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Abstract

The current study compared three models of recognition memory in their ability to generalize across
yes/no and two-alternative forced-choice (2AFC) testing. The unequal-variance signal-detection
model assumes a continuous memory strength process. The dual-process signal-detection model adds
a threshold-like-recollection process to a continuous familiarity process. The mixture signal-
detection model assumes a continuous memory strength process, but the old item distribution consists
of a mixture of two distributions with different means. Prior efforts comparing the ability of the
models to characterize data from both test formats did not consider the role of parameter reliability,
which can be critical when comparing models that differ in flexibility. Parametric bootstrap
simulations revealed that parameter regressions based on separate fits of each test type only served
to identify the least flexible model. However, simultaneous fits of ROC data from both test types
with goodness-of-fit adjusted using AIC successfully recovered the true model that generated the
data. With AIC and simultaneous fits to real data, the unequal-variance signal-detection model was
found to provide the best account across yes/no and 2AFC testing.
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Recognition memory refers to the ability to appreciate that a stimulus was previously
encountered. In the recognition memory literature, two basic recognition test formats are
widely used, namely, yes/no and two-alternative forced-choice (2AFC). In the yes/no format,
targets from a list are randomly intermixed with lures, and these items are presented one at a
time for a decision (yes or no). In the 2AFC format, pairs of items are presented on the
recognition test instead. One item of the pair is a target and the other is a lure, and the
participant’s job is to choose the target (e.g., left or right). It has long been known that, all else
being equal, performance on the 2AFC test is reliably better than performance on the yes/no
test. A viable quantitative model of recognition memory should be able to accurately predict
the degree of improvement when the format changes from yes/no to 2AFC, and the current
study differentiates between models of recognition memory on this basis.
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Differentiating between competing models by evaluating their ability to predict performance
is complicated by the fact that models differ in a number of ways. As an analogy, consider high
school students who take the Scholastic Aptitude Test (SAT) to obtain admission to
undergraduate institutions. The SAT measures critical thinking skills in three areas
(mathematics, critical reading, and writing), yet institutions often simply sum the scores across
the three areas and compare that value to some criterion of acceptance. If each of these three
area tests is valid and captures a different ability, why would institutions sum the scores? The
reason is that with a limited number of observations, a complex theory (e.g., that scholastic
aptitude is based on separate abilities) can exhibit less predictive reliability than a less complex
theory (e.g., that scholastic aptitude reflects a single ability), depending on what the model is
asked to predict. Thus, while acknowledging that there is no single cause of a student’s aptitude,
institutions nevertheless sum SAT scores because this is the most reliable method for predicting
overall undergraduate education performance (i.e., generalizing to college grades in general,
rather than grades in specific classes). These considerations suggest that greater predictive
reliability does not automatically imply that the simpler model is also the more valid model.
Its predictive success can arise either because it is the more valid model or because it is a
simpler model that most effectively predicts a summary variable.

Similar issues of model flexibility, parameter reliability, and generalization are important in
elucidating the mechanisms that underlie recognition memory. A model that has more
parameters may provide a better description of the observed data, yet fail in terms of its ability
to generalize. This is alternatively termed flexibility or complexity, and it refers to the ability
of amodel to flexibly capture many data patterns, resulting in a solution that is assuredly fitting
sampling noise, and thus failing to generalize (e.g., Myung, 2000; Pitt & Myung, 2002).
However, assessing generalization with models that differ in flexibility is non-trivial, and the
exact manner in which one assesses generalization needs to be carefully examined. For
example, simply examining parameter regressions across different testing situations is
confounded with the issue of parameter reliability. In the present study, we shed light on these
matters and perform both behavioral and simulation studies to determine the best method for
comparing models of recognition memory in their ability to generalize across two different test
formats. We show that past attempts to deal with the relationship between yes/no and 2AFC
performance were potentially compromised by a failure to consider the tradeoff between
predictive accuracy and model complexity. We highlight a distinction between model recovery,
which is the ability to identify which model is most likely the generating model behind the
observed data versus parameter recovery, which is the ability to identify the particular
parameter values that generated the observed data under the assumption that a certain model
is true. Because these are not necessarily related to each other (i.e., there could be a problem
with model recovery, but not parameter recovery, or vice versa), a careful consideration of this
distinction is needed to choose appropriate analyses. The goal of this study is to examine which
model should be preferred (i.e., model recovery, rather than parameter recovery) and to
underline that the technique of parameter recovery is inappropriate to compare competing
models. Actual model recovery simulation studies are a better test for model selection, and we
use the simulation study to examine model recovery, which is an issue of what data patterns
can or cannot be fit rather than whether the parameters are sufficiently constrained.

