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Inhibition of amyloid-� (A�) aggregation is an attrac-
tive therapeutic strategy for Alzheimer’s disease (AD).
Certain phenolic compounds have been reported to
have anti-A� aggregation effects in vitro. This study
systematically investigated the effects of phenolic
compounds on AD model transgenic mice (Tg2576).
Mice were fed five phenolic compounds (curcumin,
ferulic acid, myricetin, nordihydroguaiaretic acid
(NDGA), and rosmarinic acid (RA)) for 10 months
from the age of 5 months. Immunohistochemically,
in both the NDGA- and RA-treated groups, A� deposi-
tion was significantly decreased in the brain (P <
0.05). In the RA-treated group, the level of Tris-
buffered saline (TBS)-soluble A� monomers was in-
creased (P < 0.01), whereas that of oligomers, as
probed with the A11 antibody (A11-positive oli-
gomers), was decreased (P < 0.001). However, in the
NDGA-treated group, the abundance of A11-positive
oligomers was increased (P < 0.05) without any
change in the levels of TBS-soluble or TBS-insoluble
A�. In the curcumin- and myricetin-treated groups,
changes in the A� profile were similar to those in the
RA-treated group, but A� plaque deposition was not
significantly decreased. In the ferulic acid-treated
group, there was no significant difference in the A�
profile. These results showed that oral administration
of phenolic compounds prevented the development
of AD pathology by affecting different A� aggregation
pathways in vivo. Clinical trials with these com-
pounds are necessary to confirm the anti-AD effects
and safety in humans. (Am J Pathol 2009, 175:2557–2565;
DOI: 10.2353/ajpath.2009.090417)

Alzheimer’s disease (AD) is the most common form of
dementia, resulting in deterioration of cognitive function

and behavioral changes.1 One of the pathological hall-
marks of AD is extracellular deposits of aggregated amy-
loid-� protein (A�) in the brain parenchyma (senile
plaques) and cerebral blood vessels (cerebral amyloid
angiopathy (CAA)).1 Deposition of high levels of fibrillar
A� in the AD brain is associated with loss of synapses,
impairment of neuronal functions, and loss of neurons.2–5

A� was sequenced from meningeal vessels and senile
plaques of AD patients and individuals with Down’s syn-
drome.6–8 The subsequent cloning of the gene encoding
the �-amyloid precursor protein and its localization to
chromosome 21,9–12 coupled with the earlier recognition
that trisomy 21 (Down’s syndrome) invariably leads to the
neuropathology of AD,13 set the stage for the proposal
that A� accumulation is the primary event in AD patho-
genesis. In addition, certain mutations associated with
familial AD have been identified within or near the A�

region of the coding sequence of gene of the amyloid
precursor proteins,14,15 presenilin-1 and presenilin-2,16

which alter amyloid precursor protein metabolism through a
direct effect on �-secretase.17,18 These findings set the
stage for the proposal that A� aggregation is the primary
event in AD pathogenesis and leading to the proposal
that anti-A� aggregation is a strategy for AD therapy.19,20

Furthermore, there have been recent reports21–25 that A�

fibrils are not the only toxic form of A� for developing AD,
and smaller species of aggregated A�, A� oligomers,
may represent the primary toxic species in AD. There-
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fore, it is necessary to consider the inhibition of A�
oligomer formation as well as A� fibrils for the treat-
ment of AD.26

To date, it has been reported that various compounds
inhibit the formation and extension of A� fibrils, as well as
destabilizing A� fibrils in vitro.19,20,27–36 Among the re-
ported compounds, several phenolic compounds, such
as wine-related polyphenols (myricetin (Myr), morin, and
tannic acid, and so on), curcumin (Cur), ferulic acid (FA),
nordihydroguaiaretic acid (NDGA), and rosmarinic acid
(RA) had especially strong anti-A� aggregation effects in
vitro. Furthermore, it was shown recently that a commer-
cially available grape seed polyphenolic extract, Mega-
Natural-Az, inhibited fibril formation, protofibril formation,
and oligomerization of A�.37 Moreover, MegaNatural-Az
also reduced cerebral amyloid deposition as well as at-
tenuating AD-type cognitive deterioration using trans-
genic mice.38 In addition to these studies by the current
authors, several other researchers have reported similar
effects of phenolic compounds.26,39–44 First, Cur de-
creased cerebral A� plaque burden in vivo,39–42,44 and
inhibited the formation of A� oligomers in vitro.26,39 Sec-
ond, epigallocatechin gallate efficiently inhibited fibril
and oligomer formation of A�.43 However, a very recent in
vitro study26 reported that Cur, Myr, and NDGA inhibited
the formation of A� oligomers, but Cur and NDGA pro-
moted the formation of A� fibrils. This indicated that the
effects of these phenolic compounds on A� aggregation
remain controversial. These different results may reflect
different experimental conditions in these studies. To re-
solve this problem, a systematic in vivo study is required;
however, few reports on the effects of phenolic com-
pounds on A� aggregation in vivo have been published
so far, except for reports about Cur.39–42,44

