268(1):78–94. [PubMed: 9149143]
- Blanton SH, Cortez A, Stal S, Mulliken JB, Finnell RH, Hecht JT. Variation in IRF6 contributes to nonsyndromic cleft lip and palate. Am J Med Genet A Sep 1;2005 137(3):259–262. [PubMed: 16096995]
- 42. Ghassibe M, Bayet B, Revencu N, et al. Interferon regulatory factor-6: a gene predisposing to isolated cleft lip with or without cleft palate in the Belgian population. Eur J Hum Genet Nov;2005 13(11): 1239–1242. [PubMed: 16132054]
- Park JW, McIntosh I, Hetmanski JB, et al. Association between IRF6 and nonsyndromic cleft lip with or without cleft palate in four populations. Genet Med Apr;2007 9(4):219–227. [PubMed: 17438386]

- 44. Scapoli L, Palmieri A, Martinelli M, et al. Strong evidence of linkage disequilibrium between polymorphisms at the IRF6 locus and nonsyndromic cleft lip with or without cleft palate, in an Italian population. Am J Hum Genet Jan;2005 76(1):180–183. [PubMed: 15558496]
- 45. Zucchero TM, Cooper ME, Maher BS, et al. Interferon regulatory factor 6 (IRF6) gene variants and the risk of isolated cleft lip or palate. N Engl J Med Aug 19;2004 351(8):769–780. [PubMed: 15317890]
- 46. Jugessur A, Rahimov F, Lie RT, et al. Genetic variants in IRF6 and the risk of facial clefts: singlemarker and haplotype-based analyses in a population-based case-control study of facial clefts in Norway. Genet Epidemiol Jul;2008 32(5):413–424. [PubMed: 18278815]
- 47. Richardson RJ, Dixon J, Malhotra S, et al. Irf6 is a key determinant of the keratinocyte proliferationdifferentiation switch. Nat Genet Nov;2006 38(11):1329–1334. [PubMed: 17041603]
- 48. Ingraham CR, Kinoshita A, Kondo S, et al. Abnormal skin, limb and craniofacial morphogenesis in mice deficient for interferon regulatory factor 6 (Irf6). Nat Genet Nov;2006 38(11):1335–1340. [PubMed: 17041601]
- Gunasekaran K, Nagarajaram HA, Ramakrishnan C, Balaram P. Stereochemical punctuation marks in protein structures: glycine and proline containing helix stop signals. J Mol Biol Feb 6;1998 275 (5):917–932. [PubMed: 9480777]
- 50. Qin BY, Liu C, Lam SS, et al. Crystal structure of IRF-3 reveals mechanism of autoinhibition and virus-induced phosphoactivation. Nat Struct Biol Nov;2003 10(11):913–921. [PubMed: 14555996]
- Bailey CM, Khalkhali-Ellis Z, Kondo S, et al. Mammary serine protease inhibitor (Maspin) binds directly to interferon regulatory factor 6: identification of a novel serpin partnership. J Biol Chem Oct 7;2005 280(40):34210–34217. [PubMed: 16049006]
- Cooper DN, Youssoufian H. The CpG dinucleotide and human genetic disease. Hum Genet Feb;1988 78(2):151–155. [PubMed: 3338800]

Figure 1.

Distribution of exonic mutations in *IRF6*. Each panel shows the genomic structure for *IRF6*. Exons (rectangles) are color coded as untranslated (gray), encode DNA binding domain (yellow), or encode the protein binding domain (green). The introns (space between exons) are not drawn to scale. The relative position of protein truncation mutations (red triangle), missense mutations (blue triangle) and splicing mutations (black triangle) is shown. Below each genomic structure is the distribution of missense (blue; includes in-frame deletions and insertions), protein truncation (red; includes nonsense, frameshift and large deletions), and splicing (white) mutations in each exon for each population. A) Mutations found in VWS collection from Brazil.

B) Mutations found in VWS collection from mixed geographic origin. C) Mutations found in PPS collection.

Figure 2.

