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SUMMARY
The establishment of pregnancy requires an intimate physical interaction and a molecular dialogue
between the conceptus and the maternal reproductive tract that commences at implantation and
continues until the placenta is formed and fully functional. Failure of the regulatory processes that
ensure the fidelity of this relationship can precipitate a catastrophic pregnancy loss. One of the earliest
identified molecular mediators of blastocyst implantation is heparin-binding epidermal growth factor
(EGF)-like growth factor (HBEGF), which signals between the endometrium and implanting
trophoblast cells to synchronize their corresponding developmental programs. HBEGF expression
by trophoblast cells of the developing placenta appears to regulate extravillous differentiation and
provide cytoprotection in a sometimes-hostile environment. This versatile member of the EGF
signaling system will be examined in light of its associations with key events during early pregnancy.

INTRODUCTION
Each month, the uterus prepares to receive a viable blastocyst under the direction of estrogen
(E2) and progesterone (P4). The sex steroid hormones induce many changes in the
endometrium that enhance its receptivity to an implanting blastocyst (Dey et al., 2004). Among
these changes is the expression of secreted and membrane-bound signaling factors that
influence embryo adhesion necessary for attachment to the luminal lining and later for invasion
into the decidualized stroma. The embryo is also a source of several important factors, some
of which are produced to augment the preparation of the endometrium. The concurrent
developmental programs of the embryo and endometrium influence each other to synchronize
their progression and produce an optimal environment for implantation. One critical factor that
appears around the time of implantation is heparin-binding epidermal growth factor (EGF)-
like growth factor (HBEGF). Evidence supporting a central role for HBEGF during
implantation in mice is abundant and was recently reviewed (Lim and Dey, 2009). The cellular
processes and regulatory factors that mediate the developmental program during blastocyst
implantation have also been reviewed previously (Armant et al., 2000; Armant, 2005). The
focus of this article is on the many timely influences of HBEGF and the EGF signaling system
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upon trophoblast cells in the peri- and post-implantation environment as pregnancy is
established.

HBEGF and other members of the EGF family are synthesized as transmembrane proteins
(e.g., proHBEGF) that can signal to their receptors on adjacent cells (juxtacrine) or become
secreted through the shedding activity of metallo-proteinases that cleave the extracellular
domain (Riese and Stern, 1998). The secreted form (e.g., sHBEGF) is free to bind receptors
on the same cell (autocrine) or distant cells (paracrine). Processing of proHBEGF to sHBEGF
and subsequent signaling through its receptors is illustrated in Figure 1. EGF family growth
factors, operating through four HER/ErbB receptor tyrosine kinases, induce receptor
dimerization and autophosphorylation, leading to downstream signaling that involves an
extensive array of pathways (Holbro and Hynes, 2004). HBEGF requires heparan sulfate
proteoglycan (HSPG) as a cofactor for binding to its receptors, HER1 (a.k.a. EGF receptor)
and HER4. Although HBEGF does not bind directly to HER2 or HER3, they can participate
in downstream signaling through heterodimerization with other ligated HER proteins.

HBEGF performs a variety of functions in different cell systems (Raab and Klagsbrun,
1997). In its transmembrane form, proHBEGF appears to bind HER1 orHER4 of adjacent cells,
participating in cell attachment or eliciting further signaling (Higashiyama et al., 1995; Raab
et al., 1996). HBEGF induces chemotaxis and mitosis of NIH 3T3 cells through HER1 signaling
(Elenius et al., 1997). Using a variety of carcinoma cell lines, it was shown that p53 expression
induced by DNA damage subsequently upregulates HBEGF protein, which utilizes both MEK/
ERK and PI3K/Akt pathways to inhibit cellular apoptosis (Fang et al., 2001). It also inhibits
apoptosis in ovarian cancer, breast cancer, gastric cancer, melanoma, and glioblastoma cells
by activating HER1 and downstream ERK (Yotsumoto et al., 2008). Many of the diverse
cellular activities regulated by HBEGF transpire in the course of embryonic development as
the placental tissues emerge.

EARLY CYCLICAL REGULATION OF HBEGF IN THE ENDOMETRIUM
Rodents

It was first determined that HBEGF plays a central role in the establishment of pregnancy in
experiments conducted using mice and rats. HBEGF expression is regulated in the mouse
endometrium by leukemia inhibitory factor (LIF) (Song et al., 2000), a cytokine required for
implantation (Stewart et al., 1992), as well as by P4 and E2 (Wang et al., 1994). LIF is necessary
for the expression of HBEGF, amphiregulin, and epiregulin mRNA in the luminal epithelium
of the mouse uterus surrounding a newly implanted blastocyst, as evaluated in LIF−/− mice
(Song et al., 2000). In both mice and rats, E2 upregulates HBEGF mRNA and protein levels
in the luminal epithelium, whereas P4 and E2 together upregulate its expression in the stroma
(Wang et al., 1994; Zhang et al., 1994a,b). This indicates that HBEGF mRNA is transcribed
in vivo under conditions that normally stimulate cellular proliferation in the endometrium
(Zhang et al., 1994b). It is important to note, however, that this hormonal regulation of HBEGF
in the nonpregnant uterus does not necessarily trigger its expression during pregnancy, but may
prepare the endometrium to respond to additional signals that induce HBEGF expression in
specific cell populations.