To elucidate the inhibitory effects of phenolic com-
pounds on A� aggregation in vivo, several phenolic com-
pounds, including Cur, FA, Myr, NDGA, and RA, were fed
to AD model mice, and the cerebral plaque burden and
formation of A� oligomers were compared systematically.

Materials and Methods

Animals

Five-month-old female Tg2576 mice45 (Taconic Farms,
Germantown, NY), which express a 695-aa residue splice
form of human amyloid precursor protein modified by the
Swedish Familial AD double mutation K670N-M671L,
were randomly assigned among one control and five
treatment groups. The mice in the control group were fed
a control diet (CRF-1; Oriental Yeast, Tokyo, Japan) (n �
10), and those of the five treatment groups were fed five
different diets, which included 0.5% phenolic com-
pounds, comprising Cur (Wako, Osaka, Japan) (n � 9),
FA (Sigma-Aldrich, St. Louis, MO) (n � 10), Myr (Kanto
Chemical, Tokyo, Japan) (n � 10), NDGA (Tokyo Chem-
ical Industry, Tokyo, Japan) (n � 10), and RA (Sigma-
Aldrich) (n � 10) (Figure 1) in CRF-1. At the age of 14
months, the mice were sacrificed. The mice were per-
fused before brain dissection with 0.9% normal saline,

followed by HEPES buffer containing protease inhibitor
mixture (Nacalai Tesque, Kyoto, Japan). Brains were har-
vested and hemidissected. One hemisphere was fixed in
4% paraformaldehyde for 24 hours for histological stud-
ies, and the opposite hemisphere was frozen rapidly in
liquid nitrogen and stored at �80°C for biochemical stud-
ies. All animal studies were approved by the Institutional
Animal Experiment Committee of Kanazawa University.

Immunohistochemistry and Morphometry of
A� Deposits

For the assessment of brain A� deposition in Tg2576
mice brain, 4% paraformaldehyde-fixed, paraffin-embed-
ded left hemi-brains were sectioned in the coronal plane
using a microtome at a thickness of 5 �m. Sections were
deparaffinized and hydrated in a graded series of etha-
nol, pretreated with 99% formic acid for 5 minutes, and
immersed in 0.3% hydrogen peroxide and methanol for
30 minutes to block endogenous peroxidase before pre-
blocking at ambient temperature with serum-free protein
block (Dako, Glostrup, Denmark). A� immunohistochem-
ical staining was performed using anti-human amyloid-�
antibody (4G8, 1/2000; Chemicon International, Temecula,
CA) in conjunction with the Liquid Diaminobenzidine
Substrate Chromogen System (Dako). 4G8-positive A�
deposits were examined under bright field using an
Olympus BX-51 microscope, Olympus DP71 digital cam-
era, and custom-designed software WinROOF (Mitani,
Fukui, Japan). The percentage of 4G8-positive deposits
area (A� plaque burden) and numbers of 4G8-positive
blood vessels per 1 mm2 (CAA counts) were investi-
gated. In total, seven coronal sections were assessed by

Figure 1. Structures of Cur, FA, Myr, NDGA, and RA.
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a scientist (A.M.) who was blinded to the treatment profile
of each section.