Distribution of missense mutations in the DNA binding domain of IRF6. Mutations were identified in families with VWS (closed circles) and families with PPS (open circles). Amino acids predicted to directly contact DNA (underline) are based on crystal structure of IRF1 (see text). The expected number of mutations that contact DNA is based on the ratio of 17 amino acids that are predicted to contact the DNA (underlined, see text) out of 120 total amino acids in the DNA binding domain.

Allele name	DNA sequence EXON intron	Clinical Diagnosis	Genescan Prediction	
Consensus splice site	MAG gtragt		wt	
IRF6 i3	AAG gtaaag	Unaffected	wt	
<i>IRF6</i> i3 +1 g> <u>t</u>	AAG <u>t</u> taaag	PPS	cryptic	
<i>IRF6</i> i3 +1 g> <u>a</u>	AAG <u>a</u> taaag	VWS	Cryptic	
<i>IRF6</i> x3 174 G> <u>A</u>	AA <u>A</u> gtaaag	PPS	wt	
<i>IRF6</i> i3 +3 a> <u>c</u>	AAG gt <u>c</u> aag	PPS	wt	
DNA variant is underlin	ned.			
ATGGCCCCCAG	GTGGA TAAAGgt	aaag		
	IRF6 i3 (wild ty	pe)		ſ
0.0 1.0	2.0 3.0	4.0) 5.0	kb
ATCGCC CCCAC	taaat	aaad		
	IRF6 i3 ±1 a>t (PPS	associated		,
	<i>I</i> II 013 ∓1 g∠ <u>i</u> (i 1 5	associated)		
0.0 1.0	2.0 3.0	4.0) 5.0	kb

Figure 3.

Cryptic splice site in exon 3 revealed by computer modeling. The wild type (wt) and mutant sequences for the 5' splice site for intron 3 are shown below the consensus sequence. In the consensus, M represents A or C and r represents G or A. The panel below contains the output from GENESCAN and shows the cryptic splice site in exon 3 revealed by the mutation at the endogenous site.

Table 1 PCR primers used to amplify *IRF6* exons

Exon	Domain ^a	Direction ^b	Primer sequence (5'-3')	Product size (bp)
1	5'UTR	R	atctggaaaagggcgacagg	537
1		F	agaagcggaggagtagggtg	
2	5'UTR	R	aaagttatggaaacagcaac	382
2		F	ttattctagggcttctgagc	
3	DBD	R	catgcccccaaaagaggaat	560
3		F	ggctagagcatgaagtgtaa	
4	DBD	R	aggetttettgetttateca	512
4		F	gctctgggcaatgataggac	
5	Proline-rich	R	tgctttcagggcagtggtgg	425
5		F	caqtqaatctaqqqaqqtcc	
6	Proline-rich	R	tttacttcttccctggtgac	432
6		F	caqtqtttqqttcttqtcta	
7	SMIR	R	cttgacctcctccagactaa	650
7		F	agtggccttcctgaatgatg	
8	SMIR	R	gtttcagcaagactctaagg	436
8		F	aaagatggtatttgttgagt	
9	S/T-rich	R	gtcttcctcagggcctcttt	446
9		F	ggcatatttggatcacaaac	

		Sdd	
Table 2	Likelihood for identifying <i>IRF6</i> exonic mutation in VWS and PPS populations.	SMA	

NIH-PA Author Manuscript

NIH-PA Author Manuscript

	Reference	This study, 14, 21, 23, 16	This study.	
	fraction with mutation	% 16	100 % 97 %	
Sdd	Families with mutation	35	1 36	
	Families	36	1 37	
	fraction with mutation	67 %	70 % 68 %	
NWS	Families with mutation	130	77 207	
	Families	197	110 307	
	Geographic origin	Mixed [*]	Brazil	*

* In the "Mixed" collection, the previous studies account for 82 VWS and 14 PPS families with mutations. Exonic mutations in *IRF6* in six families are not included in this table because the clinical diagnosis was not specified.

Six previously identified deletions of *IRF6* are not included in this table.

