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Abstract: Various computational methods have been used for the prediction of protein and peptide function based on their 
sequences. A particular challenge is to derive functional properties from sequences that show low or no homology to proteins 
of known function. Recently, a machine learning method, support vector machines (SVM), have been explored for predicting 
functional class of proteins and peptides from amino acid sequence derived properties independent of sequence similarity, 
which have shown promising potential for a wide spectrum of protein and peptide classes including some of the low- and 
non-homologous proteins. This method can thus be explored as a potential tool to complement alignment-based, clustering-
based, and structure-based methods for predicting protein function. This article reviews the strategies, current progresses, 
and underlying diffi culties in using SVM for predicting the functional class of proteins. The relevant software and web-servers 
are described. The reported prediction performances in the application of these methods are also presented.
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Introduction
Functional clues contained in the amino acid sequence of proteins and peptides (Bork et al. 1998; Eisenberg 
et al. 2000; Bock and Gough, 2001; Lo et al. 2005) have been extensively explored for computer predic-
tion of protein function and functional peptides. Sequence similarity (Baxevanis, 1998; Bork and Koonin, 
1998; Schuler, 1998), motifs (Hodges and Tsai, 2002), clustering (Enright and Ouzounis, 2000; Enright 
et al. 2002; Fujiwara and Asogawa, 2002), and evolutionary relationships (Eisen, 1998; Benner et al. 2000) 
are typical examples of highly successful methods for facilitating functional prediction of proteins and 
peptides, which are primarily based on some form of sequence similarity or clustering. However, these 
methods tend to become less effective in the absence of suffi ciently clear sequence similarities (Eisen, 
1998; Rost, 2002; Whisstock and Lesk, 2003). In a comprehensive evaluation of sequence alignment 
methods against 15,208 enzymes labeled with an International Enzyme Commission EC class index, it 
has been found that approximately 60% of the EC classes containing two or more enzymes could not be 
perfectly discriminated by sequence similarity at any threshold (Shah and Hunter, 1997). The low and 
non-homologous proteins of unknown function constitute a substantial percentage, up to 20%~100%, of 
the open reading frames (ORFs) in many of the currently completed genomes (Han et al. 2004a). There-
fore, it is desirable to explore other methods that are less dependent or independent of sequence or struc-
tural similarity (Smith and Zhang, 1997; Eisenberg et al. 2000).

In the last few years, there have been signifi cant progresses in the development of alternative functional 
prediction methods to reduce the dependence on sequence similarity and clustering. For instance, non-
sequence features such as structural features (Teichmann et al. 2001; Todd et al. 2001), interaction 
profi les (Aravind, 2000; Bock and Gough, 2001), and protein/gene fusion data (Enright et al. 1999; 
Marcotte et al. 1999) have been used for predicting protein functions. Machine learning methods have 
been explored for predicting protein function from amino acid sequence derived structural and 
physicochemical properties (des Jardins et al. 1997; Jensen et al. 2002; Karchin et al. 2002; Jensen 
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et al. 2003; Cai et al. 2003; Cai and Lin, 2003; 
Cai et al. 2004b; Bhasin and Raghava, 2004a; Han 
et al. 2004b; Cai and Chou, 2005; Guo et al. 2006). 
In particular, one of the machine learning methods, 
support vector machines (SVM), have shown 
promising potential for predicting proteins and 
peptides of various biochemical classes (e.g. recep-
tors (Bhasin and Raghava, 2004a; Bhasin and 
Raghava, 2004b; Yabuki et al. 2005), nucleic acid 
or lipid binding proteins (Cai and Lin, 2003; 
Bhardwaj et al. 2005; Guo et al. 2006; Lin et al. 
2006c), enzymes (Cai et al. 2004b; Cai and Chou, 
2005; Dobson and Doig, 2005)), therapeutic groups 
(e.g. hormone proteins (Jensen et al. 2003), stress 
response proteins (Jensen et al. 2003), cytokines 
(Huang et al. 2005), MHC-binding peptides 
(Bhasin and Raghava, 2004c)), and other broadly 
defi ned functional classes (e.g. crystallizable pro-
teins (Smialowski et al. 2006), mitochondrial pro-
teins (Kumar et al. 2006), and functional classes in 
yeast (Cai and Doig, 2004)).

This article reviews the strategies, performan-
ces, current progresses and diffi culties in applying 
SVM for predicting various functional classes and 
interaction profiles of proteins and peptides. 
Algorithms for representing proteins and peptides 
by using amino acid sequence derived structural 
and physicochemical descriptors (Bock and Gough, 
2001; Karchin et al. 2002; Cai et al. 2003; Gastei-
ger, 2005) are also discussed. Web servers for 
facilitating the computation of these descriptors 
and for predicting the functional classes of proteins 
and peptides by the SVM method are discussed.

Functional Classes of Proteins
and Peptides
Apart from sequence and structural classes, 
proteins have been classified into functional 
classes. Active sites of the members of each class 
share common structural and physicochemical 
properties to support the common functionality, 
which can be explored for predicting the function 
of proteins from amino acid sequence derived 
structural and physicochemical descriptors 
independent of sequence homology. One example 
is enzyme families. Enzymes represent the largest 
and most diverse group of all proteins, catalyzing 
chemical reactions in the metabolism of all 
organisms. Based on their catalyzed chemical 
reactions, enzymes can be divided into three levels 
of functional classes. The fi rst level is composed 

of 6 super families (EC1 oxidoreductases, EC2 
transferases, EC3 hydrolases, EC4 lyases, EC5 
isomerases, and EC6 ligases), the second level 
contains 63 families (such as EC3.4 hydrolases 
acting on peptide bonds and EC4.1 carbon-carbon 
lyases), and the third level contains 254 subfamilies 
(such as EC2.7.1 phosphotransferases with an 
alcohol group as acceptor). Active sites of enzymes 
are inherently reactive environments packed with 
specifi c types of amino acid residues and cofactors, 
and these and other structural features facilitate 
binding and catalysis of specifi c types of substrates 
(Cai et al. 2004b).

Another example is DNA binding proteins, 
which play critical roles in regulating such genetic 
activities as gene transcription, DNA replication, 
DNA packaging, and DNA repair (Lewin, 2000). 
Prediction of DNA-binding proteins is important 
for studying proteins involved in genetic regulation 
(Aguilar et al. 2002; Stawiski et al. 2003; Sarai and 
Kono, 2005). DNA recognition by proteins is 
primarily mediated by combination of such struc-
tural and physicochemical features as specifi c DNA 
binding domains (Bewley et al. 1998; Garvie and 
Wolberger, 2001), helix structures (Garvie and 
Wolberger, 2001), minor groove binding architec-
tures (Bewley et al. 1998), asymmetric phosphate 
charge neutralization (Bewley et al. 1998), conserved 
amino acids (Luscombe and Thornton, 2002), 
hydrogen bonds (Luscombe et al. 2001), water-
mediated bonds (Fujii et al. 2000; Luscombe et al. 
2001), and indirect recognition mechanism (Steffen 
et al. 2002). DNA-binding proteins can be further 
divided into 9 major functional classes plus several 
smaller ones (such as covalent protein-DNA link-
age proteins and terminal addition proteins). The 
9 major classes are DNA condensation (for wrap-
ping of DNA around histones), DNA integration 
(mediating the insertion of duplex DNA into a 
chromosome), DNA recombination (for cleaving 
and rejoining DNA), DNA repair, DNA replication, 
DNA-directed DNA polymerase (catalyzing DNA 
synthesis by adding deoxyribonucleotide units to a 
DNA chain using DNA as a template), DNA-directed 
RNA polymerase (catalyzing RNA synthesis by 
adding ribonucleotide units to a RNA chain using 
DNA as a template), repressor (interfering with 
transcription by binding to specifi c sites on DNA), 
and transcription factor.