Tissue Preparation for Biochemical Studies

Frozen brains were homogenized in 10 volumes of Tris-
buffered saline (TBS) (20 mmol/L Tris (pH 7.3) and 140
mmol/L NaCl) containing protease inhibitors mixture (Na-
calai Tesque) (Figure 2). Samples were sonicated briefly
(2 � 10 s) and centrifuged at 100,000 � g for 60 minutes
at 4°C to generate a TBS-soluble fraction. The TBS-insol-
uble pellet was sonicated in 8 volumes of 5 M guanidine
and 50 mmol/L Tris-HCl and solubilized by agitation at
room temperature for 4 hours (TBS-insoluble fraction)
(Figure 2).

Quantitative Assessment of A� in the Brain

For quantitative assessment of A� in the brain, a Bio-Plex
multiplex suspension array system (Bio-Rad, Hercules,
CA) was used as described previously.46–50 This tech-
nology is based on flow cytometric separation of anti-
body-coated microspheres that are labeled with a spe-
cific mixture of two fluorescent dyes. After binding of a
biotinylated reporter antibody, quantification was made
by binding of a third fluorochrome coupled to streptavi-
din. In TBS-soluble fractions, A�1-40 (A�40), A�1-42
(A�42), and aggregated A� were analyzed using human
A�40, A�42, and aggregated A� antibody bead kit (In-
vitrogen, Carlsbad, CA) according to manufacturer’s in-
structions (Figure 2). TBS-insoluble fractions were diluted
1/10,000 with TBS containing 5% bovine serum albumin
with protease inhibitor mixture (Nacalai Tesque) and then

analyzed for A�40 and A�42 (Figure 2). A�40 and A�42
antibody bead kits recognized monomeric forms of A�40
and A�42, and they have no cross-reactivity with each
other (information sheet of the kit from Invitrogen). The
aggregated A� antibody bead kit recognized aggre-
gated A�, and it had no cross-reactivity with A�40 but
slight reactivity with A�42 (2.2%) (information sheet of the
kit from Invitrogen).

Analysis of A11-Positive Oligomers in the Brain

To investigate TBS-soluble A� oligomers in the brains,
dot blot assays were performed as described previou-
sly.38,51 Five micrograms of protein from the TBS-soluble
fractions were applied directly to a nitrocellulose mem-
brane, air-dried, and blocked with 5% nonfat dry milk.
The membrane was probed with A11 antibody (1/1000;
BioSource International, Camarillo, CA), which recog-
nizes oligomers but not monomers or fibrils of several
proteins that form amyloid, including A�,52,53 and immuno-
reactivities were quantified densitometrically using LAS-
4000 mini and Multi Gauge Ver.3.X (Fujifilm, Tokyo, Ja-
pan) (Figure 2). A11-positive A� oligomers ranged in size
from approximately tetramers to 20-mers,54 and the A11
antibody recognized a significant and important class of
oligomers associated with AD.26

Statistical Analysis

All values are expressed as mean and SE. Differences
between the control and each treatment groups in body
weight, A� plaque burden, CAA counts, and concentra-
tions of A�40, A�42, aggregated A�, and A11-positive
oligomers were analyzed using one-way analysis of vari-
ance, followed by Dunnett’s post hoc analysis. Survival of
each group was determined using Kaplan-Meier plots,
and the null hypothesis on the survival experience of
each group was tested using the Generalized Wilcoxon
test. Significance was defined as P � 0.05. Statistical
analyses were performed using SPSS 16.0 software
(SPSS Japan, Tokyo, Japan).

Results

Mice Characteristics

During this experiment, one mouse in the control and
Cur-, Myr-, and NDGA-treated groups, two mice in the
RA-treated group, and three mice in the FA-treated group
died. Survival periods were not significantly different be-
tween the groups. The numbers of mice and body weight
at the age of 14 months are shown for each group in
Table 1. Body weights were not significantly different
between the groups.

A� Plaque Burden

In an immunohistochemical study, significantly lower A�
plaque burden was found in the groups treated with

Frozen mice brain (right hemisphere) 

Homogenized and sonicated in TBS and 
centrifuged at 100,000 × g for 60 minutes 

Supernatant: 
TBS-soluble fraction 

Precipitate was sonicated 
in 5 M guanidine 

Quantitative 
assessment of Aβ
(Aβ 40, Aβ 42, and 
aggregated Aβ)

Analysis of 
A11-positive oligomers

TBS-insoluble fraction

Quantitative 
assessment of Aβ
(Aβ40 and Aβ42)