_
_
_
_
_
_
~
-
_
_
-
<u> </u>
_
_
\sim
_
•
<
0
-
_
_
_
C ⁻
_
()
0
0
75
<u> </u>
_

IRF6 exonic mutations in unrelated families with VWS and PPS.

8 UIH-PA Author Manuscript

Ferreira de Lima et al.

Diagnosis ^a	Mutation	nt^b	nt change ^c	aa change ^d	exon ^e	Origin ^f	Citation
NWS	truncation	-219	C>T	02	1	Brazil	This study
NWS	truncation	-151	G>A	07	1	Brazil	This study
NWS	truncation	-151	G>A	03	1	N Eur	This study
VWS	truncation	-151	G>A	0?	1	N Eur	This study
NS	truncation	-48	A>T	0?	2	NS	This study
NWS	truncation	-48	A>T	05	5	N Eur	14
SWV	truncation	-19	C>A	03	0	NS.	This study
SWV	truncation	- ,	A>G	0.5	m (Brazil	This study
SWV SVXV	truncation	n v	E-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A	0? Ala7Val	n u	N Eur N Fur	1 - 1 4 - 1
SWIV	missense	ر ۱۲	52	Arac Val	، د	Brazil	14
SWV	missense	16	I S	AracCvs	о (г	Brazil	This study
SWV	truncation	16	del C	Arg6AlafsX3	n m	NS	This study
NWS	truncation	16_{-17}	ins C	Arg6ProfsX13	ŝ	N Eur	This study
VWS	missense	17	G>T	Arg6Leu	ŝ	N Eur	This study
NWS	missense	17	G>C	Arg6Pro	ŝ	N Eur	This study
SN	missense	26	G>A	Arg9Gln	m (SS 2	This study
VWS VWV	missense	26 35	A 5 F 7	Arg9GIn D:0131 ou	<i>נ</i> ס פי	Brazil N E	This study This study
S/M/A	missense	00 20		Trn13Cve	n 6	Brazil	This study
SWV	truncation	43 44	ins ATAG	Val15AspfsX5		NS	This study
NWS	missense	47	C>T	Ala16Val	n co	Belgium	21
NWS	truncation	49_64	del	Gln17SerfsX23	ŝ	N Eur	14
VWS	missense	50	A>G	Gln17Arg	ŝ	Brazil	This study
NWS	missense	52	G>A	Val18Met	ŝ	N Eur	14
VWS	missense	53	1×C	Val18Ala	ŝ	N Eur	
SWV	missense	56	A>G	Asp19Glv	т г	Germany	This study
SWV	missense	80	A C	Ser 20ASI	γ, (SN -	I his study
SHA	missense	C0 00		Teu22Pro T2V	γ) (Y	belgium N E	17
CW V SVIIV	truncation	69	A L		n c	N EUT	This attract
SWV	missense	1/			n c	Doloinm	This study
SWV	missense	4/ 02	145		'nα	beigium Drogil	This study
S M A	IIIISSEIISE truncation	00	T <d< th=""><th></th><th>0 0</th><th>N Fur</th><th>This study</th></d<>		0 0	N Fur	This study
SWV	missense	101	A>C	Lys34Thr	n en	NS	This study
VWS	missense	104	G>C	Arg35Pro	ŝ	Brazil	This study
VWS	missense	107	T>C	Phe36Ser	ŝ	N Eur	This study
VWS	missense	115	C>G	Pro39Ala	ŝ	N Eur	14
VWS	truncation	136	del C	His46llefsX15	ŝ	N Eur	This study
SWV	truncation	401 121	G>I	Glu52X	<i>.</i> , 0	N Eur	This study
SWV	Iruncation	101	A dub A		γc	Dermany	This study
SAG	nussense enlicina	10/	1>C G≻∆ (80% >8%)		ი ო	DIAZII	This study
STI	spiruug missensea/snliving	175		 	ש ר	Brazil	This study
Sdd	missense	178	T>G	Trp60Glv	1 4	N Eur	1.1115 study 14
NWS	missense	180	G>T	Trp60Cys	4	Brazil	This study
VWS	missense	181	G>A	Ala61Thr	4	NS	This study
VWS	missense	182	C>G	Ala61Gly	4	N Eur	14
VWS	missense	191	T>C	Thr64Ile	4	Belgium	21
Sdd	missense	197	A>C	Lys66/Ihr	4 -	N Eur	. 14
VWS	missense	19/_199	delinsGGG	Lysob_I yrb/delinsArgAsp T67C	4 -	Delcium	This study
VWS	Truncation	201	C>A	TyrofX	t 4	Germany	11115 Study 16