The third example is transporter families. Trans-
porters play key roles in transporting cellular 
molecules across cell and cellular compartment 
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boundaries, mediating the absorption and removal 
of various molecules, and regulating the concentra-
tion of metabolites and ionic species (Hediger, 
1994; Seal and Amara, 1999; Borst and Elferink, 
2002). Specifi c transporters have been explored as 
therapeutic targets (Dutta et al. 2003; Joet et al. 
2003; Birch et al. 2004) and a variety of transport-
ers are responsible for the absorption, distribution 
and excretion of drugs (Kunta and Sinko, 2004; 
Lee and Kim, 2004). Thus functional assignment 
of transporters is important for facilitating drug 
discovery and research of genomics, cellular 
processes and diseases. There are active and 
passive transporters. Active transporters couple 
solute transport to the input of energy and these 
can be divided into two classes: ion-coupled and 
ATP-dependent transporters. Ion-coupled trans-
porters link uphill solute transport to downhill 
electrochemical ion gradients. ATP-dependent 
transporters are directly energized by the hydroly-
sis of ATP and they transport a heterogeneous set 
of substrates. Passive transporters include facili-
tated transporters and channels, which allow the 
diffusion of solutes across membranes. These 
transporters evolve from common themes into 
families of different architectures (Hediger, 1994; 
Driessen et al. 2000; Saier, 2000). Transporters are 
divided into TC families based on their mode of 
transport, energy coupling mechanism, molecular 
phylogeny and substrate specifi city (Saier, 2000). 
TC families are classifi ed at four levels (TC class, 
TC sub-class, TC family, and TC sub-family) as 
indicated by a specifi c TC number TC I.X.J.K.L. 
Here I = 1, …, 9 represents each of the 9 TC classes, 
X = A, B, C, D, E, … represents each of the TC 
sub-classes that belong to a TC class, J = 1, … 
represents each of the TC families that belong to 
a TC sub-class, K = 1, … represents each of the 
TC sub-families that belong to a TC family, and
L = 1, … represents individual transporters under 
a sub-family.

The fourth example is lipid-binding proteins, 
which play important roles in cell signaling and 
membrane traffi cking (Downes et al. 2005), lipid 
metabolism and transport (Glatz et al. 2002; 
Haunerland and Spener, 2004), innate immune 
response to bacterial infections (Bingle and Craven, 
2004), and regulation of gene expression and cell 
growth (Bernlohr et al. 1997). Prediction of the 
functional roles of lipid-binding proteins is impor-
tant for facilitating the study of various biological 
processes and the search of new therapeutic targets. 

Lipid-binding proteins are diverse in sequence, 
structure, and function (Niggli, 2001; Pebay-
Peyroula and Rosenbusch, 2001; Hanhoff et al. 
2002; Weisiger, 2002; Bolanos-Garcia and Miguel, 
2003; Palsdottir and Hunte, 2004; Fyfe et al. 2005; 
Balla 2005). Non-the-less, lipid recognition by 
proteins is primarily mediated by some combination 
of a number of structural and physicochemical fea-
tures including conserved fold elements (Bernlohr 
et al. 1997), specifi c lipid-binding site architectures 
(Niggli, 2001) and recognition motifs (Palsdottir 
and Hunte, 2004; Balla, 2005), ordered hydropho-
bic and polar contacts between lipid and protein 
(Pebay-Peyroula and Rosenbusch, 2001), and mul-
tiple noncovalent interactions from protein residues 
to lipid head groups and hydrophobic tails (Palsdot-
tir and Hunte, 2004). There are 8 major lipid-bind-
ing classes, which include lipid degradation, lipid 
metabolism, lipid synthesis, lipid transport, lipid-
binding, lipopolysaccharide biosynthesis, lipopro-
tein (proteins posttranslationally modifi ed by the 
attachment of at least one lipid or fatty acid, e.g. 
farnesyl, palmitate and myristate), lipoyl (proteins 
containing at least one lipoyl-binding domain).

One of the intensively studied peptide classes is 
MHC-binding peptides (Bhasin and Raghava, 
2004c). Peptide binding to MHC is critical for 
antigen recognition by T-cells. One of the mecha-
nisms of immune response to foreign or self protein 
antigens is the activation of T-cells by the recogni-
tion of T-cell receptors of specifi c peptides degraded 
from these proteins and transported to the surface 
of antigen presenting cells (Abbas and Lichtman, 
2005). Peptides recognized by T-cells are potential 
tools for diagnosis and vaccines for immunotherapy 
of infectious, autoimmune, and cancer diseases 
(Shoshan and Admon, 2004). In many respects, MHC-
binding and other protein-binding peptides possess 
similar characteristics as proteins of specifi c func-
tional classes in that they also share some structural 
and physicochemical features to facilitate the com-
mon function: binding to MHC or other proteins 
(Matsumura et al. 1992; Zhang et al. 1998; McFar-
land and Beeson, 2002).

Support Vector Machine Approach 
for Predicting Functional Classes
of Proteins and Peptides
Support vector machines can be explored for 
functional study of proteins and peptides by 
determining whether their amino acid sequence 
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derived properties conform to those of known 
proteins and peptides of a specifi c functional class 
(Cai and Lin, 2003; Cai et al. 2004b; Cai and Doig, 
2004; Han et al. 2004b; Dobson and Doig, 2005).

The advantage of this approach is that more 
generalized sequence-independent characteristics 
can be extracted from the sequence derived struc-
tural and physicochemical properties of the multiple 
samples that share common functional or interaction 
profi les irrespective of sequence similarity. These 
properties can be used to derive classifi ers (Bock 
and Gough, 2001; Bock and Gough, 2003; Cai and 
Lin, 2003; Han et al. 2004b; Xue et al. 2004b; 
Bhasin and Raghava, 2004c; Cai et al. 2004b; Cai 
and Doig, 2004; Dobson and Doig, 2005; Lo et al. 
2005; Martin et al. 2005; Ben-Hur and Noble, 2005) 
for predicting other proteins and peptides that have 
the same functional or interaction profi les.

The task of predicting the functional class of a 
protein or peptide can be considered as a two-class 
(positive class and negative class) classifi cation 
problem for separating members (positive class) 
and non-members (negative class) of a functional 
or interaction class. SVM and other well established 
two-class classifi cation-based machine learning 
methods can then be applied for developing an 
artifi cial intelligence system to classify a new pro-
tein or peptide into the member or non-member 
class, which is predicted to have a functional or 
interaction profi le if it is classifi ed as a member. 
Sequence-derived structural and physicochemical 
properties have frequently been used for represent-
ing proteins and peptides (Bock and Gough, 2001; 
Bock and Gough, 2003; Cai and Lin, 2003; Bhasin 
and Raghava, 2004c; Cai et al. 2004b; Cai and 
Doig, 2004; Han et al. 2004b; Ben-Hur and Noble, 
2005; Dobson and Doig, 2005; Lo et al. 2005; 
Martin et al. 2005) in the development of SVM and 
other machine learning classifi cation systems for 
predicting the functional and interaction profi les of 
proteins.

Figure 1 illustrates the process of using SVM 
for training and predicting proteins or peptides that 
have a specifi c common functional or interaction 
profi le. Proteins or peptides known to have and not 
have the profi le are represented by separate sets of 
feature vectors, which are composed of descriptors 
derived from the sequence of these proteins or 
peptides for representing their structural and 
physicochemical properties. These two sets of 
feature vectors are projected into a multi-dimensional 
space in which they are separated by a hyper-plane 

in such a way that those having the profi le are on 
one side and those without the profi le are on the 
other side of the hyper-plane. A new protein or 
peptide can be predicted to have the same profi le 
if its feature vector is projected on the side of the 
hyper-plane where other proteins or peptides 
having the profi le are located.