Three Models Based on Signal Detection Theory

Signal detection theory (SDT) has long been a dominant theoretical framework and
mathematical tool for understanding how people make decisions on recognition memory tasks
(Green & Swets, 1966; Macmillan & Creelman, 2005). The theory provides a precise
description and graphic notation for analyzing decision making under uncertainty. The
application of SDT offers useful parametric measures such as d' (sensitivity) and  (bias) as
well as an ability to predict the shape of a receiver operating characteristic (ROC). An ROC is
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a plot of the hit rate as a function of the false alarm rate and is typically obtained by use of
confidence judgments. A simple version of the SDT, the equal-variance signal-detection
(EVSD) model, involves two equal-variance Gaussian distributions (one for targets and the
other for lures) and predicts a symmetrical curvilinear ROC. However, a large number of
studies in recognition memory have observed asymmetrical ROCs (e.g., Glanzer, Kim, Hilford,
& Adams, 1999; Ratcliff, Sheu, & Gronlund, 1992). To account for this asymmetry, three
variants of the EVSD model have been advanced: (1) the unequal-variance signal-detection
(UVSD) model, (2) the dual-process signal-detection (DPSD) model (Yonelinas, 1994), and
(3) the mixture signal-detection (MSD) model (DeCarlo, 2002).1

Figure 1 illustrates the three signal-detection models. The UVSD model assumes that
recognition decisions result from a strength-based process that is governed by two unequal-
variance Gaussian distributions, and it turns out that the standard deviation of the target
distribution exceeds that of the lure distribution (Figure 1A). The DPSD model assumes that
recognition decisions are based either on a threshold-based, recollection (R) process that only
applies to targets or on a strength-based, familiarity process for targets and lures that is
characterized by an EVSD model (Figure 1B). The MSD model holds that recognition memory
decisions are based on a continuous memory strength variable, but the target distribution
consists of a mixture of two equal-variance Gaussian distributions (based on a mixing
probability, A) with different means: the higher mean distribution for attended items and the
lower mean (d™) distribution for partially or not attended items (Figure 1C).

Each of the three models contains one or two more parameters than the EVSD model. The
UVSD adds one additional parameter (the ratio of the standard deviation of the lure distribution
to that of the target distribution: slope or s) as does the DPSD model (the probability of threshold
recollection). The MSD model adds two additional parameters to the EVSD model, hamely,
the mean of the upper target distribution and the probability () that a target item will be drawn
from that distribution instead of the lower distribution.

The DPSD and MSD models are both hybrid models that combine continuous, strength-based
and discrete, probabilistic processes. Although the two models assume different processes of
memory, mathematically, the DPSD model is nested under the MSD model, with the extra
parameter of upper mean in the MSD model determining this nesting relationship. In the DPSD
model, it is assumed that familiarity does not support higher levels of confidence than
recollection. Mathematically, recollection is equivalent to the higher Gaussian distribution in
the MSD model having a mean of infinity. In other words, when the upper mean is set to infinity,
then the mixing proportion in the MSD model is identical to the probability of recollection in
the DPSD model. However, the DPSD model is a subset of the MSD model because the MSD
model allows the mean of the higher distribution to take on any positive value including infinity.

From a statistical viewpoint, Figure 2 represents a nested hierarchy of the models for
recognition memory. These hierarchical relationships between the models are indicated by
unidirectional solid line arrows connecting the models. The EVSD model is a nested subset of
the UVSD (by setting the ratio of standard deviations to 1) or DPSD (by setting the probably
of recollection to 0) model, and so the EVSD model is the least flexible model (having only a
single parameter).2 As indicated above, the DPSD model is nested under the MSD model, and
so the MSD model (3 parameters) is more flexible than the DPSD model (2 parameters), which

1\we choose the standard UVSD, DPSD, and MSD models because they are the most commonly referred to in the literature assuming
distinctive processes for each, and because the first two are the models addressed by Smith and Duncan (2004) where we find their method
deficient (which will be described throughout the paper). Our intent is not to exhaustively investigate all signal-detection models,*but
rather to re-examine the procedure by Smith and Duncan (2004). Nonetheless, we also include a subset of the MSD model with d =0,
because the constraint can be psychologically supported (i.e., participants pay full attention on some items and do not attend at all on