Figure 2. Schematic representation of tissue preparation for biochemical
studies. Frozen brains (right hemisphere) were homogenized in TBS, soni-
cated briefly (2 � 10 s), and centrifuged at 100,000 � g for 60 minutes at 4°C
to generate a TBS-soluble fraction. The TBS-insoluble pellet was sonicated in
5 M guanidine and solubilized by agitation at room temperature for 4 hours
(TBS-insoluble fraction). TBS-soluble fractions were analyzed using A�40,
A�42, and aggregated A� using Bio-Plex multiplex suspension array systems
and analyzed for A11-positive oligomers by dot blot analysis. TBS-insoluble
fractions were analyzed A�40 and A�42 using Bio-Plex multiplex suspension
array system.
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NDGA (Figure 3E) and RA (Figure 3F) compared with the
control group (Figure 3A) (P � 0.05) (Figure 4A). In the
Myr-treated group (Figure 3D), there was the tendency to
attenuate A� plaque burden, but this did not reach a
significant level (P � 0.064) (Figure 4A). There were no
significant differences between the Cur- (Figure 3B) or
FA-treated (Figure 3C) groups and the control group
(Figure 4A). In the evaluation of CAA counts, there were
no significant differences between each treatment group
and the control group (Figure 4B).

A� in TBS-Soluble Fractions of the Brain

In a quantitative assessment of A� in the TBS-soluble
fraction of brains, there was no significant differences in
A�40 between any of the groups (Figure 5A), and A�42
was significantly increased in the Cur (P � 0.05), Myr
(P � 0.01), and RA (P � 0.001) groups compared with
the control group (Figure 5B). The A�42 levels in the FA
and NDGA groups were not different from those in the
control group. The total of A�40 and A�42 was signifi-
cantly increased in the Cur (P � 0.05) and RA (P � 0.01)
groups but not in the FA, Myr, or NDGA groups (Figure
5C). No significant differences were found between each

treatment group and the control group in the level of
aggregated A� (Figure 5D).

A� in TBS-Insoluble Fractions of the Brain

In the TBS-insoluble fractions of the brain, the level of
A�40 was significantly decreased in the Cur (P � 0.05),
Myr (P � 0.01), and RA (P � 0.01) groups but not in the
FA or NDGA groups (Figure 6A). There were no signifi-
cant differences between each treatment group and the
control group in the level of A�42 (Figure 6B). The total of
A�40 and A�42 was significantly decreased in the Myr
(P � 0.01) and RA (P � 0.05) groups (Figure 6C).

A11-Positive Oligomers in the TBS-Soluble
Fraction of the Brain

In the analysis of A11-positive oligomers in the TBS-
soluble fractions of the brain, A11-positive oligomers
were found to be significantly decreased in the groups
treated with Cur (P � 0.001), Myr (P � 0.001), and RA
(P � 0.001) compared with the control group (Figure 7).
In contrast, the level of A11-positive oligomers was sig-
nificantly increased in the NDGA-treated group (P �
0.05) (Figure 7). There was no significant difference be-
tween the FA-treated and control groups (Figure 7).

Table 1. Number of Mice and Body Weight at the Age of
14 Months in Each Group

N Body weight (g; average � SE)

Control 9 31.5 � 3.3
Cur 8 29.2 � 1.3
FA 7 31.9 � 3.9
Myr 9 30.7 � 2.4
NDGA 9 29.0 � 1.4
RA 8 37.2 � 5.2

Figure 3. Amyloid � plaque burden in each treated group of mice, control
(A), Cur (B), FA (C), Myr (D), NDGA (E), and RA (F).

Figure 4. Comparison analysis of A� plaque burden (A) and CAA counts (B)
in each group. Compared with the control group, the percentage of 4G8-
positive deposit areas (A� plaque burden) was reduced in the NDGA- and
RA-treated groups significantly (P � 0.05), and there was the tendency to
attenuate A� plaque burden, but a significant level of attenuation was not
reached in the Myr group (P � 0.064, A). The average numbers of 4G8-
positive blood vessels per 1 mm2 (CAA counts) was not significantly different
between the control and treatment groups (B). �P � 0.05; **P � 0.064.
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Discussion

