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Abstract
The Bicoid gradient in the Drosophila embryo provided the first example of a morphogen gradient
studied at the molecular level. The exponential shape of the Bicoid gradient had always been
interpreted within the framework of the localized production, diffusion, and degradation model. We
propose an alternative mechanism, which assumes no Bicoid degradation. The medium where the
Bicoid gradient is formed and interpreted is very dynamic. Most notably, the number of nuclei
changes over three orders of magnitude from fertilization, when Bicoid synthesis is initiated, to
nuclear cycle 14 when most of the measurements were taken. We demonstrate that a model based
on Bicoid diffusion and nucleocytoplasmic shuttling in the presence of the growing number of nuclei
can account for most of the properties of the Bicoid concentration profile. Consistent with
experimental observations, the Bicoid gradient in our model is established before nuclei migrate to
the periphery of the embryo and remains stable during subsequent nuclear divisions. Published by
Elsevier Inc.
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Introduction
Studies of the spatial distribution and transcriptional effects of the Bicoid protein in the
Drosophila embryo provided the first experimental example of pattern formation by a
morphogen gradient (Driever and Nusslein-Volhard, 1988a,b, 1989; Driever et al., 1989;
Ephrussi and St Johnston, 2004; Struhl et al., 1989). Bicoid is a homeodomain transcription
factor, which is translated from maternally deposited transcript at the anterior of the embryo
and forms a gradient that patterns the anterior–posterior (AP) embryonic axis by controlling
the expression of multiple zygotic genes. The expression thresholds of Bicoid targets are
determined by multiple effects, including the strength and number of the Bicoid binding sites,
and combinatorial interactions with other transcription factors (Driever et al., 1989; Lebrecht
et al., 2005; Ochoa-Espinosa et al., 2005). Bicoid also acts as a translation repressor and
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mediates the formation of the posterior-to-anterior gradient of Caudal, a product of uniformly
distributed maternal transcript (Zamore and Lehmann, 1996).

All of the previously published quantitative models of the Bicoid gradient formation neglect
the fact that the medium where it is formed and interpreted–the syncytial embryo–is very
dynamic (Bergmann et al., 2007; Gregor et al., 2005; Houchmandzadeh et al., 2002; Tostevin
et al., 2007). The most pronounced changes are associated with the number and the spatial
distribution of nuclei (Foe and Alberts, 1983). The formation of the gradient is believed to start
at egg deposition. This is followed by 13 nuclear divisions. During the first 9 nuclear division
cycles nuclei are distributed essentially uniformly throughout the embryo. During the last
nuclear cycles, however, nuclei are distributed as a monolayer at the plasma membrane (Fig.
1).

The exponential shape of the Bicoid gradient is consistent with and had always been interpreted
within the framework of a model in which the gradient is formed by localized production,
diffusion, and uniform degradation (Gregor et al., 2005; Houchmandzadeh et al., 2002). Within
the framework of this model, degradation ensures the stability of the Bicoid concentration
profile, which would otherwise continue to spread throughout the embryo. Measurements of
Bicoid diffusivity were reported (Gregor et al., 2005, 2007), but the rate of Bicoid degradation
remains uncertain.

Given the uncertainty in the rate of Bicoid degradation, we asked whether a gradient, which
appears stable on the timescale of observations, can be established without the degradation at
all. Recent live-imaging experiments established that Bicoid undergoes rapid
nucleocytoplasmic shuttling (Gregor et al., 2007). Thus, nuclei can be viewed as reversible
traps that slow down Bicoid diffusion. Based on this, we hypothesized that the increase in the
number of nuclei can counteract its local growth in time and/or diffusive spread. To explore
the feasibility of this mechanism, we formulated a model of Bicoid diffusion and reversible
trapping by the growing number of nuclei. Analysis of this model revealed that it can capture
most of the experimentally observed properties of the Bicoid gradient (Gregor et al., 2005,
2007). Furthermore, we find that, within the framework of this model, nuclei do not contribute
significantly to the shape of the Bicoid gradient. Consistent with experimental observations,
the Bicoid gradient in our model is established before nuclei migrate to the periphery of the
embryo and remains stable during subsequent nuclear divisions.