The regulation of HBEGF in stromal cells suggests that it has a unique role in preparing the
uterus for decidualization, in which stromal cells accumulate lipid and glycogen vacuoles and
increase their secretion of a fibrous matrix. Near the implanting blastocyst, there is an increase
in vascular permeability and the expression of genes such as Bmp-2, Fgf-2, and Wnt-4 (Farrar
and Carson, 1992; Abrahamsohn and Zorn, 1993; Paria et al., 2001). Beads coated with HBEGF
can induce local increases in vascular permeability and upregulate expression of Bmp-2,
suggesting that HBEGF participates in preparing the uterus to receive an implanting blastocyst
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(Paria et al., 2001). In cultured mouse stromal cells, HBEGF induces decidualization-like
changes, including the upregulation of cyclin D3 and the induction of stromal cell polyploidy
(Tan et al., 2004).

Humans and Nonhuman Primates
HBEGF appears to regulate the endometrial cycle in other mammals, including humans and
nonhuman primates. In contrast to rodents, in which sex steroids prepare the uterus for eventual
HBEGF expression, E2 and P4 stimulate HBEGF expression in human endometrium prior to
the appearance of a blastocyst (Lessey et al., 2002), and, in baboons, it is under the control of
P4 (Leach et al., 2001). As a result of its regulation by steroids, HBEGF accumulates in a
cyclical fashion. During the late proliferative phase until the early secretory phase of the
menstrual cycle in humans, HBEGF is predominantly localized in the stromal compartment of
the endometrium (Yoo et al., 1997; Leach et al., 1999; Chobotova et al., 2002a). Although
transcript is present in the luminal and glandular epithelia, protein levels do not appreciably
accumulate at this time (Yoo et al., 1997; Leach et al., 1999). These findings are consistent
with evidence from baboons where protein and message levels rise in the stroma during the
proliferative phase and decline by day 5 post-ovulation (Leach et al., 2001). The correlation
of HBEGF with E2 levels is strengthened by ex vivo evidence demonstrating that HBEGF
transcription is induced by E2 in stromal cells. Proliferative phase human stromal cells, when
treated with either E2 or P4, upregulate transcription of HBEGF, though if treated with both
steroids together, expression will appear in both stroma and the luminal epithelial cells (Lessey
et al., 2002). When interpreted in light of the menstrual cycle, these data suggest that the high
E2 levels prior to ovulation induce HBEGF expression in stromal cells.

In the early secretory phase, HBEGF expression is induced in the luminal epithelium by the
combination of E2 and P4 present at that time. Consistent with this idea, HBEGF expression
decreases in the stromal compartment during the early secretory phase, coincident with
decreasing E2 levels, but increases in both luminal and glandular epithelial cells (Yoo et al.,
1997; Leach et al., 1999). HBEGF mRNA levels peak in the luminal and glandular epithelia
during the mid-secretory phase, just prior to the “window of implantation” (Yoo et al., 1997).
Protein levels follow shortly thereafter, rising in the early secretory phase and peaking during
the window of implantation (Days 19–22) when the uterus is optimally receptive to a blastocyst
(Leach et al., 1999). Baboons display a similar pattern in which HBEGF protein levels are
highest 5–10 days post-ovulation (Leach et al., 2001). In rhesus monkeys, HBEGF increases
during the proliferative phase, peaks during the window of implantation, and declines thereafter
(Yue et al., 2000). Its maximal expression during the mid-secretory phase supports the view
that HBEGF is a key regulator of blastocyst implantation. Indeed, HBEGF is localized on the
apical surface of human luminal epithelial cells and on the surface of pino-podes when it is at
maximal levels in the human endometrium (Yoo et al., 1997; Stavreus-Evers et al., 2002).