Representation of Protein
and Peptide Sequences
Protein or peptide sequences have been represented 
by a number of amino acid sequence derived struc-
tural and physicochemical descriptors (Bock and 
Gough, 2001; Karchin et al. 2002; Cai et al. 2003; 
Gasteiger, 2005). They include amino acid compo-
sition, dipeptide composition, sequence autocor-
relation descriptors, sequence coupling descriptors, 
and the descriptors for the composition, transition 
and distribution of hydrophibicity, polarity, polar-
izibility, charge, secondary structures, and normal-
ized Van der Waals volumes. Web servers such as 
PROFEAT (Li et al. 2006) (http://jing.cz3.nus.
edu.sg/cgi-bin/prof/prof.cgi) and ProtParam 
(Gasteiger et al. 2005) (http://www.expasy.org/
tools/protparam.html) have appeared for facilitating 
the computation of these descriptors. CBS Predic-
tion Servers (http://www.cbs.dtu.dk/services/) can 
be used for computing other sequence derived 
features such as cleavage sites, nuclear export sig-
nals, and subcellular localization.

Amino acid composition is the fraction of each 
amino acid type in a sequence f (r) = Nr / N, where 
r = 1, 2, 3, …, 20, Nr is the number of amino acid 
of type r and N is sequence length. Dipeptide 
composition is defi ned as fr (r,s)  =  Nrs / (N−1), 
where r,s = 1, 2, 3, …, 20, and Nij is the number 
of dipeptide represented by amino acid type r and 
s (Bhasin and Raghava, 2004a). Autocorrelation 
descriptors are defined from the distribution 
of amino acid properties along the sequence 
(Kawashima and Kanehisa, 2000). The amino 
acid indices used in these autocorrelation descrip-
tors include hydrophobicity scales (Cid et al. 
1992), average fl exibility indices (Bhaskaran and 
Ponnuswammy, 1988), polarizability parameter 
(Charton and Charton, 1982), free energy of solu-
tion in water (Charton and Charton, 1982), residue 
accessible surface area in trepeptide (Chothia, 
1976), residue volume (Bigelow, 1967), steric 
parameter (Charton, 1981), and relative mutabil-
ity (Dayhoff and Calderone, 1978). Each of these 
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indices is centralized and normalized before the 
calculation. The frequently used autocorrelated 
descriptors include Moreau-Broto autocorrelation 
descriptors, normalized Moreau-Broto autocor-
relation descriptors and Geary autocorrelation 
descriptors.

The quasi-sequence-order descriptors are derived 
from both the Schneider-Wrede physicochemical 
distance matrix (Schneider and Wrede, 1994; Chou, 
2000; Chou and Cai, 2004) and the Grantham 
chemical distance matrix (Grantham, 1974) between 
the 20 amino acids.

Figure 1. Schematic diagram illustrating the process of the training and prediction of the functional class of proteins and peptides by using 
support vector machine (SVM) method. A,B: feature vectors of proteins belong to a functional class; E,F: feature vectors of proteins not 
belong to a functional class. Sequence-derived feature hj, vj, pj, … represents such structural and physicochemical properties as hydropho-
bicity, polarizability, and volume; or such properties as domain information, subcellular localization, and post-translational (PT) modifi cation 
profi les etc.
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Three descriptors, composition (C), transition (T) 
and distribution (D), are derived for each of the fol-
lowing physicochemical properties: hydrophibicity, 
polarity, polarizibility, charge, secondary struc-
tures, and normalized Van der Waals volume 
(Dubchak et al. 1995; Dubchak et al. 1999; Cai 
et al. 2003). For each property, the constituent 
amino acids in a protein or peptide are divided in 
three classes according to its attribute such that 
each amino acid is encoded by one of the indices 
1, 2, 3 according to the class it belongs to. For 
instance, amino acids can be divided into hydro-
phobic (CVLIMFW), neutral (GASTPHY), and 
polar (RKEDQN) groups. C represents the number 
of amino acids of a particular property (such as 
hydrophobicity) divided by the total number of 
amino acids in a protein sequence. T characterizes 
the percent frequency with which amino acids of 
a particular property is followed by amino acids 
of a different property. D measures the chain length 
within which the fi rst, 25%, 50%, 75% and 100% 
of the amino acids of a particular property is 
located respectively. Overall, there are 21 elements 
representing these three descriptors: 3 for C, 3 for 
T and 15 for D.

Algorithms and Software Tools
of Support Vector Machines
SVM can be divided into linear and nonlinear 
SVM. Linear SVM directly constructs a hyperplane 
in the feature space to separate positive examples 
from negative examples. On the other hand, non-
linear SVM projects both positive and negative 
examples into a higher-dimensional feature space 
and then separates them in that space. The follow-
ing is a brief description of the algorithms of SVM. 
SVM software tools and SVM-based servers for 
predicting functional class of proteins and peptides 
are listed in Table 1.

Let the training data of two separate classes, each 
containing n samples, be represented by (x1, y1), (x2, 
y2), …, (xn, yn ), i = 1, 2, …, n, where xi ∈ RN is a 
vector in an N-dimensional space representing vari-
ous physicochemical and structural properties of a 
protein or peptide, and yi ∈(–1, +1) indicates class 
label (e.g. (+) represents members and (–) non-mem-
bers of a functional class). In linear SVM, given a 
weight vector w and a bias b, it is assumed that these 
two classes can be separated by two margins parallel 
to the hyper-plane as illustrated in Figure 2 (a), which 
can be represented as a single inequality:

 ( ) 1,  for 1, 2, ,+ ≥ = …i iy b i nw x⋅  (1)

where w = (w1, w2, …, wn)T is a vector of n elements. 
As shown in Figure 2 (b), there are a number of 
separate hyper-planes for an identical group of 
training data. The objective of SVM is to determine 
the optimal weight w0 and optimal bias b0 such that 
the corresponding hyper-plane separates S+ and 
S– with a maximum margin and gives the best 
prediction performance. This hyper-plane is called 
Optimal Separating Hyper-plane (OSH) as illus-
trated in Figure 2 (c).

The equation for a hyper-plane can be written as:

 0+ =i bw x⋅  (2)

By using geometry, the distance between the 
two corresponding margins is 2 / w . Therefore, 
the OSH can be obtained by minimizing w
under inequality constraints (Eq. (1)). This 
optimization problem could be efficiently 
solved with the introduction of Lagrangian 
multiplier ai.

 [ ]
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The solution to this optimization Quadratic Pro-
gramming (QP) problem requires that the gradient 
of L(w, b, α) with respect to w and b vanishes, 
resulting in the following conditions:
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1

α
=

= ∑
n

i i i
i

yw x  (4)

 
1

0α
=

=∑
n

i i
i

y  (5)

By substituting Eqs. (4) and (5) into Eq. (3), the 
QP problem becomes the maximization of the fol-
lowing expression:
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where C is a penalty for training errors for soft-
margin SVM and is equal to infi nity for hard-
margin SVM.

The points located on the two optimal margins 
will have nonzero coeffi cients α i among the solu-
tions to Eq. (6), and are called Support Vectors 
(SV). The bias b0 can be calculated as follows:

 b
i i i iy i y i0 1 0 1 0

1
2

= − ⋅ + ⋅{ }= + = −
min ( ) max ( )

{ | } { | }x x
w x w x  

(8)

After determination of support vectors and bias, 
the decision function that separates the two classes 
can be written as:

 

n

0
i=1

0
SV

( ) sign

sign

α

α

⎡ ⎤
= ⋅ +⎢ ⎥

⎣ ⎦
⎡ ⎤

= ⋅ +⎢ ⎥
⎣ ⎦

∑

∑

i i i

i i i

f y b

y b

x x x

x x

 (9)

Nonlinear SVM projects feature vectors into a high 
dimensional feature space by using a kernel func-
tion K(x,y). The linear SVM procedure is then 
applied to the feature vectors in this feature space. 
After the determination of w and b, a given vector 
x can be classifi ed by using

 f x y K x x bi i i
SV

( ) ,= ( ) +
⎛
⎝⎜

⎞
⎠⎟∑sign α 0  (10)

A positive or negative value indicates that the vec-
tor x belongs to the members or non-members of 
a functional class, respectively.