Results and discussion
Model for Bicoid diffusion and nuclear trapping

Consider a one-dimensional model of the embryo of length L. Bicoid molecules are produced
at a constant rate Q at the anterior end of the embryo (x = 0); the posterior of the embryo (x =
L) is impermeable to Bicoid. The embryo is modeled as a homogeneous medium, where nuclei
are uniformly distributed with the density ρ (number of nuclei per unit length). Bicoid can exist
in two states: free, where it is moving with diffusivity D, and bound, where it is confined to
the nucleus and can be considered immobile. The transitions between the free and bound states
are modeled by first order processes with the rate constants k+ and k− (Fig. 2A). We assume
that the forward nuclear trapping rate constant is proportional to the nuclear density: k+ = αρ;
this is a standard assumption in the theory of diffusion-influenced reactions (Rice,
1985;Torquato, 1991). Based on this, we can write the following set of equations for the
concentrations of the free and bound Bicoid molecules, denoted by Cf = Cf (x, t) and Cb =
Cb (x, t), respectively:
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(1)
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(3)

Recent measurements with the GFP-tagged Bicoid in live embryos have shown that Bicoid
rapidly equilibrates between the cytoplasmic and nuclear compartments (Gregor et al., 2007),
suggesting that the free and bound populations of Bicoid are in local equilibrium. This leads
to Cb/Cf = K, where K ≡ k+/k− = αρ/k− is the equilibrium constant for nucleocytoplasmic
shuttling at a given nuclear density. Just as the nuclear density, the equilibrium constant is a
function of time but does not depend on the spatial coordinate. From this, the local
concentrations of free and bound Bicoid molecules can be expressed as functions of the total
concentration of Bicoid, Ctot(x, t) ≡ Cb(x, t) + Cf(x, t):

(4)

Using this after adding Eq. (1) and Eq. (2), we get the following equation for Ctot (x, t):

(5)

The variables in our model can be related to the intensities in the fluorescent images of Bicoid
in embryos in the following way (Gregor et al., 2005, 2007; Houchmandzadeh et al., 2002).
The intensity in the epifluorescence images of Bicoid antibody stainings can be considered
proportional to the total concentration of Bicoid: Ctot (x, t). On the other hand, the signal
intensity in measurements which detect Bicoid level inside a single nucleus can be considered
proportional to the ratio of the local concentration of bound Bicoid molecules and the current
nuclear density (Gregor et al., 2007):

(6)

which is the number of Bicoid molecules per nucleus at a given location.

Model for the dynamics of the medium
At a given nuclear density, our model of Bicoid dynamics is identical to other models of
diffusion in the presence of immobile reversible traps, used to describe growth factor diffusion
in tissues and calcium diffusion in cells (Dowd et al., 1999; Wagner and Keizer, 1994). The
key difference is introduced by accounting for the dynamics of nuclear density (Fig. 1). Bicoid
translation is believed to start at egg deposition and fertilization. Until the 9th nuclear cycle,
the nuclei are distributed in three dimensions (Foe and Alberts, 1983), and most of the volume
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of the embryo is presumably available for Bicoid diffusion. After the 10th nuclear cycle, the
nuclei are distributed in a two-dimensional layer on the surface of the embryo. This leads to a
sharp increase in the nuclear density (an order of magnitude, based on simple geometric
considerations) and affects the binding/dissociation equilibrium. According to our model,
changes in the nuclear density are translated into changes of the equilibrium constant for
reversible trapping of Bicoid by nuclei.

To model these dynamics, we split the entire process into two phases (Fig. 1, Fig. 2B, C). The
first phase lasts from t = 0 to t = T0; this corresponds to cycles 1 through 9, when the effect of
nuclei on the Bicoid gradient can be neglected. The second phase, representing nuclear cycles
10–14, is composed of five time intervals. At t = T0, nuclei appear at a starting density ρ0,
which translates into a starting value of the equilibrium constant, K0, and a new value for the
effective diffusivity, D / (1 + K0). This “nuclear” period, which corresponds to the interphase,
lasts Tn,1 units of time, after which the nuclei membranes break down during mitosis, Bicoid
molecules captured in the nuclei are released, and diffusion constant returns to its original
value.