The decidualization reaction in humans is completely under the control of the sex steroids
(Kodaman and Taylor, 2004), as opposed to rodents that have an estrous cycle that depends
upon cues from the embryo (Dey et al., 2004). The human menstrual cycle prepares the uterus
for implantation prior to arrival of an embryo, beginning in the early secretory phase, and
reaching prominence by the window of implantation. In humans, several stimuli that induce
stromal cell decidualization appear to do so through upregulation of HBEGF. If stromal cells
are treated with 8-Br-cAMP, which is known to artificially induce decidualization, the soluble
form of HBEGF is upregulated, as are its receptors, HER1 and HER4 (Chobotova et al.,
2005). HBEGF then induces stromal cell production of prolactin and insulin-like growth factor
binding protein-1, which naturally induce decidualization (Chobotova et al., 2005). Important
for decidualization, HBEGF stimulates stromal cell growth via HER1, though not through
HER4 (Chobotova et al., 2002a). The proliferative activity of HBEGF could be the result of
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its upregulation of IL-11 secretion (Karpovich et al., 2003). When stromal cells are treated
with transforming growth factor-β or tumor necrosis factor-α, HBEGF expression is induced,
which subsequently protects against apoptosis (Chobotova et al., 2005). Both the
transmembrane and soluble forms of HBEGF are induced by these treatments, suggesting that
HBEGF could be acting in an autocrine, paracrine or juxtacrine fashion as a survival factor
(Chobotova et al., 2005). In addition, tumor necrosis factor-α synergizes with HBEGF to
stimulate cell growth by upregulating EGFR expression in stromal cell membranes (Chobotova
et al., 2002a). More work is needed to determine which pathways are involved downstream of
HBEGF signaling in stromal cells.

Decidualization and cytoprotection are only two of the important roles for HBEGF in the
endometrium. HBEGF or conditioned medium from E2- and P4-treated stromal cells
upregulates integrin β3, LIF and HOXA10 mRNA in primary human luminal epithelial cells
(Liu et al., 2007) and β3 integrin mRNA in Ishikawa cells (Lessey et al., 2002). Each of the
corresponding proteins contributes to a uterine luminal epithelial surface that is receptive to
an implanting blastocyst. Integrin αvβ3 serves as an attachment factor for osteopontin (secreted
phosphoprotein 1, SPP1). SPP1 and αvβ3 are localized to both the glandular and luminal
epithelia during the mid- to late-secretory phase, presumably to mediate embryo attachment
(Brown et al., 1992; Apparao et al., 2001; von Wolff et al., 2001; Carson et al., 2002; Kao et
al., 2002; Nardo et al., 2002). LIF stimulates human embryo development to the blastocyst
stage (Sargent et al., 1998). In mice, LIF expression in the uterus is essential for embryo
implantation (Stewart et al., 1992), as is uterine expression of HOXA10 (Satokata et al.,
1995). HOXA10 message and protein are both found in the human endometrium most
abundantly during the mid-secretory phase (Taylor et al., 1998; Gui et al., 1999; Cermik et al.,
2001; Li et al., 2002). It has been suggested that HOXA10 induction by P4 during the window
of implantation leads to a block in the stromal cell cycle, facilitating decidualization (Qian et
al., 2005). Thus, the stimulatory effects of HBEGF upon stromal cells appear to be important
not only in decidualization, but also in the preparation of the uterine luminal epithelium for an
attaching blastocyst.

THE ROLE OF HBEGF AT IMPLANTATION
Rodents

Expression of HBEGF in the pregnant mouse uterus is necessary for the timely and successful
implantation of a blastocyst (Xie et al., 2007). Evidence suggests that HBEGF expression
during pregnancy is not induced by sex steroids, as in the nonpregnant uterus (Wang et al.,
1994), but by the presence of a blastocyst (Das et al., 1994b). HBEGF mRNA is expressed in
the uterine epithelium exclusively at the site of implantation 6–7 hr before attachment occurs,
followed by an accumulation of the protein during attachment (Das et al., 1994b). Physiological
interactions between the endometrium and blastocyst can be examined by experimentally
induced delayed implantation in ovariectomized mice treated with P4 (Yoshinaga and Adams,
1966). HBEGF expression does not occur during delayed implantation until the blastocyst is
activated by administration of E2 (Das et al., 1994b), suggesting that the blastocyst induces
HBEGF expression in the uterine luminal epithelium. Evidence from the hamster shows that
HBEGF mRNA is expressed throughout the apical surface of the luminal epithelium prior to
blastocyst hatching and implantation (Mishra and Seshagiri, 2000), but becomes localized to
the epithelium surrounding an implanted blastocyst late on day 4 of gestation (Wang et al.,
2002).