In Equation (10), Kernel function K(x,y) repre-
sents a legitimate inner product in the input 
space:

 ( ) ( ) ( )φ φ= ⋅K x,y x y  (11)

A number of kernel functions have be used in SVM. 
Examples of the most popular ones are:

 Polynominal: ( )( , ) 1= ⋅ +
p

i j i jK x x x x  (12)

 Gaussian: 
2 2/ 2( , ) σ− −= j i

i jK e x xx x  (13)

 Sigmoid: ( , ) tan h( )κ= +i j i jK x x cx x  (14)

A vector has a limited number of components, each 
representing a specifi c physicochemical, structural 
or biological quantity. Each quantity is normalized 
or scaled, such that its value is of fi nite value. From 
a practical point of view, x ⋅ y is of fi nite value so 
as to avoid the value of polynomial kernel reaching 
infi nity.

Methods for Training, Testing
and Estimating Generalization 
Capabilities of Support Vector 
Machines Classifi cation Systems
Several validation methods have been used for 
training, testing, and estimating generalization 
errors of a SVM model (Bhasin and Raghava, 
2004a; Martin et al. 2005; Plewczynski et al. 2005; 
Lei and Dai, 2006) based on a “re-sampling” 
strategy (Weiss and Kulikowski, 1991; Shao and 
Tu, 1995). The commonly used validation methods 
include N-fold cross validation, leave one out, leave 
v out, jack-knifi ng, and bootstrapping. In N-fold 
cross validation, samples are randomly divided into 
N subsets of approximately equal size. N-1 subsets 
are used as a training set for developing a SVM 
model, and the remaining one is used as a testing 
set for evaluating the prediction performance of 
that model. This process is repeated N times such 
that every subset is used as a testing set once. The 
average accuracy of the N number of SVM models 
is used for measuring the generalization capability 
of the SVM method. When N equals to the total 
number of samples, the method is called “leave one 
out” such that every sample is used for testing a 
SVM model trained by using all of the other
samples. “Leave-v-out” is a more elaborate and 
expensive version of the “leave something out” 
cross-validation that involves leaving out all 
possible combinations of v samples as a test set. In 
jack-knifi ng, samples are distributed and used for 
training and testing the SVM models in the same 
way as that of “leave one out” method, but the gen-
eralization error of the derived SVM models is 
estimated based on the comparison of the average 
accuracy of subsets and that of all sets of these SVM 
models. In bootstrapping, different combinations of 
randomly selected subsets of samples are separately 
used for training SVM models each of which is 
tested by using the compounds not included in the 
respective training set.



26

Tang et al

Bioinformatics and Biology Insights 2007:1

Moreover, independent evaluation sets have 
also been used for testing the performance of SVM 
classifi cation systems (Cai et al. 2003; Liu et al. 
2005; Wang et al. 2005; Lin et al. 2006c). In using 
this approach, samples are divided into training, 

testing, and independent validation set based on 
their distribution in protein or peptide descriptor 
space. Protein or peptide descriptor space is defi ned 
by the commonly used structural and chemical 
descriptors of proteins or peptides. Samples can 

Table 1. Web-servers for computing functional class of proteins and peptides by using support vector machines. 
Web-sites of support vector machine software are also given.

Category Web-server or software URL
Server for Predicting CTKPred: SVM prediction and http://bioinfo.tsinghua.edu.cn/
Protein Functional Class classifi cation of the cytokine family ~huangni/CTKP red/

 GPCRpred: SVM prediction of http://www.imtech.res.in/raghava/
 families and subfamilies of gpcrpred/info.html
 G-protein coupled receptors

 pSLIP: SVM protein subcellular http://pslip.bii.a-star.edu.sg/
 localization prediction

 SVMProt: SVM protein functional http://jing.cz3.nus.edu.sg/cgi-bin/
 family prediction from protein  svmprot.cgi
 sequence

Server for Predicting MHC-BPS: SVM prediction of MHC- http://bidd.cz3.nus.edu.sg/mhc/
Peptide Functional Class binding peptides of fl exible lengths

 SVMHC: SVM prediction of MHC- http://www.sbc.su.se/svmhc/
 binding peptides

 SVRMHC: SVM prediction of MHC- http://svrmhc.umn.edu/SVRMHCdb/
 binding peptide

 WAPP: SVM prediction of MHC- http://www-bs.informatik.
 binding, proteasomal cleavage and unituebingen.de/WAPP
 TAP transport peptides

SVM Software SVM light http://svmlight.joachims.org/
and servers
 LIBSVM http://www.csie.ntu.edu.tw/~cjlin/
  libsvm/

 mySVM http://www-ai.cs.unidortmund.de/
  SOFTWARE/MYSVM/index.html

 SMO http://www.datalab.uci.edu/people/
  xge/svm/

 BSVM http://www.csie.ntu.edu.tw/~cjlin/bsvm/

 WinSVM http://www.cs.ucl.ac.uk/staff/M.Sewel1/
  winsvm/

 LS-SVMlab http://www.esat.kuleuven.ac.be/
  sista/lssvmblab/

 GIST SVM Server http://svm.sdsc.edu
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be clustered into groups based on their distance in 
the descriptor space by using such methods as 
hierarchical clustering (Johnson, 1967). An upper-
limit of the largest separation of r can be used for 
restricting the size of each cluster. One or more 
representative samples are randomly selected from 
each group to form a training set that is suffi ciently 
diverse and broadly distributed in the chemical 

space. One or more of the remaining compounds 
in each group are randomly selected to form the 
testing set. The remaining samples are used as the 
independent evaluation set, which show reasonable 
level of structural diversity and distinction with 
respect to compounds of other groups.

The performance of SVM has been measured 
by using the positive prediction accuracy P+ for 

(a)

(b) (c)

(d)

Figure 2. Support vector machines. (a) Defi nition of hyper-plane and margin. The circular dots and square dots represent samples of class 
–1 and class +1, respectively. (b) The available hyper-planes H, H’, H’’, …, corresponding to a set of training data. (c) Unique optimal 
separating hyper-plane of a set of training data. (d) Basic idea of support vector machines: Projection of the training data nonlinearly into a 
higher-dimensional feature space via φ, and subsequent construction of a separating hyper-plane with maximum margin in that space.
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proteins that have a specifi c property and the 
negative prediction accuracy P– for proteins 
without that property (Bock and Gough, 2001; 
Bock and Gough, 2003; Cai and Lin, 2003; Bhasin 
and Raghava, 2004c; Cai et al. 2004b; Cai and 
Doig, 2004; Han et al. 2004b; Xue et al. 2004b; 
Dobson and Doig, 2005; Lo et al. 2005; Martin 
et al. 2005; Ben-Hur and Noble, 2005). Moreover, 
an overall accuracy P = (TP+TN)/N, where TP and 
TN is the true positive and true negative respec-
tively and N is the number of proteins or peptides, 
can also be used to indicate the overall prediction 
performance. In some cases, P, P+ and P– are insuf-
fi cient to provide a complete assessment of the 
performance of a discriminative method (Provost 
et al. 1998; Baldi et al. 2000). Thus the Matthews 
correlation coeffi cient MCC = (TP × TN – FP × FN   ) / 

( )( )( )( )TP FN TP FP TN FP TN FN+ + + + h a s 
been used for measuring the performance of sup-
port vector machine (Bhasin and Raghava 2004a; 
Bhasin and Raghava 2004b; Cai et al. 2004b; Han 
et al. 2004b; Huang et al. 2005; Kumar et al. 
2006).