_
_
_
-
0
~
-
~
-
C
=
<u> </u>
\sim
_
-
<
_
ູ
~
-
<u> </u>
10
0
0
~

īp

NIH-PA Author Manuscript

NIH-PA Author Manuscript

14
14
14
14
14
14
14
15 study
7his study This study This study This study This study 14 This study Citation This study Origin^f exon^e 444 44 444444444444 Gln68X Glv70Arg Glv70Arg Pr074Leu Pr074Leu Pr074Leu Pr074Leu Pr074Arg Asp75_Lv880dup Pr076Ser Pr076Ser Gln82Lv8 Gln82Lv8 Gln82Lv8 aa change^d Arg84Cys Arg84Cys Arg84Cys Arg84Cys Arg84Cys Arg84Cys Arg84Cys Arg84Cys Arg84Cvs Arg84Cvs Arg84Cvs Arg84Cvs Arg84Cvs Arg84His Arg84His Arg84His Arg84His Arg84His Arg84His Arg84His Arg84Pro Arg84Pro Leu87Phe Leu87Phe Leu87Phe Asn88His Asn89His Asn88His Asn89His Asn80His Asn Glu92Lys Glu92Lys Glu92Lys Glu92X Glu92X Glu92X Leu95Pro Arg84Cv5 Arg84Cys Arg84His Gln68X Arg84Cys Arg84Cv Arg84Cv Arg84Cv Arg84His nt change^c nt^p missense missense missense missense duplication missense missense Mutation truncation cruncation missense runcatior cruncation missense missense missense nissense missense nissense missense Diagnosis^a

Genet Med. Author manuscript; available in PMC 2010 April 1.

missense

~
~
_
T
-
_
J
$\mathbf{\Sigma}$
~
-
<u> </u>
-
<u> </u>
0
<u> </u>
· •
~
5
01
<u> </u>
_
~
5
S
0
-
0
+