Several lines of investigation suggest that embryoderived HBEGF is at least one of the signals
that direct peri-implantation expression of HBEGF in the uterus. Indeed, mouse and hamster
blastocysts express HBEGF (Wang et al., 2002; Hamatani et al., 2004; Liu and Armant,
2004). Further confirmation comes from an experiment using beads coated with HBEGF that
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were placed in the uterus of pseudopregnant mice mated with vasectomized males (Paria et al.,
2001). In this experiment, the HBEGF specifically induced endogenous uterine HBEGF gene
expression, along with a local increase in vascular permeability and decidualization,
comparable to changes arising from the presence of a blastocyst (Paria et al., 2001).
Experiments using HBEGF-coated beads suggest that HBEGF produced by embryos induces
the molecular and physiological changes in the uterus. These findings support the hypothesis
that cross talk mediated temporally by HBEGF occurs between embryonic and maternal tissues
in rodents. Its expression in the early preimplantation blastocyst (Wang et al., 2002; Liu and
Armant, 2004) implies that trophectoderm-derived HBEGF could initially induce uterine
HBEGF expression, along with other decidualization-related changes. Subsequently, uterine
HBEGF secretion could advance trophoblast differentiation to an invasive phenotype and
augment implantation. Additional work is required to distinguish the contribution of HBEGF
from both of these sources and substantiate this hypothesis.

Evidence that HBEGF can advance the developmental program of the blastocyst is abundant
and suggests that reciprocal signaling could exist between the embryo and uterus. Exogenous
application of recombinant HBEGF matures rodent blastocysts in vitro, augmenting their
ability to hatch from the zona pellucida, and accelerating trophoblast differentiation and
adhesion competency (Das et al., 1994b; Wang et al., 2000). HBEGF increases the rate of
hamster blastocyst hatching, adhesion competency, and trophoblast outgrowth (Mishra and
Seshagiri, 2000; Seshagiri et al., 2002) and augments development of 8-cell rat embryos to the
blastocyst stage (Tamada et al., 1999). Intraluminal injection of HBEGF induces implantation
of rat embryos in a delayed implantation model (Tamada et al., 1999). Moreover, exposure of
mouse embryos to HBEGF during culture before transferring blastocysts to the uterus
significantly increases the number of implantation sites that eventually form (Lim et al.,
2006).

In mice, HER4 trafficks to the trophectoderm surface late on day 4 and is a prerequisite for
HBEGF signaling that accelerates trophoblast development (Wang et al., 2000). HBEGF can
then bind HER1 and HER4 (preferentially to HER4) on the surface of mouse blastocysts in an
HSPG-dependent fashion, leading to HER autophosphorylation (Das et al., 1994a; Paria et al.,
1999; Wang et al., 2000; Lim et al., 2006). Lysophosphatidic acid also accelerates trophoblast
outgrowth, and does so by transactivating HER1 and HER4 through Ca2+-dependent HBEGF
trafficking and shedding (Liu and Armant, 2004). Cross-talk with other signaling pathways
that advance blastocyst differentiation could similarly target HBEGF shedding to transactivate
HER kinases. HBEGF signaling accelerates mouse blastocyst differentiation to an adhesive
phenotype via Ca2+ influx through N-type voltage-gated channels and activation of protein
kinase C and calmodulin (Wang et al., 2000). This signaling pathway induces trafficking of
the integrin α5β1 subunit to the surface of trophectoderm cells where it mediates strong adhesion
to fibronectin (Wang et al., 2000; Armant, 2005).

In addition to its ability to advance hatching and trophoblast differentiation, proHBEGF could
directly mediate attachment of the trophectoderm to the luminal surface of the endometrium
(Fig. 2). Cells engineered to express proHBEGF bind to day 4 mouse blastocysts, but not to
delayed blastocysts (Raab et al., 1996), suggesting that proHBEGF, by binding to its receptors,
is capable of supporting the attachment reaction during implantation. Binding between these
cells and normal day 4 blastocysts is blocked by treating the blastocysts with heparinase or a
synthetic peptide corresponding to the HSPG-binding domain of HBEGF (Raab et al., 1996).
Furthermore, its potential binding partners HSPG, HER1 and HER4 are downregulated during
delayed implantation, and are coordinately upregulated with HBEGF during activation with
E2 (Paria et al., 1993,1999;Smith et al., 1997). These reports provide intriguing information
about the elusive mechanisms underlying diapause.
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Humans
In contrast to the rodent endometrium, which may require stimulation from an embryo for
HBEGF expression (Paria et al., 2001), HBEGF expression in the human endometrium
precedes the appearance of the blastocyst (Leach et al., 1999). As in other species, HBEGF
can simultaneously function during human implantation as an attachment factor and a growth
factor. In humans, HBEGF, HER1, and HER4 are present in peri-implantation blastocysts with
HER4 more prominent in the trophectoderm (Chobotova et al., 2002b). This suggests that
HBEGF present on the endometrium might bind its receptors on an apposed blastocyst, and
vice versa. Indeed, mature human blastocysts adhere to immobilized proHBEGF, an interaction
that is competitively inhibited by addition of sHBEGF (Chobotova et al., 2002b). Similar
results were obtained when human blastocysts were applied to a fixed monolayer of CHO cells
overexpressing proHBEGF. As a growth factor, HBEGF accelerates development of human
embryos to the blastocyst stage and their subsequent hatching from the zona pellucida (Martin
et al., 1998; Sargent et al., 1998). While LIF can only induce development of embryos up to
the blastocyst stage, HBEGF influences their maturation at least through the hatching stage
(Sargent et al., 1998). Although these studies are instructive, it remains to be demonstrated
whether these diverse functions of HBEGF are imperative in vivo.