After this “nuclei-free” period, which lasts Tf,1 time units, nuclei reappear with the doubled
density 2ρ0. This doubles the equilibrium constant and lowers the effective diffusivity to D /
(1 + 2K0). The cycle repeats five times. The durations of the periods with and without the nuclei
during each of these cycles are denoted by Tn,i and Tf,i, respectively (i = 1, 2, 3, 4, 5). Thus,
the dynamics of the Bicoid profiles is described by Eq. (4) with cycle-dependent diffusivity
(Fig. 2C).

Analysis of the model
Consider first the idealized scenario, in which the durations of the nuclear and nuclei-free parts
of the nuclear cycles do not vary with time. In this case, the dynamics of Bicoid profile is
completely determined by four dimensionless parameters:

(7)

The first of these parameters, δ, quantifies the spreading of Bicoid before nuclear arrives at the
periphery of the embryo. The second parameter, β, is the ratio of the length of the nuclear cycle
to the duration of the first phase. The third parameter, γ, characterizes the ratio of the time
intervals with and without nuclei within the nuclear cycle. Finally, K0 is the starting value of
the equilibrium constant for nucleocytoplasmic shuttling.

We will first treat β, γ, δ, and K0 as free parameters and explore the dynamics total and nuclear
concentrations of Bicoid that can be predicted by our model. Since there is no Bicoid
degradation in our model, the model predicts that the total concentration of Bicoid increases
as a function of time throughout the embryo, for all values of model parameters. Since the
concentration of the bound Bicoid molecules is an increasing function of the total Bicoid
concentration (Eq. (4)), this predicts that the profile of the bound Bicoid molecules, Cb (x, t),
should increase throughout the embryo (Fig. 3, left). However, the spatial profile of Bicoid
concentration per nucleus, n(x, t), can increase, decrease, or remain almost invariant with time,
depending on the model parameters (Fig. 3, right). Only the latter regime is consistent with the
recent experimental observations (Gregor et al., 2007). In the rest of the paper, we call this
regime “stable”.
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The nature of the stable behavior
The parameters of our model do not have to be fine-tuned in order to generate the stable profiles
of nuclear Bicoid (n(x, t)) in the face of the steady increase of the nuclear density. For example,
Fig. 4 shows the two-dimensional projection (on the (β, K0) plane) of the region of the parameter
space that leads to gradients that at are least 10% accurate over the last 5 nuclear cycles. This
projection has been calculated for δ = 0.17, which corresponds to the middle of the estimated
range of Bicoid diffusivity (Gregor et al., 2005,2007) and γ = 1, which corresponds to the case
when the nuclei reform very quickly after the breakdown of the nuclear envelope (Gregor et
al., 2007). We found that the boundaries of this stable region depend smoothly on the remaining
parameters (γ and δ). Thus, the existence of the stable dynamics of the profiles of nuclear Bicoid
is a robust feature of the model.

As in any diffusion and trapping problem, nuclei, which act as reversible traps in our model,
can work both locally and nonlocally (Bressloff and Earnshaw, 2007; Casanova and Struhl,
1993; Chen and Struhl, 1996; Goentoro et al., 2006; Hufnagel et al., 2006; Lander, 2007). In
the local regime, the traps affect only the local amounts of bound molecules, whereas in the
nonlocal regime the traps can also influence the entire profile of free and bound molecules.
The contribution of the non-local effect can be assessed by comparing the spatial spread of the
Bicoid profiles in the presence and absence of nuclei. Fig. 4 shows the two-dimensional map
of the ratio of the widths of the spatial profiles (within the stable region) of free Bicoid
molecules with and without nuclei. For small values of β and K0, the shapes of the gradients
with and without nuclei are essentially identical. In this regime, which corresponds to fast
nuclear cycles and small values of the binding equilibrium constant, nuclei just change the
local density of the nuclear Bicoid molecules. The nonlocal effect, where nuclei affect the
shape of the gradient, becomes important for larger values of β and K0.

Model-based analysis of experimental observations
To better characterize the regime in which the system operates, we constrained the parameters
of our model using three sets of experimental observations, each of which characterizes a
different aspect of the formation of the Bicoid gradient. First, we used the measurements of
the durations of different phases of the nuclear cycles (Foe and Alberts, 1983). These
observations specify T0, Tn,i, and Tf,i in our model; notice that now the durations of nuclear
cycles are not identical, and each of them is characterized by its own pair of β and γ (Fig. 5).
The values of remaining parameters δ and K0 can be constrained by the quantitative
measurements of the spatial decay length of the Bicoid gradient at cycle 14 (Gregor et al.,
2005) and the information about the temporal accuracy of the nuclear levels of Bicoid during
the cell cycles 10 to 14 (Gregor et al., 2007).