Assessment of the Performance
of Support Vector Machine
Classifi cation Systems

Performance for predicting functional 
classes of proteins and peptides
Table 2 summarizes the reported performance of 
the use of SVM for predicting protein functional 
classes. The reported P+ and P– values are in the 
range of 25.0%~100.0% and 69.0%~100.0%, with 
the majority concentrated in the range of 75%~95% 
and 80%~99.9% respectively. Based on these 
reported results, SVM generally shows certain 
level of capability for predicting the functional 
class of proteins and protein-protein interactions. 
In many of these reported studies, the prediction 
accuracy for the non-members appears to be better 
than that for the members. The higher prediction 
accuracy for non-members likely results from the 
availability of more diverse set of non-members 
than that of members, which enables SVM to 
perform a better statistical learning for recognition 
of non-members.

The performance of SVM for predicting func-
tional classes of peptides are given in Table 3. 
Prediction of protein-binding peptides have primar-
ily been focused on MHC-binding peptides (Bhasin 

and Raghava, 2004c), the reported P+ and P– values 
for MHC binding peptides are in the range of 
75.0%∼99.2% and 97.5%∼99.9%, with the majority 
concentrated in the range of 93.3%∼95.0% and 
99.7%~99.9% respectively. These studies have 
demonstrated that, apart from the prediction of 
protein functional classes, SVM is equally useful 
for predicting protein-binding peptides and small 
molecules.

Performance for predicting functional 
classes of novel proteins
The performance of SVM for predicting the func-
tional profile of novel proteins has also been 
evaluated by several studies listed in Table 4. These 
novel proteins are of two types. The fi rst includes 
several groups of proteins that have no homologous 
counterpart in well-established protein database, 
and the second contains pairs of homologous 
enzymes that belong to different functional fami-
lies. The non-homologous nature of the fi rst type 
of novel proteins complicates the task of using 
sequence alignment and clustering methods for 
determining their functions. On the other hand, the 
homologous nature of the second type of novel 
proteins may result in false association of proteins 
of different functional families if sequence similar-
ity is used as the sole indicator of functional asso-
ciation. Therefore, it is desirable to explore other 
methods with less or no reliance on homology to 
complement sequence similarity and clustering 
methods (Smith and Zhang, 1997; Eisenberg et al. 
2000). From Table 4, SVM appears to have the 
capacity of correct prediction of 46.3%~76.7% of 
the novel proteins found from the literatures.

The ability of SVM in predicting the functional 
profi le of the fi rst type of novel proteins have been 
attributed to the non-discriminative nature of SVM 
for selecting class members, and to the use of struc-
tural and physicochemical descriptors for represent-
ing proteins (Hou et al. 2004; Han et al. 2004a; Cui 
et al. 2005; Han et al. 2005a; Zhang et al. 2005). In 
some cases, protein function is determined by spe-
cifi c structural and chemical features at active sites, 
and these features are shared by distantly related as 
well as closely related proteins of the same func-
tional property (Schomburg et al. 2002). Some of 
these function-related features might be captured by 
the residue properties such as hydrophobicity, 
normalized van der Waals volume, polarity, polariz-
ability, charge, surface tension, secondary structures 
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and solvent accessibility (Bull and Breese, 1974; 
Lin and Timasheff, 1996), which have been incor-
porated in the descriptors used in the construction 
of the feature vectors for these proteins.

The function of a protein is determined by a 
variety of factors. Changes such as local active-site 
mutation, variations in surface loops, and recruit-
ment of additional domains may result in functional 
diversity among homologous proteins (Todd et al. 
2001). While these changes appear to be small at 
the local sequence level, some of the aspects of 
these changes may also be captured by the descrip-
tors associated with hydrophobicity, normalized 
van der Waals volume, polarity, polarizability, 
charge, surface tension, secondary structure and 
solvent accessibility.

Performance for predicting proteins 
with specifi c structural characteristics
Subgroups of proteins of specifi c functional classes 
are known to have common structural features. 
For instance, a number of RNA-binding proteins 
have a modular structure and contain RNA-binding 
domains of 70–150 amino acids that mediate RNA 
recognition (Mattaj, 1993; Perez-Canadillas and 
Varani, 2001). Three classes of RNA-binding 
domains have been documented to bind RNA 
in a sequence independent manner, and these 
domains are RNA-recognition motif (RRM), 
double-stranded RNA-binding motif (dsRM), and 
K-homology (KH) domain (Perez-Canadillas and 
Varani, 2001). A fourth class of RNA-binding 
domain, S1 RNA-binding domain, has also been 
found in a number of RNA-associated proteins 
(Bycroft et al. 1997). These domains have distin-
guished structural features responsible for RNA 
recognition and binding. Thus the performance of 
SVM classifi cation of functional classes of proteins 
can be evaluated by examining whether or not 
proteins containing one of these domains can be 
correctly classifi ed into the respective class (Han 
et al. 2004b; Leslie et al. 2004; Kunik et al. 2005; 
Lin et al. 2006c).

A search of protein family and sequence data-
bases shows that there are a total of 260, 74, 190, 
and 41 RNA-binding protein sequences known to 
contain RRM, dsRM, KH and S1 RNA-binding 
domain respectively. The majority of these 
sequences are included in the training and testing 
set of all RNA-binding proteins. In the correspond-
ing independent evaluation set, there are 35, 16, 



35

Prediction of functional class of proteins and peptides

Bioinformatics and Biology Insights 2007:1 

93, and 10 sequences containing RRM, dsRM, KH, 
and S1 RNA-binding domain respectively. All but 
one protein sequence are correctly classifi ed as 
RNA-binding by SVM, which shows the capabil-
ity of SVM (Han et al. 2004b). The only incorrectly 
predicted protein sequence is HnRNP-E2 protein 
fragment in the group that contains KH domain. 

The incompleteness of this sequence might 
partially contribute to its incorrect prediction by 
SVM.

In another example, some lipid-binding proteins 
are known to contain lipid-binding domains or 
motifs (Balla, 2005). Several families of such lipid-
binding proteins have been documented and 

Table 3. Performance of support vector machine prediction of functional classes of peptides. N+ and N– are the 
number of members and non-members in a class, P+ and P– are the reported prediction accuracy for members 
and non-member respectively, and P is the reported overall accuracy.

HLA Peptide Number of Validation Reported prediction accuracy  Reference
Allele descriptors peptides in method
  training set (N+/N–) P+(%) P–(%) P(%)
  N (N+/N–) 
A0201 Orthogonal (36/167) 10-fold cross 76.3 71.2 71.6 (Zhao et al.
 factors from  validation 55.0 87.4 81.7 2003)
 physical   46.3 89.8 86.7
 properties
 Amino acid 113 10-fold cross 90.0  78.0 (Donnes and
 sequence  validation   (Mc) Elofsson,
       2002)
 physico- (1125/6911) Validationset  99.2 97.5 97.5
 chemical  (130/6664)
 properties
A1 Amino acid 28 10-fold cross 98.0  96.0 (Donnes and
 sequence  validation   (Mc) Elofsson,
       2002)
 physico- (200/6831) Validation set 75.0 99.7 99.6
 chemical  (40/6830)
 properties
A3 Amino acid 73 10-fold cross 91.0  80.0 (Donnes and 
 sequence  validation   (Mc) Elofsson,
       2002)
 physico- (139/6833) Validation set 93.3 98.8 98.7
 chemical  (30/6833)
 properties
B8 Amino acid 25 10-fold cross 91.0  79.0 (Donnes and
 sequence  validation   (Mc) Elofsson,
       2002)
 physico- (168/6833) Validation set 95.0 99.8 99.8
 chemical  (20/6830)
 properties
B2705 Amino acid 29 10-fold cross 100.0  100.0 (Donnes and 
 sequence  validation   (Mc) Elofsson,
        2002)
 physico- (141/7361) Validation set 95.0 99.9 99.9
 chemical  (21/7359)
 properties
DRB1.0401 Binary code 567 5-fold cross 80.287.1 77.485.0 78.886.1 (Bhasin and
 of amino acid  validation    Raghava,
 sequence      2004d)
 physico-  (539/6883) Validation set 95.0 99.9 99.9
 chemical  (100/6704)
 properties
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Table 4. Performance of support vector machine prediction of functional classes of novel proteins.