THE ROLE OF HBEGF IN HUMAN PLACENTATION
HBEGF is present throughout the course of human gestation. It is abundant in 1st trimester
decidua, and in placental tissue during all three trimesters (Birdsall et al., 1996), though its
presence in the syncytiotrophoblast (STB) layer is weak in first trimester placentas (Yoo et al.,
1997). HBEGF is also expressed in villous and extravillous cytotrophoblast (CTB) from weeks
14–35 in normal placentas and those delivered preterm (Leach et al., 1999, 2002). Several
members of the EGF family and HER tyrosine kinases are expressed in placental trophoblast
populations (Hofmann et al., 1992; Tanimura et al., 2004), indicating that the EGF signaling
system is active during placental development.

Structure of the Early Placenta
As trophoblasts begin to invade into the endometrium, they differentiate along two paths
(Morrish et al., 1998; Hunkapiller and Fisher, 2008). CTBs are highly proliferative,
mononuclear cells that can fuse to form multinucleated STB cells. The STB initially invades
into the endometrium. At the periphery of the conceptus, the chorionic villi emerge with a
vascularized mesenchymal core and a stratified epithelium composed of CTB and an outer
layer of STB. The STB transports nutrients, gases, and waste products between the maternal
blood and fetal blood in capillaries of the chorionic villi. A few weeks after implantation,
anchoring villi appear at the surface of the endometrium (decidua basalis) as CTBs penetrate
through the STB layer and assemble into dense cellular columns. The most distal CTBs
differentiate to an extravillous phenotype that invades interstitially. Upon reaching uterine
blood vessels, the CTBs invade and remodel them, converting the spiral arteries into highly
dilated vessels (Pijnenborg et al., 1983). Endovascular trophoblast cells produce proteins
characteristic of endothelial cells in a process known as pseudovasculogenesis (Blankenship
and Enders, 1997; Zhou et al., 1997a,b). Invasive CTBs remodel the maternal spiral arteries
into permanently dilated structures as far as the first third of the myometrium (Pijnenborg et
al., 1983). Maternal blood is thus directed to the inter-villous space at increased flow rates
(Hunkapiller and Fisher, 2008). As trophoblasts differentiate to extravillous and endovascular
phenotypes, they undergo a process known as integrin-switching in which differentiation is
accompanied by changes in expression of adhesion molecules (Damsky et al., 1994; Zhou et
al., 1997a,b). Different integrins mediate attachment, invasion, and vascular remodeling. For
example, α6β4 is expressed by nonmotile villous CTBs, while invasive interstitial trophoblast
cells express α1β1. CTBs of the columns in anchoring villi express α5β1 with differing levels
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of the other two integrins, depending on whether they have a proximal or distal position within
the anchoring villi (Damsky et al., 1994). Primary CTB cultures from 1st trimester placentas
undergo integrin switching during extravillous differentiation on Matrigel basement
membrane, providing a useful experimental model.

Challenges of the Maternal Environment
Blastocyst implantation takes place in a uterine environment low in oxygen (~18 mm Hg or
2%), a condition that appreciably changes (~60 mm Hg or 8%) only after the 10th week of
gestation (Rodesch et al., 1992; Burton et al., 1999; Jauniaux et al., 2001; Burton and Jauniaux,
2004). Prior to the 10th week, invading endovascular trophoblasts occlude maternal blood
vessels, leaving the intervillous space relatively hypoxic. Human trophoblast cells are
programmed to function under these conditions, and, in fact, proliferate at higher rates when
cultured at 2% O2 (Genbacev et al., 1996, 1997). Furthermore, localized areas within the
placenta are temporarily exposed to oxygenated maternal blood during this early
developmental period, but they are able to survive these reoxygenation episodes (Hung and
Burton, 2006). Perhaps more profound is the extensive introduction of fully oxygenated
maternal blood that occurs around week 10 as trophoblastic plugs become dislodged. The
placental unit normally survives this insult and trophoblast invasion continues into the second
trimester (Norwitz et al., 2001). Elevation of oxygen leads to free radical production, and
evidence suggests that excessive oxidative stress may precipitate placental pathologies such
as preeclampsia (Hung and Burton, 2006). Free radicals are normally deactivated in the
placenta by xanthine dehydrogenase/xanthine oxidase, which is elevated in placentas during
labor, when there is an abundance of local oxygen fluctuations (Many and Roberts, 1997).
Clearly, mechanisms exist that protect trophoblasts from erratic oxygen levels.