Specifically, we determined those values of δ and K0, which predict the gradients that are at
least 10% accurate in the anterior region of the embryo over the 5 last nuclear cycles and are
consistent with the experimental measurements of the sharpness of the Bicoid gradient at
nuclear cycle 14 (Gregor et al., 2005; Gregor et al., 2007). In this way we could constrain the
values of δ and K0 to the region shown in Fig. 5A. Every point within this region predicts stable
nuclear gradients that are neither too shallow nor too sharp and are consistent with the dynamics
of nuclear densities. With all the parameters of the model constrained in this way, we asked
whether the stable gradients are generated due to the local or nonlocal effect of the nuclei. As
before, we compared the ratio of the widths of the gradients with and without the nuclei (Fig.
5A). Based on this calculation, we concluded that the effect of nuclei is mainly local. This is
not surprising since the average length of the late nuclear cycles corresponds to β ~ 0.1, which
corresponds to the local regime in Fig. 4.
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Thus, our analysis suggests that nuclei do not play a major role in determining the shape of the
gradient and can be viewed as essentially inert sensors of the preestablished concentration field
established from t = 0 to t = T0. This is the main result of our analysis.

Analysis of the three-dimensional model
So far we have analyzed a one-dimensional model. Mean-while, an embryo is a rather complex
three-dimensional object and its geometry might affect our conclusions. To quantify this effect
we extended our model to a more realistic three-dimensional geometry. Since the early embryo
is close to a prolate spheroid, the prolate spheroidal coordinate system is a natural coordinate
system to model diffusion inside the embryo (Abramowitz and Stegun, 1964). In the revised
model, during the first phase, Bicoid diffuses inside a three-dimensional spheroid with the
aspect ratio corresponding to the major axes of the real embryo (Fig. 6A). After T0, Bicoid
diffuses inside a shell between the outer surface of the embryo and the surface of the yolk (Fig.
6B). All processes were the same as in the one-dimensional model, except that nuclei were
included from t = 0, so that the diffusion coefficient is rescaled as in Eq. (5) throughout the
first phase as well. To compare the resulting profiles with the one-dimensional model, we
averaged the solution over the direction normal to the surface of the embryo. For the same
value of the parameters, the shape of the profile is only slightly affected by the geometry (data
not shown). Overall, our previously obtained conclusions remain valid, but the stability region
is slightly shifted (Fig. 6B). Based on this, we conclude that our biophysical model is robust
with respect to the approximations of system geometry.

Concluding remarks
We have shown that a model with Bicoid diffusion and reversible trapping by nuclei can
account for the experimentally observed length scale of the Bicoid gradient and its stability
over multiple nuclear divisions. If this model is correct, then the Bicoid protein should be stable
on the timescale on which the Bicoid gradient is formed. This prediction can be tested by careful
measurements of Bicoid stability. Another prediction is that local defects in nuclear density
should generate only local defects in the profile of nuclear Bicoid. This can be tested by imaging
the Bicoid gradients in mutants with late defects in nuclear migration.

We have constrained the parameters in our model based on the observations of the Bicoid
concentration profile. We can now work backwards and use the estimates of the dimensionless
parameters in the model to quantify the rates of microscopic properties of the processes that
contribute to the formation of the Bicoid gradient. For example, based on the estimated range
for the parameter δ in the model, the size of the embryo (L), and the duration of first period in
our model (T0), we can get an estimate for the free diffusivity of Bicoid: D = δ2L2/T. Using
this formula and extreme values for δ in Fig. 6B, we get 0.9 µm2/s<D<3.6 µm2/s. This is close
to the range of experimentally reported Bicoid diffusivities, providing an additional
consistency check for our assumptions (Gregor et al., 2005,2007).