Citation	14	This study	71	17 E		TILIS SIUCE	This study	This study	This study	This study	11115 SILUY	14	This study	This study	73	C2 . E	I his study	This study	14	This study		This study	This study	14	14	Ē	I mis study	This study	This study	This chidw	This study	This study	This study	This study	11	± .	This study	14	This study	This study	TIIIS Study	This study	This study	14	This study	This study	I his study	This study	I mis study	This study	14	This study	This chide	11115 Study	17	14	21	This study	11113 31449	4	This study	14	14	14				
Origin ^f	N Eur	Brazil	Doloum	N F	D-1-Cu	Dergium	Brazil	Brazil	N Eur	SN		N Eur	N Eur	N Fur	Theiland		Germany	N Eur	N Eur	Brazi			Belgium	N Eur	N Fur		Germany	Brazil	Brazil	N Fine		Brazil	N Eur	N Fur	N E		N Eur	N Eur	N Fur	Line d	DIAZII	Brazil	N Eur	N Eur	Brazil	112010	Brazil	N Eur	Belgium	NEur	Belainm	Decigination	Brazil	Brazil	N Eur	N Eur	NEW		Beignum	N Eur	Belgium	Brazil	N E	IN EUF	Brazil	N Eur	N Eur	N Eur
exon ^e	4	. 4		+ -	+ -	4 .	4	4	4		t -	4	4	4	. 4	4 r	0	S	5	, v) I	n '	9	9	9		D	9	9	9	0	9	9	9	2		9	9	9	F	- 1		7	7	7	- ٢	_	L	7	7	L L	- r	_	7	7	7	- F	- [7	7	L	- r	_	7	7	7	L
aa change ^d	Asp98His	A end8Glv	Thurlooki				TyrIIICys	Tyr111Cys	Tvr111Cvs	Gh118Y		Gin118X	Gln120Lys	Gln120X	Cluttoniete V		Asp135_Glu136LeutsX31	Glu143X	His156ProfsX39	Wall 57GW		L'he losseris	Ala174tsX47	Cys186X	Trv192X	TT 100X	11Y192A	Lys194AsnfsX23	Pro197Ser	Clarold A rofe V 19	OIII204AIgisA10	Gln204X	Gln204X	Gln204X	Contraction Contraction		1ry21/X	Ser219fsX1	Pro2221 ett	Clu726V	VOCZULO	Met241IletsX19	Gly248Ala	Glv248fsX10	$\Delta ra250Glv$		Arg220UJV	Arg250Gly	Arg250X	Arg250X	A"6750Y		Arg250UGIn	Arg250Gln	Arg250Gln	Aro250Gln	4.00100 v		OTAL CZUBL	Tyr253X	Pro258Ser	Gln767X		0CVSIC07n9T	Pro268Leu	Gln273Arg	His281LeufsX20	Phe290_Asp296delinsLeu
nt change ^c	G>C			Ċ	- E	A>I	A>G	A>G	A>G	Ē	- E	<u>S</u>	C>A	T<)	104	nei	III SUI	G>T	dun C				del	C>A	G>A		C>A	dup	-F-C			C>I	C>T	Ē			G>A	delins TA	T~	· E /	۲ <u>م</u> ۲.	IIIS C	G>C	del	ن ک		C>C	C>G	C>T	C>T	E		C>A	G>A	G>A	G>A		¢ ¢		T>A	C>T	E		ael C	C>T	A>G	del A	del/ins A
\mathbf{n}^{b}	292	203	000	000	000	070	332	332	332	357	400	352	358	358	250 368	000 000	405_406	427	466	027		494	522_525	558	576		0/0	554 579	589	610	010	610	610	610	010		100	657_665	665	205	00/	122_123	743	744 748	748		/48	748	748	748	877		/49	749	749	749	072	1 - L	<u>cc/</u>	759	775	784		C6/	803	818	842	870_897
Mutation	missense	missense					missense	missense	missense	truncation		truncation	missense	truncation	termostion	UTURCAUOR	truncation	truncation	truncation	miccanca	ACHOCCIIII	uruncation	truncation	truncation	truncation		truncation	truncation	missense	termontion	uruncauon	truncation	truncation	truncation	turundu turundi		truncation	truncation	missense	turnootion	uruncaulon	truncation	missense	truncation	missense		missense	missense	truncation	truncation	truncation		missense	missense	missense	missense			missense	truncation	missense	truncation	ti uncation	truncation	missense	missense	truncation	deletion
Diagnosis ^a	VWS	NWA	SAMA S	01111	01111	C M A	<w>></w>	SWV	SWV	S/M/A	0 M V	SWV	VWS	NWS	S/M/A	C VV V	SWV	NWS	VWS	S/M/A	0.111	SWY	SWV	VWS	NWS	01111	SWA	VWS	NWS	SAMA	C M A	VWS	VWS	NWA		CW V	SHA	NWS	NWS	SIMA	SW >	SWY	NWS	NWS	NWA	01111	CW >	VWS	NWS	NWS	NWV	C IIII	SWA	SWV	NWS	NWS	SAMA	01111	SWY	VWS	NWS	SWV	01111	SWA	SWV	NWS	VWS	NWS

Genet Med. Author manuscript; available in PMC 2010 April 1.