HBEGF Mediates Trophoblast Motility and Survival
HBEGF stimulates trophoblast invasion from first trimester chorionic villous explants cultured
on Matrigel basement membrane, but has little effect on CTB cell proliferation (Leach et al.,
2004). As gestation progresses, there is a decrease in trophoblast capacity to differentiate along
the extravillous pathway (Librach et al., 1991; Damsky et al., 1994). EGF augments the
invasiveness of cultured first trimester CTBs, but with less effectiveness when CTBs are
obtained later in gestation (Bass et al., 1994). In HT-H cells (human embryonal carcinoma that
spontaneously differentiate into trophoblasts), induction of HER1 phosphorylation by EGF or
HBEGF requires derepression of the receptor by trophinin (Sugihara et al., 2007), a
transmembrane protein expressed in both human trophoblasts and the uterine epithelium that
is capable of mediating cell adhesion through homophilic binding (Suzuki et al., 1999). When
ligated, trophinin interaction with the cytoplasmic protein bystin is disrupted, releasing bystin
inhibition of HER autophosphorylation (Sugihara et al., 2007). Therefore, HBEGF can activate
HER downstream signaling only when opposing trophinin proteins are engaged by opposing
cells. The relationship between the trophinin and EGF signaling systems could be particularly
important for trophoblast invasive differentiation during blastocyst implantation.

Cell lines generated from immortalized human cytotrophoblasts have proven to be highly
useful for experimental investigation of implantation and early placentation. HTR-8/SVneo
cells are an immortalized human CTB cell line originating from first trimester villous explants
that characteristically secrete chorionic gonadotropin and become invasive in conjunction with
appropriate integrin switching and upregulation of HLA-G (Graham et al., 1993; Kilburn et
al., 2000). Therefore, HTR-8/SVneo cells closely resemble the primary CTB cells from which
they are derived, providing a robust experimental model. HBEGF, EGF, and TGFA each induce
integrin-switching in HTR-8/SVneo cells by signaling through HER1 or HER4 to increase the
α1 integrin subunit and decrease α6 (Leach et al., 2004). As a result, there is an increase in
trophoblast cell migration and invasive activity (Fig. 3). The extensive expression of HBEGF
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in trophoblasts, particularly within extravillous populations (Leach et al., 2002), could be vital
for their invasive activities during the establishment of pregnancy and physiological conversion
of spiral arteries. As gestation continues and trophoblasts loose their capacity for extravillous
differentiation (Damsky et al., 1994; Librach et al., 1991), the involvement of HBEGF and the
EGF signaling system in trophoblast invasion wanes (Bass et al., 1994). However, other roles
for HBEGF could come into play late in gestation.

In vivo, placentation initiates in a relatively low oxygen environment. Although CTBs
proliferate faster at low O2 concentrations, invasion is more aggressive at higher O2 (Genbacev
et al., 1996, 1997). Therefore, pseudovasculogenesis is initially moderate, and rapid CTB
growth leads to occlusion of the spiral arteries. It has not been clear how trophoblast tissues
survive during this hypoxic phase. We have observed that HBEGF, but not other EGF family
members, is upregulated in the HTR-8/SVneo CTB cell line when exposed to2% O2 (Armant
et al., 2006). Using specific antagonists of HBEGF signaling, it can be demonstrated that
HBEGF inhibits apoptosis due to hypoxia, but has no effect on proliferation rates enhanced by
low O2. This study also established that cytoprotection requires metalloproteinase shedding of
HBEGF and binding to either HER1 or HER4 (Fig. 4A). Quantification of mRNA and protein
levels indicated that HBEGF increases 100-fold through a post-transcriptional mechanism.
Antagonizing HBEGF signaling prevents its upregulation, suggesting that low levels of
resident proHBEGF are cleaved through activation of metalloproteinases during hypoxia to
initiate its synthesis downstream of HER kinases. A recent study suggests that ADAM-17 may
be responsible for initiating this signaling event in vivo (Hung et al., 2008). Further studies are
needed to determine which metalloproteinases are directly responsible for HBEGF shedding
in trophoblast cells. In contrast to 1st trimester CTBs, trophoblasts in villous explants from
term placentas do not elevate HBEGF levels in response to low oxygen and their survival is
compromised by hypoxia (Imudia et al., 2008). However, addition of HBEGF to term villous
explants cultured at 2% O2 inhibits trophoblast apoptosis, demonstrating its persistent role as
a survival factor. These findings highlight the importance of HBEGF in the success of early
placentation and in protecting trophoblast cells from the damaging effects of hypoxia
encountered throughout gestation.