The present results showed that oral administration of
NDGA and RA prevented the development of A� neuro-
pathology in AD model mice. However, biochemical stud-
ies revealed different A� profiles in the brain between
NDGA- and RA-treated mice. Treatment with RA was
associated with an increase in TBS-soluble A� (A�42 and
A�40 � A�42) and a decrease in A11-positive oligomers
and TBS-insoluble A� (A�40 and A�40 � A�42). These
results suggested that RA inhibits the A� aggregation
pathway from A� monomers to A11-positive oligomers

and from A11-positive oligomers to A� deposition (Figure
8). In the NDGA-treated group, A11-positive oligomers
increased without any change in the levels of TBS-soluble
or TBS-insoluble A�. These results suggested the possi-
bility that NDGA might mainly inhibit the pathway from
A11-positive oligomers to A� deposition without inhibiting
the pathway from A� monomers to A11-positive oli-
gomers (Figure 8). In this study, there was dissociation
between A� plaque burden and concentration of TBS-
insoluble A� in NDGA-treated group. The reason of this
discrepancy was not determined precisely, but it was
considered that A� dissolved in the TBS-insoluble frac-
tions might include not only deposited aggregated A�
but also intracellular A� and precipitated A11-positive
oligomers recovered by 100,000 � g centrifugation. In
the Cur- and Myr-treated groups, changes in the A�
profile were similar to those in the RA-treated group, but
A� plaque deposition was not decreased significantly.
On the basis of these results, two possible hypotheses

Figure 5. Assessment of A�40 (A), A�42 (B), A�40 � A�42 (C), and aggre-
gated A� (D) concentrations in the TBS-soluble fraction of mice brain tissue.
There was no significant difference between the control and treatment
groups in A�40 (A) and aggregated A� (D). Compared with the control, A�42
was significantly increased in the Cur (P � 0.05), Myr (P � 0.01), and RA
(P � 0.001) groups (B), and A�40 � A�42 was also significantly increased in
the Cur (P � 0.05) and RA groups (P � 0.01) (C). �P � 0.05; ��P � 0.01;
���P � 0.001.

Figure 6. Assessment of A�40 (A), A�42 (B), and A�40 � A�42 (C) con-
centrations in the TBS-insoluble fraction of mice brain tissue. Compared with
the control, A�40 was significantly reduced in the Cur (P � 0.05), Myr (P �
0.01), and RA (P � 0.01) groups (A), and A�40 � A�42 was also significantly
reduced in the Myr (P � 0.01) and RA (P � 0.05) groups (C). There was no
significant difference between the treatment and control groups for A�42 (B).
�P � 0.05; ��P � 0.01.
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are given. One is that Cur and Myr inhibit the A� aggre-
gation pathway in the same manner as RA, but the effect
is weaker than RA. Another is that Cur and Myr inhibit the
pathway from A� monomers to A11-positive oligomers,
but they accelerate the pathway from A11-positive oli-
gomers to A� deposition (Figure 8), which is similar to the
findings of a recent in vitro study.26 The FA-treated group
showed no significant difference compared with the con-
trol group. Previous studies showed that all of the phe-

nolic compounds examined in this study inhibited A�
fibril formation in vitro. The overall activity of these phe-
nolic compounds was in the order of RA � Cur �
NDGA � Myr � FA.28,36 The effective concentrations of
RA, Cur, NDGA, and Myr for A� fibril formation in vitro
were 0.1 to 1 �mol/L, whereas that of FA was 1 to 10
�mol/L.28,36 The discrepancy between the in vitro and in
vivo studies is important for clinical application for pre-
venting AD; various biological parameters, such as ab-
sorption into the body, passage through the blood-brain
barrier, and degradation could influence their antiaggre-
gation effects in vivo. There have been no reports on the
concentrations of these phenolic compounds in the brain
following long-term oral administration.