Similar to the diffusion and degradation model, our model does not readily account for scaling
of the gradient with the size of the embryo (Gregor et al., 2005). A model where Bicoid
degradation occurs in the nuclei can account for scaling but is not consistent with the stability
of the gradient as a function of time, unless one assumes a very special correlation between
nuclear density, nuclear size, and volume of the cortical cytoplasm (Gregor et al., 2007). The
validity of this assumption is difficult to test at this time. While the scaling performance of our
model can be improved by changing the time at which the nuclei migrate to the periphery, more
detailed analysis of the gradient scaling in our model requires additional measurements of
nuclear dynamics in insects with embryos of different lengths. We conclude that the model
based on diffusion and reversible nuclear trapping presents at this time a viable alternative to
the diffusion and degradation model and should be considered in analyzing the properties of
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the Bicoid gradient (Crauk and Dostatni, 2005; Ephrussi and St Johnston, 2004; Gibson,
2007; Gregor et al., 2005; Houchmandzadeh et al., 2002; Jaeger et al., 2007; Lebrecht et al.,
2005; Reinitz, 2007; Tostevin et al., 2007).

The structure of the models that will be eventually used to describe the Bicoid gradient may
turn out to be very similar to those used to describe morphogens in cellular tissues, with nuclei
being the analogs of cells, and nucleocytoplasmic shuttling being the analog of ligand
trafficking (Reeves et al., 2006; Vincent and Dubois, 2002). Thus, studies of the Bicoid gradient
might provide insights into the operation of a large number of developmental patterning
contexts.

Materials and methods
Nondimensionalization and numerical solution

The model is nondimensionalized using the following set of transformations: z = x / L, τ = t /
T0, and c(z, τ) = DC(x, t) / QL. The dimensionless form of Eq. (5) is given by:

 , where  , and the value of K is zero during the nuclei-free
periods and equal to 2nK0 (n = 0, 1, 2, 3, 4) during the nuclear periods of the division cycles.
The dimensionless problem is discretized with centered finite differences on a uniform grid
with 100 nodes, and the resulting system is solved using the ode15s solver in Matlab. From
this solution for ctot(z, τ), cb(z, τ) is found as K(τ)ctot(z, τ) / (1+K(τ)). The profiles of the
dimensionless levels of Bicoid per nucleus are given by cb(z, τ)/2n, n = 0, 1, 2, 3, 4.

Stability of the gradients
The gradients of the nuclear Bicoid levels were shown to be at least 10% accurate over the last
five nuclear cycles between 10% and 50% of the embryo length (Gregor et al., 2007). Based
on this, the stability of the gradients predicted by the model was computed as follows. First,
we computed the space-dependent relative change (gain) of the gradient between the two
successive nuclear cycles: gi, i−1 (z) = (ni(z) − ni−1(z)) / ni−1(z), where 0.1 <z<0.5. We have
then averaged this function over space and over consecutive cycles. If the absolute value of
the result was less than 0.1, the gradient is considered stable.

Computing the width of the gradient
The spatial spread of the Bicoid gradient was computed as the second moment, σ, of the

concentration profile of the total Bicoid at the last nuclear cycle: .