Using placental villous explants, Hung et al. demonstrated that reactive oxygen species are
generated in an in vitro reoxygenation injury model (Hung et al., 2001), leading to apoptosis
of the trophoblasts (Hung et al., 2002). HBEGF can prevent apoptosis induced by
reoxygenation injury in HTR-8/SVneo cells (Fig. 4B) by signaling through its receptors, HER1
and HER4 (Leach et al., 2008). Although HBEGF is downregulated within 30 min of elevating
the O2 concentration from2% to 20%, accumulated sHBEGF generated by trophoblasts at low
oxygen may protect against sudden exposure to oxygenated maternal blood in the uterine
environment. Ethanol, a teratogenic substance with oxidative qualities, also induces apoptosis
in HTR-8/SVneo cells (Wolff et al., 2007). When HTR-8/SVneo cells are exposed to ethanol
and HBEGF together, apoptosis is inhibited in a HER1- or HER4-dependent fashion. During
both reoxygenation injury and ethanol exposure, other members of the EGF family are
cytoprotective to varying degrees (Wolff et al., 2007; Leach et al., 2008). In contrast, only
HBEGF inhibits apoptosis in CTBs cultured at low oxygen (Armant et al., 2006). It has been
proposed that insults such as reoxygenation injury are not always tolerated and can lead to
placental pathologies (Hung and Burton, 2006). The activity of the EGF signaling system could
be a critical variable that keeps oxidative stress in check.

Clinical Considerations
Heparin has long been used to treat pregnant women with certain thrombophilias (Greer,
2003), but its impact on trophoblasts has only recently been investigated. Since heparan sulfate
is an obligate cofactor for HBEGF, clinical application of heparin during pregnancy could
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influence the activity of this growth factor. Indeed, unfractionated heparin inhibits apoptosis
induced by diverse signals in 1st trimester cytotrophoblast cells (Hills et al., 2006). The same
down-stream signaling pathways activated by heparin were also induced by treating the cells
with HBEGF. It could be speculated that addition of its cofactor activates HBEGF in
trophoblasts to enhance survival. On the other hand, fractionated heparin, also used as an
anticoagulant, suppresses the invasive capacity of primary extravillous trophoblasts
(Ganapathy et al., 2007). This suggests that there could be clinical advantages to using
unfractionated heparin over fractionated heparin.

A pathological reduction of HBEGF expression is observed in placentas of patients with the
hypertensive syndrome preeclampsia (Leach et al., 2002), which is associated with decreased
trophoblast invasion (Brosens et al., 1972) and increased levels of trophoblast apoptosis
(DiFederico et al., 1999; Allaire et al., 2000). This finding led us to hypothesize that
dysregulation of HBEGF and the resulting deficiencies in trophoblast function could contribute
to preeclampsia, although it remains to be determined when during the course of gestation
HBEGF levels are first reduced in preeclamptic pregnancies. Trophoblast invasion is shallow
in preeclampsia possibly due to a lack of HBEGF-induced cell migration and a rise in apoptosis,
exacerbated by reduced cytoprotection. The increased oxidative damage to trophoblast cells
(Redman and Sargent, 2005) and the paucity of HBEGF in preeclamptic placentas is consistent
with the hypothesis that HBEGF performs an important role as a survival factor throughout
gestation. Patients delivering preterm without hypertensive disorder produce placentas with
normal levels of HBEGF (Leach et al., 2002). However, there was an intermediate reduction
of HBEGF in extravillous trophoblasts for those women who delivered small for gestational
age infants. Intrauterine growth restriction, like preeclampsia, has been linked to aberrant
trophoblast invasion (Khong et al., 1986) and elevated apoptosis (Ishihara et al., 2002),
suggesting shared elements in the etiology of both disorders. Premature placental perfusion in
preeclamptic pregnancies (Jauniaux et al., 2003) could induce apoptosis by stressing
trophoblast cells before HBEGF has sufficiently accumulated during the early hypoxic period.
Because there are varying levels of severity of placental reoxygenation, it has been
hypothesized that preeclampsia may be the result of sub-lethal levels of reoxygenation, leading
to abnormal placentation, whereas more pronounced reoxygenation will terminate the
pregnancy (Leach et al., 2008). More work is needed to determine if the etiology of this disease
involves a lack of HBEGF production by trophoblasts or the activity of factors that suppress
HBEGF signaling.