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

This study 14 14 14 14 14 This study This study This study This study This study This study 14 This study Citation 4 44 Origin^f Brazil N Eur N Eur N Eur N Eur Brazil Brazil Brazil Brazil NS NS N Eur N Eur Brazil Brazil Brazil Brazil Brazil Brazil Brazil exon^e Arg400Try Arg400Try Arg400Try Arg400Try Arg400GIn Glu404_Gly408delAsp Ser407LeufsX28 Arg412X A Leu294Pro Val297IIe Leu302Pro Gin318Pro Gin318Pro Gin318Pro Gin318Pro Gin318Pro Gin318Pro Cvs319X Lvs320Glu Lvs320Glu Lvs320Glu Lvs320Glu Lvs320Glu Lvs320Glu Lv322Cvs Giv325Glu Giv325Glu Be337isx22 Leu345Pro Cvs374Pre Ile363Ser Phe369LeutisX27 Tvr372X Leu375Cru Gin393X Tvr379X Lvs388Glu Gin393X Val397Ala aa change^d Arg400Try Arg400Trv Arg400Try nt change^c 1198 1199 1212_126 1219 1219 1234 1234 nt^b 6 198 198 198 198 198 234 **Fruncation** Mutation missense missense missense missense missense truncation truncation missense missense missense missense missense missense missense missense missense runcation missense cruncation truncation truncation truncation runcation missense cruncation missense missense missense truncation truncation truncation truncation truncation truncation truncation missense missense missense missense truncatior truncatior cruncation truncation missense runcation Diagnosis^a VWS VWS VWS VWS VWS VWS VWS SWV SWV SWV SWV VWS VWS /WS SWV SWV SWV /WS SWV SWV

Genet Med. Author manuscript; available in PMC 2010 April 1.

Ferreira de Lima et al.

runcation

NIH-PA Author Manuscript

NIH-PA Author Manuscript

Diagnosis ^a	Mutation	nt^b	nt change ^c	aa change ^d	exon ^e	Origin ^f	Citation
NWS	truncation	1234	C>T	Arg412X	6	N Eur	This study
VWS	missense	1262	T>G	Leu421Arg	6	N Eur	This study
NWS	truncation	1264	C>T	Gln422X	6	Brazil	This study
VWS	missense	1268	T>C	lle423Thr	6	NS	This study
Sdd	missense	1288	G>A	Asp430Asn	6	N Eur	14
PPS	truncation	1291_13tel/ins C	3TAGAGGCTAAACTCCCTGGAA	Asn431ValfsX70	6	N Eur	This study
VWS	missense	1296_97	delins TT	Val433Phe	6	Germany	This study
NWS	truncation	1303_{1307}	del	Gln435GlufsX64	6	Brazil	This study
VWS	truncation	1327	del C	Leu443PhefsX46	6	N Eur	This study
NWS	truncation	$1357_{-}1368$	del	QPTP Gln453fsX43	6	N Eur	This study
NWS	truncation	1368	dup C	Ser457GlnfsX43	6	N Eur	This study
VWS	truncation	$1369_{-}1370$	ins TGCAGCCCAT	Ser457MetfsX27	6	N Eur	This study
VWS	truncation	1372	dup A	Met458AsnfsX43	6	Brazil	This study
VWS	truncation	1385	del C	Pro462LeufsX27	6	Brazil	This study
VWS	truncation	1385	dup C	Pro462fsX39	6	N Eur	14
VWS	truncation	1386_1387	ins C P	Pro462_Ala463ArgfsX38	6	N Eur	This study
NS	splicing	-2	A>G (100%>0%)	p.?	IVS2	SN	This study
VWS	splicing	-2	A>G (100%>0%)	p.?	IVS2	Brazil	This study
VWS	splicing	-2	A>G (100%>0%)	p.?	IVS2	Brazil	This study
VWS	splicing	-	G>A (100%>0%)	p.?	IVS3	Brazil	This study
VWS	splicing		G>T (100%>0%)	p.?	IVS3	N Eur	This study
PPS	splicing		G>T (100%>0%)	Val18_Lys58del	IVS3	Belgium	This study
VWS	splicing		G>A (100%>0%)	Val18_Lys58del	IVS3	Belgium	This study
PPS	splicing	ŝ	A>C (71%>2%)	Val18_Lys58del	IVS3	N Eur	This study
VWS	splicing	ċ	T>G (22%>5%)	p.?	IVS6	Brazil	This study
NWS	splicing		G>A (100%>0%)	p.?	IVS6	Brazil	This study
NWS	splicing	ώ	C>G (55%>1%)	p.?	IVS7	Brazil	This study
VWS	splicing	-2	A>G (100%>0%)	p.?	IVS7	Brazil	This study

 a In six cases, the phenotype was not specified (NS). Table does not include six cases with microdeletions of *IRF6* (see text).