Protein group and No. of  Percentage  Examples of correctly Examples of incorrectly
year of report proteins or of correctly predicted proteins predicted proteins
 protein predicted or protein pairs or protein pairs
 pairs proteins
Enzymes without 12 66.7% Thiocyanate hydrolase Extracellular phospholi-
a homolog in NR   beta subunit (EC 3.5.5.8) pase (EC 3.1.1.5)
databases 2004   [O66186] [P82476]
(Han et al. 2004a)   Potential cysteine Alginate lyase precursor
   protease avirulence (EC4.2.2.3) [P39049]
   protein avrPpiC2
   (EC 3.4.22.-) [Q9F3T4]
   Extracellular phospholi-
   pase (EC 3.1.1.5) [P82476]
Enzymes without a 50 72% DNA polymerase III, theta Beta-agarase B
homolog in   subunit (EC 2.7.7.7) (EC 3.2.1.81) [P488401]
Swissprot   [P28689] Alpha-N-AFase II
database 2004   Telomere elongation protein (EC 3.2.1.55)
(Han et al. 2004a)   (EC2.7.7.-) [P17214] [P39049]
   Ammonia monooxygenase
   (EC 1.13.12.-) [Q04508]
Viral proteins 25 72% Endonuclease II[P07059] TRL10 (Structural 
without a homolog   Outer capsid protein envelop glycoprotein)
in Swissprot   VP4 [P35746] [AAL27474]
database 2004   Protein kinase [P00513] BARF0 protein
(Han et al. 2005a)    [Q8AZJ4]
Bacterial proteins 90 76.7% 2-aminomuconate Alginate lyase
without a homolog   deaminase [P81593] [Q59478]
in Swissprot   Aminopeptidase Alpha-N-AFase II
database 2004   G [Q54340] [P82594]
(Cui et al. 2005)
Plant proteins 31 71.4% Antimicrobial peptide LeMan3 [Q9FUQ6]
without a homolog   4 [AAL05055] MAN5 [Q6YM50]
in Swissprot   Sucrose phosphatase 
database   [Q84ZX9]
(Han et al. 2005b)
Pairs of homologous 8 62% Glycolateoxidase Cystathionine gamma-
enzymes of different   [P05414] and IPP synthase [P38675] and
families 2004   isomerase [Q84W37] Methionine gamma-lyase
(Han et al. 2004a)   Creatine amidinohydro- [P13254]
   lase [P38488] and Exocellobiohydrolase
   Prolinedipeptidase 1[P38676] and
   [O58885] Cystathionine gamma- 
    lyase [Q8VCN5]
Remote homologs 445 46.3% 1cem (1,4-D-glucan-
(Zhang et al. 2005)   glucanohydrolase
from FSSP database   catalytic domain) and it’s
(Holm and Sander,   remote homolog 1qazA
1996) 2005   (Alginate lyase A1-III from
   Sphingomonas Species;
   Chain: A;)
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examples of these families are TIM, PP-binding or 
GCV_H. These families have distinguished struc-
tural features responsible for lipid recognition and 
binding. A search of protein family and sequence 
databases shows that there are 227, 184, and 139 
lipid-binding protein sequences known to contain 
TIM, PP-binding or GCV_H domain respectively. 
The majority of these sequences are included in 
the training and testing set of all lipid-binding 
proteins. In the corresponding independent evalu-
ation set, there are 81, 27, and 30 sequences 
containing TIM, PP-binding or GCV_H domain 
respectively. Most of these protein sequences are 
correctly classifi ed as lipid-binding by SVM, and 
there is only 1, 1, and 2 misclassifi ed sequences in 
the TIM, PP-binding or GCV_H domain families 
respectively (Lin et al. 2006c). The incorrectly 
predicted protein sequences are triosephosphate 
isomerase (fragment), putative acyl carrier protein, 
mitochondrial precursor, glycine cleavage system 
H protein, mitochondrial precursor (fragment), 
probable glycine cleavage system H protein 2 and 
mitochondrial precursor. Most of these incorrectly 
predicted sequences are fragments. Therefore, 
sequence incompleteness appears to be a factor 
that partially contributes to the incorrect prediction 
of these sequences by SVM.

Effect of different sets of protein 
descriptors to the classifi cation
of functional classes of proteins
As shown in Table 2 and Table 3, different sets of 
protein descriptors have been used in SVM predic-
tion of various functional classes of proteins and 
peptides, all of which have shown impressive 
predictive performances (Chou and Cai, 2005; 
Gao et al. 2005; Li et al. 2006). Non-the-less, there 
is a need to comparatively evaluate the effective-
ness of these descriptor-sets in a single study and 
to examine whether combined use of these 
descriptor-sets help to improve predictive perfor-
mance. For such a purpose, we tested the perfor-
mance of seven popular descriptor-sets and two 
of their combinations in SVM prediction of six 
different classes of proteins. These sets are amino 
acid composition (Chou and Cai, 2005) (class 1), 
dipeptide composition (Gao et al. 2005) (class 2), 
normalized Moreau–Broto autocorrelation (Feng 
and Zhang, 2000; Lin and Pan, 2001) (class 3), 
Moran autocorrelation (Horne, 1988) (class 4), 
Geary autocorrelation (Sokal and Thomson, 2006) 

(class 5), sets of composition, transition and dis-
tribution of physicochemical properties (Dubchak 
et al. 1995; Dubchak et al. 1999; Bock and Gough, 
2001; Cai et al. 2003; Cai et al. 2004a; Han et al. 
2004b; Lo et al. 2005; Lin et al. 2006a; Cui et al. 
2007a) (class 6), sequence order (Grantham 1974; 
Schneider and Wrede, 1994; Chou, 2000; Chou 
and Cai, 2004) (class 7), the frequently used com-
bination of amino acid composition and dipeptide 
composition (Gao et al. 2005) (class 8), and com-
bination of the seven individual sets of descriptors 
(class 9). The six protein functional classes are 
e n z y m e  E C 2 . 4  ( N C - I U B M B  1 9 9 2 ) ,
G protein-coupled receptors, transporter TC8.A 
(Saier et al. 2006), chlorophyll (Suzuki et al. 
1997), lipid synthesis proteins involved in lipid 
synthesis, and rRNA-binding proteins. These 
classes were selected because of their functional 
diversity and level of diffi culty in achieving high 
prediction performance. The reported SVM pre-
diction performance for these classes tend to be 
lower than other classes (Cai et al. 2004a), which 
are ideal for critically evaluating the effectiveness 
of different descriptor-sets.

The dataset statistics and SVM performance 
of the nine descriptor-sets are given in Table 5 
and the overall performance scores of these 
descriptor-sets are given in Table 6. The overall 
performance scores are composed of 4 categories 
defi ned by the values of MCC of a SVM model: 
“Exceptional”, “Good”, “Fair” and “Poor” when 
MCC is in the range of �0.9, 0.8–0.9, 0.6–0.8, 
and �0.6 respectively. Overall, there is no single 
preferred descriptor-set for all cases. Sets 6, 8, 
and 9 tend to exhibit higher sensitivity, with the 
exception of chlorophyll proteins, while classes 1 
and 7 tend to be among the lowest ranked. The 
combined classes 8 and 9 generally give the high-
est MCC values, again with the exception of 
chlorophyll proteins, while classes 1 and 7 tend 
to return the lowest MCC values. These fi ndings 
are consistent with the results from a reported 
study that suggest that amino acid composition, 
polarity, solvent accessibility and charge, are 
more important than other properties, in order of 
prominence, for SVM classifi cation of specifi c 
protein functional classes (Lin et al. 2006b). 
Using the entire set of descriptors (class 9) does 
not necessarily always gives better performance, 
which is consistent with the fi ndings that analysis 
of the contribution of individual descriptors and 
the selection of the relevant ones are highly useful 
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for improving SVM prediction performance (Glen 
et al. 1989; Xue et al. 1999; Xue and Bajorath 
2000; Xue et al. 2000).