In AD, soluble A� monomers undergo conformational
changes and are deposited as insoluble A� fibrils medi-
ated by A� oligomers.22,25 Previously, it was demon-
strated that A� neurotoxicity requires insoluble fibril for-
mation.55 However, recently, A� oligomers are believed
to play important causal roles in AD,21–25 and the most
efficacious therapeutic agents should target the oligo-
meric forms of A�. Some types of oligomeric assemblies
of A�, such as protofibrils, annular assemblies, A�-de-
rived diffusible ligands, A�*56, and secreted soluble A�
dimers and trimers, have been reported22; however, the
structures of these oligomers have not been revealed
fully, and it is difficult to distinguish them precisely. At
present, some conformation-dependent antibodies against
oligomers, such as A11 and OC, can provide a more
rational means of classifying A� oligomers based on their
underlying structural organization.53,54 Recent stud-
ies52,54 using these antibodies have shown that there are
pathways of fibril formation mediated by different types of
oligomers, such as A11-positive and OC-negative oli-
gomers or A11-negative and OC-positive oligomers. A11-
positive oligomers are correlated with cognitive deficits in
transgenic animal models,52 but there have been no re-
ports on the association between cognition and OC-pos-
itive oligomers. In this study, there was no difference in
the aggregated A� in the TBS-soluble fraction between
the control and treatment groups, although the concen-
trations of A11-positive oligomers were significantly dif-
ferent. Aggregated A� might include not only A11-posi-
tive oligomers but also A11-negative oligomers.

RA is an ester of caffeic acid 3,4-dihydroxiphenyllactic
acid, and it is commonly found in species of the Boragi-
naceae and subfamily Nepetoideae of the Lamiaceae.56 It
has several interesting biological activities, eg, antioxi-
dant, anti-inflammatory, antimutagen, antibacterial, and
antiviral.56 For the effect on AD pathogenesis, there have
been reports that RA reduces A�-induced neurotoxic-
ity57,58 and protects against reactive oxygen species
induced by A� in cell culture experiments.58 In intrace-
rebroventricular A�25-35 injection mice model studies, i.p.
injection of RA prevents memory impairment and A�-
induced neurotoxicity by scavenging ONOO�.57 Taken
together with the results of this study that RA reduced
both A� deposition and A11-positive oligomers, RA is an
attractive candidate for therapy or preventive strategies
for AD.

Figure 7. Assessment of TBS-soluble A11-positive oligomers in the mice
brain tissue. Compared with the control, A11-positive oligomers were
decreased in the Cur (P � 0.001), Myr (P � 0.001), and RA (P � 0.001)
groups and increased in the NDGA (P � 0.05) group, significantly. �P �
0.05; ��P � 0.001.

TBS-soluble Aβ monomers 

A11-positive 
oligomer 

TBS-soluble
aggregated Aβ

NDGA
RA

Inhibition

Cur
Myr

Acceleration

Aβ deposition 

TBS-insoluble 
aggregated Aβ

Cur
Myr
RA Inhibition

Figure 8. Schematic representation of the in vivo effects of phenolic com-
pounds on A� aggregation as suggested by this study. Cur, Myr, and RA may
inhibit the pathway from A� monomer to A11-positive oligomers, and NDGA
and RA may inhibit the pathway from A11-positive oligomers to A� deposi-
tion. Cur and Myr may accelerate the pathway from A11-positive oligomers
to A� deposition. Arrows with solid lines are strongly suggested and dashed
arrows indicate a possible effect on the basis of the present results.
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NDGA is a pure compound isolated from the creosote
bush, Larrea tridentate.59 It significantly reduces plasma
glucose and triglyceride concentrations in rats.59,60 It
also suppresses A�-induced accumulation of reactive
oxygen species.61 In a recent study26 of A� fibril forma-
tion in vitro, NDGA inhibited oligomerization but did not
affect fibrillization, which was contrary to the present
results. The conflicting results may be related to differ-
ences in the experimental conditions. As A11-positive
oligomers were increased in the brain of the NDGA-
treated group in the present study, NDGA would be
inappropriate for clinical application.

Cur is a potent antioxidant and an effective anti-inflam-
matory compound.62,63 Several studies, including the
previous in vitro study, suggested that Cur could be a
key molecule for the development of therapeutics for
AD.26,34,39–42,44,64 Cur protected PC12 and human um-
bilical vein endothelial cells from A� insult due to its
strong antioxidant properties,64 and dietary curcumin
prevented A�-infusion induced spatial memory deficits
and reduced A� deposits in rats.44 In an in vivo study with
Tg2576 transgenic mice, a low dose (160 ppm) of Cur
decreased the levels of insoluble and soluble A� and
plaque burden, but a high dose (5000 ppm) did not
change A� levels.41 The dose of Cur in the present study
was same as the high dose (5000 ppm) of Cur in the
previous study,41 and the treated mice showed an in-
crease in TBS-soluble A�, a decrease in A11-positive
oligomers, and no change in A� plaque burden. One
possible explanation is that Cur has the ability to accel-
erate the pathway from A� oligomers to A� deposition.
This explanation was supported by other in vitro findings
that Cur inhibits oligomerization but does not inhibit fibril-
lization.26 It has been also shown that Cur inhibits the
formation of A� oligomers and fibrils, binds plaques, and
reduces plaque burden.39 Several other studies with AD
model mice also reported beneficial effects of Cur.40,42