Modeling in prolate spheroidal coordinate system
The prolate spheroidal coordinate system was used to model the embryo as an ellipsoid with
the major and minor axes equal to 500 µm and 190 µm, respectively. For the second phase,
the inner boundary was defined by the smaller ellipsoid, with axes equal to 240 µm and 132
µm.We used a point source at the anterior tip of the embryo and rescaled the problem using
the same definition of the dimensionless parameters as in the one-dimensional model. We
assumed that, during the nuclear phases, nuclei were uniformly distributed in the space
available for Bicoid diffusion. All the timings for each nuclear cycles were taken from
experimental data (Foe and Alberts, 1983). A second-order centered finite difference algorithm
was used to solve the resulting initial value problem on a uniform 30 × 30 grid.
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Fig. 1.
Summary of changes in the number and distribution of nuclei in the syncytial embryo.
Following egg deposition, nuclei divide thirteen times in a common cytoplasm. This process
stage can be split into two temporal phases. During phase one (nuclear cycles 1 to 9), nuclei
are distributed in the bulk of the embryo and surrounded by cytoplasmic islands. At nuclear
cycle 10 nuclei move to the outer plasma membrane and a clear rim of cytoplasm appears at
the cortex of the embryo. During phase two (nuclear cycles 10 to 14), nuclei are distributed
under the plasma membrane. At this stage, yolk occupies the center of the embryo and appears
to be impermeable to Bicoid.
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Fig. 2.
Model of Bicoid diffusion and reversible trapping by nuclei, see text for details. (A) Bicoid
exists in two states: freely diffusing and immobile/nuclear. The transitions between the two
states are described by first-order processes. The forward nuclear trapping rate constant is
proportional to the nuclear density. (B) The time-dependent nuclear density in the syncytial
embryo is translated into the time-dependent equilibrium constant for the nucleocytoplasmic
shuttling of Bicoid (see text for details). nc10, nc11, etc. denote the nuclear cycles 10, 11, etc.
(C) Schematic representation of the dynamics of the Bicoid gradient. From t = 0 to t = T0,
Bicoid diffusion is essentially unaffected by nuclei. This “free-diffusion” phase (bottom left
panel; curves represent diffusive spread of Bicoid from the constant source the boundary) is
followed by the phase with much greater value of the nucleocytoplasmic shuttling equilibrium
constant. Each of the five nuclear cycles during this phase is in turn composed of two stages,
with and without the nuclei. Tn,i and Tf,i denotes the durations of the nuclear and free periods,
respectively. The gradient of nuclear Bicoid is formed at the beginning of each nuclear cycle
(bottom middle panel). When nuclei dissolve Bicoid is again freely diffusing (bottom right
panel).
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Fig. 3.
Computational analysis of the simplified model in which the durations of the nuclear and free
portions of the nuclear cycles are constant. The local dimensionless concentration of Bicoid
molecules in the bound state, cb (z), is always increasing (left), however the local concentration
of the Bicoid molecules per nucleus (n(z), right) can increase, decrease, and remain quasi-
invariant with time. Examples A–C correspond to the following values of model parameters:
A − δ = 0.17, K0 = 0.01, β = 1, γ = 1; B − δ = 0.17, K0 = 0.9, β = 0.2, γ = 1; C − δ = 0.17, K0
= 0.05, β = 0.2, γ = 1. The plot shows the results of numerical solution of the dimensionless
problem; see Materials and methods for the details of nondimensionalization and numerical
methods.
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Fig. 4.
Stable gradients in the simplified model. The shaded region in the (β, K0) plane corresponds
to nuclear gradients that are at least 10% accurate over the five last nuclear cycles; see Materials
and methods for the description of the accuracy criterion. The region has been computed for
γ = 1 and δ = 0.17. The gradients above this region are steadily increasing as a function of
nuclear density, while those below this region are steadily decreasing. The black circles
correspond to the increasing (i), decreasing (d), and stable (s) gradients shown in Fig. 3. The
color shading of the region shows the ratio of the widths (second moments) of the gradients,
n(z, t), with and without the nuclei; see Materials and methods for details.
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Fig. 5.
Model-based analysis of quantitative measurements of the Bicoid gradient. (A) Specifying the
times of nuclear divisions leaves δ and K0 as the only free parameters in the model. Their values
are constrained to the shaded region by the experimental measurements of the shape and the
accuracy of the Bicoid gradients. The shaded region is bounded by four sets of curves. The
gradients above the upper curve are too shallow, while the ones below the bottom curve are
too sharp. The sharpness of the gradient is determined by fitting it to an exponential profile;
λ is the parameter of the fit. The bounds for the allowable range of the values of λ is provided
by the experimentally available information about the distribution function of gradient decay
lengths (Gregor et al., 2005). At the same time, only the gradients between the vertical lines
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satisfy the criterion of 10% accuracy over the five last nuclear divisions. (B) Dynamics of the
gradient of nuclear Bicoid, n(z, r), computed for δ and K0 inside the data consistency region.
The inset shows the time course of the nuclear levels of Bicoid at z = 0.2, computed for K0 =
0.15, δ = 0.15.

Coppey et al. Page 15

Dev Biol. Author manuscript; available in PMC 2009 December 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 6.
Analysis of the three-dimensional model. (A) Finite difference grids used to solve the problem
in the prolate spheroidal coordinate system (see text for details). (B) Comparison of the regions
of the parameter space consistent with the experimentally derived quantitative properties of
the Bicoid gradient: light gray—one-dimensional model, dark gray—three-dimensional model.
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