Contribution of individual protein 
descriptors to the classifi cation
of functional classes of proteins
In using SVM for predicting functional classes of 
proteins, several descriptors have been used to 
describe physicochemical characteristics of each 
protein (Bock and Gough, 2001; Ding and Dubchak, 
2001; Cai et al. 2002a; Cai et al. 2002b; Cai et al. 
2003; Han et al. 2004b). It has been reported that, 
not all descriptors contribute equally to the 
classifi cation of proteins, some have been found to 
play relatively more prominent role than others in 
specifi c aspects of proteins (Ding and Dubchak, 
2001). It is therefore of interest to examine which 
descriptors are more important in the classifi cation 
of proteins. Contribution of individual descriptors 
to protein classifi cation has been investigated by 
separately conducting classification using each 
feature property (Ding and Dubchak, 2001). By 
using the same method, one fi nds that, in order of 
prominence, the polarity, hydrophobicity, amino 
acid composition, and solvent accessibility play 
more prominent roles than other feature properties 
in the classifi cation of lipid-binding protein (Lin 
et al. 2006c). Polarity and hydrophobicity have been 
shown to be important for lipid-protein interactions 
such that lipid binding sites are located in a hydro-
phobic and low polarity environment (Lugo and 
Sharom, 2005). High-affi nity lipid binding site in 
some proteins appear to be located at sequence seg-
ments with specific amino acid composition 
(Hamilton et al. 1986), and specifi c sequence motifs 
have been used for predicting lipid-binding proteins 
(Gonnet and Lisacek, 2002; Eisenhaber et al. 2003; 
Juncker et al. 2003; Gonnet et al. 2004; Eisenhaber 
et al. 2004). A study of apolipophorin-III in lipid-free 
and phospholipid-bound states showed that lipid-
binding involves increased solvent accessibility due 
to gross tertiary structural reorganization (Raussens 
et al. 1996). Therefore, the selected descriptors are 
consistent with these experimental fi ndings.

Analysis of descriptor contributions
by using feature selection method
More rigorous feature selection methods (Xue et al. 
2004a; Al-Shahib et al. 2005a; Al-Shahib et al. 

2005b;), such as recursive feature elimination 
(RFE) (Guyon et al. 2002), can be applied to the 
SVM classifi cation of functional classes of proteins 
to select those descriptors most relevant to the 
prediction of proteins of a particular class (Guyon 
et al. 2002; Yu et al. 2003). The details of the 
implementation of this method can be found in the 
literatures (Xue et al. 2004a; Xue et al. 2004b). 
Feature selection procedure can be demonstrated 
by the following illustrative example of the devel-
opment of a SVM classifi cation system for predict-
ing DNA-binding proteins: This system is trained 
by using a Gaussian kernel function with an adjust-
able parameter σ. Sequential variation of σ is 
conducted against the whole training set to fi nd a 
value that gives the best prediction accuracy. This 
prediction accuracy is evaluated by means of 5-fold 
cross-validation. In the fi rst step, for a fi xed σ, the 
SVM classifi er is trained by using the complete set 
of features (protein descriptors) described in the 
previous section. The second step involves the 
computation of the ranking criterion score DJ(i) 
for each feature in the current set. All of the com-
puted DJ(i) is subsequently ranked in descending 
order. The third step involves the removal the m 
features with smallest criterion scores. In the fourth 
step, the SVM classifi cation system is re-trained 
by using the remaining set of features, and the 
corresponding prediction accuracy is computed by 
means of 5-fold cross-validation. The fi rst to fourth 
steps are then repeated for other values of σ. After 
the completion of these procedures, the set of fea-
tures and parameter σ that give the best prediction 
accuracy are selected.

A total of 28 features were selected by RFE, 
which are given in Table 7. In order of prominence, 
compositions of specific amino acids, Van der 
Waalse volume, polarity, polarizability, surface ten-
sion, secondary structure, and solvent accessibility 
are found to be important for predicting DNA-bind-
ing proteins. Protein-DNA binding is known to 
involve specifi c recognition sequence and induced 
conformation changes (Cheng et al. 1993). There-
fore it is expected that the combined features of 
amino acid composition and surface tension is 
important for characterizing DNA-binding proteins. 
DNA binding also involves spatial arrangement or 
pre-arrangement of specifi c group of amino acids 
at the binding site (Patel et al. 2006). It is thus not 
surprising that such important interactions as polar-
izability, hydrophobicity, polarity and surface ten-
sion are coupled to the size of the amino acid 
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Table 6. MCC-based performance scores of SVM prediction of different protein functional classes by using
different descriptor classes.

Protein Exceptional Good Fair Poor 
functional  > 0.9 0.8–0.9 0.6–0.8 < 0.6
class
EC2.4 9, 8, 3, 4, 5 6, 2, 1, 7
GPCR 9, 6, 2, 3, 8, 4, 5, 1 7
TC8.A  9, 6, 7, 3, 2, 8 4, 5 1
Chlorophyll  3, 5, 4, 9, 6, 2 8, 1 7
Lipid synthesis 8, 9 6, 7, 3, 2, 4, 5, 1
rRNA binding 8, 2, 6, 1, 3, 9, 5, 4, 7

sequence segment at a DNA-binding site. Many 
proteins bind DNA via minor groove interaction 
between protein non-polar surfaces and DNA hydro-
phobic sugar clusters (Tolstorukov et al. 2004). As 
a result, the combined features of hydrophobicity 
and solvent accessibility are expected to be impor-
tant for describing these proteins.

The usefulness of these 28 selected features can 
be further tested by constructing a SVM classifi ca-
tion system based solely on these features. The 
prediction accuracies of this new system are 
87.2% and 92.6% for DNA-binding and non-
DNA-binding proteins respectively, which is 
slightly improved against those of 85.7% and 
91.2% by using all features. This suggests that the 
use of selected subset of features enhances 
prediction performance by reducing the noise cre-
ated by the redundant and irrelevant features.

Comparison of SVM prediction
performance under different kernel 
functions
Apart from the Gaussian kernel function of 
sequence-derived physicochemical properties, 
several other kernel functions have been developed 
and applied for SVM classifi cation of proteins and 
DNAs (Jaakkola et al. 1999; Zien et al. 2000; Tsuda 
et al. 2002; Vert et al. 2003; Vishwanathan and 
Smola, 2003; Leslie et al. 2003; Liao and Noble, 
2003; Ratsch et al. 2005; Kuang et al. 2005). It is 
of interest to test the usefulness of some of these 
kernel functions for predicting functional classes 
of proteins. The string-kernel function has been 
extensively used and it has shown promising poten-
tial for protein and DNA studies (Vishwanathan and 
Smola, 2003; Ratsch et al. 2005). This kernel func-
tion is constructed by comparison of sequences of 
classes of proteins or DNAs and the assignment of 

individual weights to amino acids or nucleotides to 
describe physicochemical or other characteristics 
of the proteins and DNAs. This kernel function is 
used to develop three SVM systems for predicting 
the class of lipid-degradation, lipid metabolism, 
and lipid synthesis proteins. Spectrum kernel with 
mismatches (Leslie et al. 2003) is used to generate 
the string-kernel for each protein. Testing results 
by using an independent set of proteins for each 
class show that the SE is 77.2%, 75.8%, 77.8%, 
and the SP is 97.6%, 96.4%, 94.2% for each of these 
classes respectively (Lin et al. 2006c). Thus com-
parable prediction performance can be achieved by 
using string-kernel SVM, which suggests the use-
fulness of this and other kernel functions for SVM 
prediction of functional classes of proteins.