b Nucleotide (nt) counted from start codon if mutation is located in an exon or counted from nearest exon if located in an intron. Reference sequences for cDNA and genomic DNA were NM_006147.2 and RP3-434014 (Genbank AL022398), respectively.

amino acids beyond the mutation (fxXnumber). Residues located in the DNA binding domain (yellow) or protein binding domain (green) are indicated. For splicing mutations, the values represent the ^c All protein and exon splicing changes are deduced and not experimentally verified. Reference protein sequence is NP_006138. Frameshift mutations (fs) are predicted to add the indicated number of change in probability of finding the indicated nucleotide at a splice junction (Zhang et al., 1998). Predicted protein for splicing mutation is based on computational analysis shown in Figure 3.

 $d_{\rm Exon}$ and intron (IVS) numbering are based on ENSG0000117595 (www.ensembl.org).

e Geographic origins of pedigrees include the indicated countries, or Northern Europe (N Eur) if proband is white, but country is not known or origins not specified (NS).

Table 4

DNA variants in IRF6 that do not cause VWS or PPS.

Location ^{<i>a</i>}	SNP	amino acid	MAF ^b (%)	Sequence
promoter	-156 G>A		35	AGGGTGGGAC R CTGGACGGAC
promoter	-134 G>C		36	CCGCTGGGCC S GGCAGCCCAG
promoter	-50 T>A		18	CTGGGAGGCG W GGCCGGGCGG
promoter	-39 A>T		18	GGCCGGGCGG W TGCGAAGGCT
, 1i	-4 A>G		2	TTTTCTCCAT R CAGAATCTTT
2e	-73 T>C		46	CCATACAGAA Y CTTTGAGCGG
2i	+102 T>C		1	CCTTTAGTTG Y CTTGTTTAAA
2i	-73 G>C		2	AGATGGGAAA S GTGGCTGGGA
3e	9 C>T	L3L	3	TCATGGCCCTYCACCCCCGCA
3e	55 G>A	D19N	1	GGCCCAGGTG R ATAGTGGCCT
3i	+36 TT>T		24	$CCTTTCTGGA\mathbf{T}TTTTTTTTTTT$
3i	-138 G>C		12	TGATGGGGCA S TCATGCAAAA
3i	-84 GTGT>GT		12	GTGTGTGTGTGT GT TTGTGTCTA
3i	-5 C>G		49	GTTTCTTGTT S TCAGGCCTGG
4e	181 C>G	A61P	5	TCAGGCCTGG S CTGTAGAGAC
4e	339 G>T	V113V	2	TATATCAAGT K TGTGACATCC
4i	-174 A>G		1	AGGTCCTTCC R TGAGAGAAGT
4i	-155 C>T		9	GTGTTCATTC Y CTTGATTCTC
4i	-106 C>T		1	TGTACTGAAC Y TGAGGAGCCT
4i	-102 G>A		1	CTGAACCTGA R GAGCCTCTGG
5e	459 G>T	\$153\$	25	TGGATCAGTC K CAGCACCATG
5i	+55 A>C		32	AGGAGTTTTG M CCTTGGGACT
6	+27 C>G		40	CTTTCTTGCT S GGTCTTCTGC
7e	671 C>G	T224S	2	CTTGCAGTGA S TGACCTGGAC
7e	711 C>T	Y237Y	1	GGAAGGAGTA Y GGGCAGACCA
7e	726 C>T	T242T	2	AGACCATGAC Y GTGAGCAACC
7e	820 G>A	V274I	13	CCTGGAGCAG R TCAAATTCCC
7i	+37 C>T		21	GTGGGAATCA Y TCTCTGGAAG
7i	-75 A>T		47	TGTAATGGAC W GCATAAAAGA
8e	1153 T>C	L385L	5	TGGGAAACCAYTGGAAAGGAA
8i	+34 T>C	10001	2	CAACTCTTCAYCTTTTTGCCA
8i	+42 A>C		1	CATCTTTTTG M CAATGCTTAA
8i	+93 G>T		3	GCATCCATCA K CCCATGTAGG
9e	1608 C>T		2	TTCAAATCTC Y TAATGGTAGT
9e	1692 A>T		4	CTTTGCTTCC A ATGTGACCTT
9e	1703 G>A		2	ATGTGACCTT R AACAAGTCCT
9e	1751 A>T		5	TTATAAAGTG W AGAGATTGGA
9e	1757 T>C		1	AGTGAAGAGAYTGGAGTAGTG
9e	1855 A>G		11	ATCCTTCTGCRTTGTTCTTGT
9e	1922 C>T		1	TGTCCAGGAT Y GAGCTCTGTT
9e	1962 C>T		4	AGTAAGCTGGYTCCCTGATGG
	1702 C/1		7	