LOOKING AHEAD
HBEGF performs numerous functions during pregnancy that are conserved across mammalian
species with divergent reproductive physiologies. In addition to preparing both the
preimplantation embryo and uterus for their mutual interaction, HBEGF appears to directly
facilitate the process of implantation. As development proceeds, HBEGF provides a stimulus
for trophoblast invasion and serves as a critical survival factor in an environment subject to
wide swings in oxygenation. Due to its roles in trophoblast cell differentiation and survival,
dysregulation of HBEGF could have profound consequences, from complete pregnancy failure
to the onset of obstetrical disorders. The association of its deficiency with preeclampsia is
consistent with a critical role for HBEGF in human placentation. New insights into the
contribution of HBEGF to placentation could be obtained with the mouse model, which has
not been exploited. HBEGF-deficient transgenic embryos develop to term with heart defects
(Iwamoto et al., 2003; Jackson et al., 2003), but this system has not been examined in depth
for errors in placentation due to the absence of HBEGF. Additionally, the immune system
undergoes unique changes during pregnancy that include tolerance of the fetal–maternal
allograft and the recruitment of uterine natural killer cells, macrophages and dendritic cells to
the implantation site. It is currently thought that these cells ensure proper implantation and that
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trophoblast cells help to orchestrate their immune function (Mor, 2008). However, the role of
HBEGF in the trophoblast–immune relationship during pregnancy remains unexplored.

Tissue-specific differences in HBEGF function could stem from the microenvironment near
targeted cells. Expression of its cofactor, HSPG, varies among cells and with differentiation.
Other growth factors, such as LIF, can profoundly affect HBEGF expression, as seen in the
peri-implantation uterus. HBEGF forms complexes with other transmembrane proteins,
including CD9 and integrin α3β1 (Raab and Klagsbrun, 1997), but the relevance of these
interactions for implantation and placentation has not been investigated. There is a need for
better understanding of the molecular interactions that regulate HBEGF expression, as well as
the genes induced by HBEGF in reproductive tissues.

The ability of HBEGF to regulate diverse outcomes is not well understood. Autocrine
regulation of HBEGF is post-transcriptional in CTBs cultured at reduced O2 levels (Armant
et al., 2006). One possibility is that HBEGF signaling releases its own message from
translational repression. Maintenance of a dormant, stable HBEGF mRNA pool could provide
a reserve for rapid mobilization during episodes of hypoxia without a high cost in energy.
Although the exact nature of this post-transcriptional regulation is not yet understood, it would
be useful to know whether HBEGF signaling similarly targets other proteins for synthesis.
Finally, an examination of the intracellular circuitry downstream of the HER kinases activated
by HBEGF will be important for clarifying the molecular basis of its varied functions.
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Figure 1.
HBEGF processing and signaling. In its transmembrane form, proHBEGF is proteolytically
cleaved by metalloproteinases at the cell surface to remove (scissors) its pro-domain and secrete
the extracellular domain (sHBEGF shedding). sHBEGF is then free to diffuse to nearby
receptor tyrosine kinases where it can bind either HER1 (EGF receptor) or HER4. Receptor
binding requires heparin sulfate proteoglycan (HSPG) as cofactor, and induces HER homo- or
heterodimerization. Receptor autophosphorylation initiates down-stream intracellular
signaling. Heparin sulfate proteoglycan (HSPG); human epidermal growth factor receptor
family member (HER); matrix metalloproteinase (MMP); a disintegrin and metalloproteinase
(ADAM).
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Figure 2.
Juxtacrine Functions of HBEGF. Transmembrane proHBEGF is depicted mediating
attachment between the trophoblast cell of a blastocyst and the surface of the uterine luminal
epithelium. HBEGF can potentially bind HSPG, HER1, or HER4, to both mediate cell adhesion
and elicit juxtacrine signaling downstream of HER kinases.
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Figure 3.
HBEGF stimulation of trophoblast invasion. HBEGF activates HER kinases to enhance
cytotrophoblast (CTB) motility and invasion. Other members of the EGF family, epidermal
growth factor (EGF) and transforming growth factor alpha (TGFA) have similar capacities.
Little is known about the responsible downstream signaling pathways, but there are associated
changes in the expression of integrins α6β4 and α1β1 (integrin switching) by CTBs. Ligation
of either HER1 or HER4 can induce integrin switching.
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Figure 4.
HBEGF and changing oxygen levels in the placenta. In (A), HBEGF is secreted by first
trimester CTBs cultured at low O2. Evidence suggests that low O2 activates metalloproteinases
that cleave proHBEGF, releasing sHBEGF to signal through its receptors, HER1 or HER4.
Downstream signaling activates a post-transcriptional mechanism to increase HBEGF
synthesis. In (B), the cytoprotective activity of HBEGF in CTBs is depicted. Stress due to low
O2, reoxygenation injury, or ethanol exposure increases CTB apoptosis. Accumulation of
endogenous sHBEGF at low O2 (as in A), or induction of the EGF signaling system by
exogenous HBEGF, EGF or TGFA activates signaling downstream of HER kinases that
inhibits apoptosis.
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