Comparison of SVM prediction
performance with other machine 
learning methods
Several other machine learning (ML) methods have 
been explored for predicting the functional classes 
of proteins and peptides. These methods include 
artifi cial neural network (ANN), k-nearest neighbors 
(KNN), decision tree and hidden Markov model 
(HMM). They have been used for predicting 
enzymes (Jensen et al. 2002), receptors (Jensen et al. 
2003), transporters (Jensen et al. 2003), structural 
proteins (Jensen et al. 2003), mitochondrial proteins 
(Kumar et al. 2006), cell cycle regulated proteins 
(de Lichtenberg et al. 2003), growth factors (Jensen 
et al. 2003), and allergen proteins (Zorzet et al. 
2002; Soeria-Atmadja et al. 2004). The reported P+ 
and P– values of these ML methods are in the range 
of 37.8%~87% and 66.0%~99.9%, with the major-
ity concentrated in the range of 60%~85% and 
70%~90% respectively. These values are slightly 
lower than the values of 75%~95% and 80%~99.9% 
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Table 7. Protein descriptors important for characterizing DNA-binding proteins as selected by a feature selection 
method, recursive feature elimination method.

Descriptor Descriptor Structural or physicochemical property of descriptor
ranking index
1 F168 Solvent accessibility Composition Group 1
2 F166 Secondary structure Group 3 3/4th Distribution
3 F147 Secondary structure Composition Group 1
4 F75 Polarity Group 2 1/4th First Distribution
5 F43 Normalized Van der Waals volume Composition Group 2
6 F155 Secondary structure Group 1 2/4th Distribution
7 F91 Polarizability Group 1 1/4th First Distribution
8 F143 Surface tension Group 3 1/4th First Distribution
9 F171 Solvent accessibility Transition Group 1
10 F126 Surface tension Composition Group 1
11 F87 Polarizability Transition Group 1
12 F145 Surface tension Group 3 3/4th Distribution
13 F15 Composition of R
14 F6 Composition of G
15 F177 Solvent accessibility Group 1 3/4th Distribution
16 F154 Secondary structure Group 1 1/4th First Distribution
17 F89 Polarizability Transition Group 3
18 F133 Surface tension Group 1 1/4th First Distribution
19 F42 Normalized Van der Waals volume Composition Group 1
20 F85 Polarizability Composition Group 2
21 F175 Solvent accessibility Group 1 1/4th First Distribution
22 F130 Surface tension Transition Group 2
23 F127 Surface tension Composition Group 2
24 F151 Secondary structure Transition Group 2
25 F98 Polarizability Group 2 3/4th Distribution
26 F8 Composition of I
27 F67 Polarity Transition Group 2
28 F148 Secondary structure Composition Group 2

of the SVM, suggesting that other ML methods are 
also useful for predicting the functional class of 
proteins and peptides.

Underlying Diffi culties in Using 
Support Vector Machines
The performance of SVM critically depends on the 
diversity of samples (proteins and peptides) in a 
training dataset and the appropriate representation 
of these samples. The datasets used in many of the 
reported studies are not expected to be fully repre-
sentative of all of the proteins, peptides and small 
molecules with and without a particular functional 
and interaction profi le. Various degrees of inade-
quate sampling representation likely affect, to a 
certain extent, the prediction accuracy of the 
developed statistical learning models. SVM is not 
applicable for proteins, peptides and small 
molecules with insuffi cient knowledge about their 
specifi c functional and interaction profi le. Searching 

of the information about proteins, peptides and 
small molecules known to possess a particular 
profi le and those do not possess that profi le is a key 
to more extensive exploration of statistical learning 
methods for facilitating the study of protein func-
tional and interaction profi les. Apart from literature 
sources such as PubMed (Beebe, 2006), databases 
such as Swiss-Prot (Dorazilova and Vedralova, 
1992), Genbank (Benson et al. 2004), pirpsd 
(Barker et al. 1999), geneontology (Chalmel et al. 
2005), PDB (Berman et al. 2000), enzyme database 
(Bairoch, 2000), TransportDB (Ren et al. 2004), 
HMTD (Yan and Sadee, 2000), ABCdb (Quentin 
and Fichant, 2000), TiPS (Alexander, 1999), 
GPCRDB (Horn et al. 2003), SYFPEITHI (Ram-
mensee et al. 1999), MHCPEP (Brusic et al. 1996), 
JenPep (Blythe et al. 2002), MHCBN (Bhasin et al. 
2003), FIMM (Schonbach et al. 2000), and FSSP 
database (Holm and Sander, 1996) are also useful 
for obtaining information about protein/peptide 
functional and interaction profi les.
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In the datasets of some of the reported studies, 
there appears to be an imbalance between the 
number of samples having a profi le and those 
without the profi le. SVM method tends to produce 
feature vectors that push the hyper-plane towards 
the side with smaller number of data (Veropoulos, 
1999), which often lead to a reduced prediction 
accuracy for the class with a smaller number of 
samples or less diversity than those of the other 
class. It is however inappropriate to simply reduce 
the size of non-members to artifi cially match that 
of members, since this compromises the diversity 
needed to fully represent all non-members. Com-
putational methods for re-adjusting biased shift of 
hyperplane are being explored (Brown et al. 2000). 
Application of these methods may help improving 
the prediction accuracy of SVM in the cases involv-
ing imbalanced data.

While a number of descriptors have been intro-
duced for representing proteins and peptides (Bock 
and Gough, 2001; Karchin et al. 2002; Cai et al. 
2003; Gasteiger, 2005), most reported studies 
typically use only a portion of these descriptors. It 
has been found that, in some cases, selection of a 
proper subset of descriptors is useful for improving 
the performance of SVM (Xue et al. 2004a; 
Al-Shahib et al. 2005a; Al-Shahib et al. 2005b). 
Therefore, there is a need to explore different com-
bination of descriptors and to select more optimum 
set of descriptors for more cases, which can be 
conducted by using feature selection methods (Xue 
et al. 2004a; Al-Shahib et al. 2005a; Al-Shahib et al. 
2005b). Efforts have also been directed at the 
improvement of the effi ciency and speed of feature 
selection methods (Furlanello et al. 2003), which 
will enable a more extensive application of feature 
selection methods. Moreover, indiscriminate use of 
the existing descriptors, particularly those of over-
lapping and redundant descriptors, may introduce 
noise as well as extending the coverage of some 
aspects of these special features. Thus, it may 
be necessary to introduce new descriptors for the 
systems that have been described by overlapping 
and redundant descriptors. Investigation of cases 
of incorrectly predicted samples have also sug-
gested that the currently-used descriptors may not 
always be suffi cient for fully representing the struc-
tural and physicochemical properties of proteins, 
peptides and small molecules (Xue et al. 2004b; Li 
et al. 2005; Yap and Chen, 2005). These have 
prompted works for developing new descriptors 
(Bhardwaj et al. 2005).

Concluding remarks
SVM has consistently shown promising capabil-
ity for predicting functional classes of proteins 
and peptides. Proper use of descriptors for repre-
senting proteins and peptides may help further 
improving the performance of SVM for predicting 
functional profi les of proteins and peptides. The 
introduction of new descriptors would better 
represent characteristics that correlate with novel 
functional and interaction profi les. Moreover, 
various feature selection methods may be used 
for selecting optimal set of descriptors for a par-
ticular prediction problem. Existing algorithms 
can be improved and new algorithms may be 
introduced for enhancing the performance and 
accuracy of support vector machine. The predic-
tion capability of SVM can be further enhanced 
with increasing availability of biological data and 
more extensive knowledge about sequence, struc-
ture, transcription, post-transcriptional processing 
features that defi ne the functional profi les of pro-
teins and peptides. These efforts will enable the 
development of SVM into useful tools for facili-
tating the study of functional profi les of proteins 
and peptides to complement other well-estab-
lished methods such as sequence similarity and 
clustering methods.
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