 a Mutations are located upstream of exon 1 (promoter) or in the indicated intron (i) and exon (e).

 $^b\mathrm{Minor}$ Allele Frequency (MAF) is based on CEPH diversity panel.

Promoter intron UTR synonymous non-synonym	ious
--	------

_
_
_
_
_
_
U
_
-
-
_
_
-
_
_
0
0
_
_
_
<
-
0
~
_
_
-
<u> </u>
1.0
(n)
~
0
~
_
- · ·
0

Distribution of mutations in IRF6 exons in VWS and PPS collections.

I I						***	**** EXON	********* SI	*					
VWS Total A 4 2 36 54 5 13 44 15 34 207 23 <0001			1	7	ę	4	w	9	٢	×	6	Row Total ^a	Row Average ^b	p-value ^c
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	VWS Total	A	4	2	36	54	5	13	44	15	34	207	23	<0.0001
VWS MissC002242122981311713 0001</th VWS SpliceD003300222981311713VWS SpliceD003330022201010.45PS-TotalE0001010143640.0001PPS-TruncF000010135<1	VWS Trunc	В	4	2	11	6	4	11	13	5	21	80	6	0.05
VWS SpliceD0033002201010.45PPS-TotalE0042601014364<0001	VWS Miss	U	0	0	22	42	1	7	29	8	13	117	13	< 0.0001
PPS-Total E 0 0 4 26 0 1 0 1 4 36 4 <0001 PPS-Total F 0 0 0 1 0 1 36 4 <00001	VWS Splice	D	0	0	ю	с	0	0	2	2	0	10		0.45
PPS-Truc F 0 0 0 0 1 3 5 ≤ 1 0.73 PPS-Miss G 0 0 1 26 0 0 1 3 5 ≤ 1 0.73 PPS-Miss G 0 0 1 26 0 0 1 28 4 <00001	PPS-Total	ш	0	0	4	26	0	1	0	1	4	36	4	< 0.0001
PPS-Miss G 0 0 1 26 0 0 0 1 28 4 <0001 PPS-Splice H 0 0 3 0 0 0 0 0 0 0 3 ≤1 0.79	PPS-Trunc	Ц	0	0	0	0	0	1	0	1	ю	5	V	0.73
PPS-Splice H 0 0 3 0 0 0 0 0 0 0 0 3 ≤1 0.79	PPS-Miss	IJ	0	0	1	26	0	0	0	0	1	28	4	< 0.0001
	PPS-Splice	Н	0	0	б	0	0	0	0	0	0	3	VI	0.79
	Total numl	ber of mutat	tions in eacl	h row.										
"Total number of mutations in each row.	h													
Total number of mutations in each row. b	Number of	mutations 6	expected in	each exon if	distributed r.	andomly.								

Ferreira de Lima et al.

 $^{c}_{\rm p-value}$ comparing observed to expected distribution of mutations in each exon.