However, in a recent clinical trial of Cur for AD, 6-month
administration of 1 or 4 g/day Cur had no significant
effect on cognitive impairment.65 Longer and larger
trials with Cur are necessary.

Myr is found in various foods, including onions, berries,
and grapes, as well as red wine.66–68 Many studies in-
dicated that Myr has various biological activities, such as
antioxidant, anti-inflammatory, anticarcinogen, and anti-
viral.69 Recently, Myr was reported to act as a �-secre-
tase inhibitor with reduced production of A� in a cell
culture study.70 In this study, the Myr-treated mice
showed a decrease in A11-positive oligomers but no
change in A� plaque burden, as found in Cur, and this
agreed with the results of an in vitro study that showed
Myr inhibited oligomerization but did not affect fibrilliza-
tion of A�.26 Therefore, Myr is also a candidate therapeu-
tic molecule for inhibiting A� oligomerization.

FA is a major constituent of fruits and is well-known to
be an important antioxidant.71,72 Long-term administra-
tion of FA was reported to protect mice against A�-
induced learning and memory deficits in vivo,73,74 and FA
protects neurons against A�-induced oxidative stress
and neurotoxicity in vitro.75 In the present study, oral

administration of FA did not show any significant effect on
A� oligomers or A� deposition in vivo.

In the present study, body weight and survival rate were
not significantly different between the treatment and control
groups, suggesting that there was no adverse effect of
these phenolic compounds in the concentration and dura-
tion ranges examined. In this study, each mouse was fed 1
g/kg/day of the phenolic compound where it was assumed
that each mouse ate 6 g of food per day, and the body
weight of a mouse was 30 g. According to the U.S. Food
and Drug Administration criteria for converting drug equiv-
alent dosages across species (www.fda.gov/downloads/
Drugs/
GuidanceComplianceRegulatoryInformation/Guidances/
ucm078932.pdf), �80 mg/kg/day of phenolic compounds
was administered when converting to a human dose. It is
not known whether these phenolic compounds can be
administered at these doses over the long term in hu-
mans without any adverse effect, although 4 g of Cur per
day (80 mg/kg/day when human body weight was as-
sumed to be 50 kg) for 6 months did not cause any side
effects in AD patients in a recent clinical trial.65 The
results of this study indicate that further careful clinical
studies with these compounds should be performed.

The present study did not focus on the pharmaco-
kinetics of the phenolic compounds. There remains the
possibility that the intakes of each phenolic compound
were different, because the actual amount of food con-
sumed by the mice was not monitored. In the previous
study with Cur,41 A� deposition in the brain was de-
creased significantly in the mice fed on a low dose of Cur
but were not changed in a high-dose group. In the pre-
vious in vitro study,28,34,36 the inhibitory effect of the A�
aggregation increased in proportion to the concentra-
tions of these compounds linearly, but it was not known
whether these compounds had similar effects in vivo.
Further studies are required in which mice are fed these
compounds at different doses and over different periods to
clarify whether the differences observed in the present
study reflect differences in the mechanisms of antiamylo-
idogenic effects or possible differences in the concentra-
tions of these compounds in the central nervous system.

In conclusion, the present study showed that the oral
administration of phenolic compounds prevented the de-
velopment of AD pathology by inhibiting the A� aggre-
gation pathway in different ways in an AD transgenic
mouse model. Among the compounds tested, RA ap-
peared to be the most attractive molecule for preventing
AD because it inhibited both A� oligomerization and
deposition. Cur and Myr could also be candidates be-
cause they inhibited A� oligomerization. On the contrary,
NDGA may be inappropriate because it inhibited A�
deposition but not oligomerization. Clinical trials with
these compounds are necessary to confirm their anti-AD
effects and safety in humans.
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