others).
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is in turn more flexible than the EVSD model. There is no nested relationship between the
UVSD and DPSD models, each of which has 2 parameters. Furthermore, because there is no
nesting relationship between the UVSD and MSD models, these models cannot be directly
compared in terms of flexibility even though the MSD model contains an additional parameter.
Finally, as an attempt to constrain parameters within the MSD model, a subset of the MSD
model where d” is set to zero, the MSD* model is included (i.e., participants pay full attention
on some items and do not attend at all on others). Since the MSD* model has 2 free parameters,
there is no nested relationship with the UVSD model and with the DPSD model, and the EVSD
model is nested under the MSD* model. We consider two kinds of model comparison, one in
which the models being compared have different numbers of free parameters (i.e., vertically
compared, as shown in Figure 2), and the other in which the models being compared have the
same number of free parameters (i.e., horizontally compared, as shown in Figure 2). One goal
of the current study is to assess model flexibility for non-nested model comparison through
simulation studies.

Testing Models and Yes/No and 2AFC Recognition Memory

In prior research, the ability of these three models to fit yes/no recognition data has been
presented as evidence of their validity. For instance, Yonelinas (1994; 1997; 1999; also see a
review, Yonelinas & Parks, 2007) argued that the DPSD model fits some data better than the
EVSD or UVSD model, whereas others (e.g., Heathcote, 2003; also see a review, Wixed,
2007a) argued that the UVSD model typically provides a superior fit. Providing another
example, DeCarlo (2007) demonstrated that the MSD model fits mirror effect (Glanzer &
Adams, 1985) recognition results more accurately than the DPSD or UVSD model.

A model’s ability to describe a set of data is often assessed using maximum likelihood
estimation and the chi-square goodness-of-fit statistic. For the hierarchical relationships
illustrated in Figure 2, standard comparison procedures for nested models (e.g., Batchelder &
Riefer, 1990) can be used; this comparison examines the difference in chi-square error between
the nested models with one degree of freedom, corresponding to the one extra parameter. This
test indicates whether the extra flexibility associated with the extra parameter is justified. Other
traditional methods for model comparison should be used when comparing non-nested models
that differ in the number of free parameters. These include Akaike’s information criterion (AIC:
Akaike, 1973) and the Bayesian information criterion (BIC: Schwarz, 1978). However, these
techniques assume that each additional parameter provides the same amount of extra flexibility,
which may be incorrect depending on the particular models. Therefore, we performed
simulations to determine the appropriate information criterion when comparing the models,
which are non-nested and differ in the number of parameters.

Instead of maximum likelihood estimation and goodness-of-fit comparisons, another approach
to model testing is generalization across tasks. Several previous studies have used the two
different but theoretically related recognition memory tasks — namely, yes/no and 2AFC — to
test whether a model provides appropriate estimates across different testing formats (e.g.,
Green & Moses, 1966; Jesteadt & Bilger, 1974; Kroll, Yonelinas, Dobbins, & Frederick,
2002; Smith & Duncan, 2004; Wickelgren, 1968). Much of the early work focused simply on
the relationship between yes/no d' and 2AFC d' (e.g., Green & Moses, 1966; Jesteadt & Bilger,
1974; Wickelgren, 1968). To additionally assess generalization across a range of criteria, two
recent studies used the ROC analysis of yes/no and 2AFC tasks to compare competing models
of recognition memory (Kroll et al., 2002; Smith & Duncan, 2004). Kroll et al. (2002) found
that the DPSD model correctly predicted proportion correct in 2AFC based on fits to yes/no

2Model flexibility (or complexity) varies depending on both the number of free parameters and model’s functional form. In this hierarchy,
the models are differentiated in terms of the number of free parameters.
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data, but the EVSD model was shown to perform less well. However, Smith and Duncan
(2004) pointed out several possible problems with this analysis. First, because many different
combinations of parameters for a yes/no model can give rise to the same percent correct value
on a 2AFC test, the important question is not whether a model can predict percent correct but
whether the model’s parameters are consistent across the two tasks (a more stringent test).
Also, in finding fault with the signal-detection model, Kroll et al. (2002) focused mainly on
the EVSD model, whereas the UVSD model is the more appropriate competitor.

Smith and Duncan (2004) addressed these concerns by approaching the problem in a different
way. Specifically, they compared the UVSD and DPSD maodels by fitting the two models
separately to the yes/no ROC data and to the 2AFC ROC data to provide two estimates of
model parameters based on data from the same participants under each test format.3 Each model
assumes a particular relationship between parameters estimated from yes/no data versus
parameters estimated from 2AFC data, and so the parameters based on yes/no were converted
to equivalent parameters if instead memory had been tested with 2AFC. A simple linear
regression was then performed for the predicted parameter values estimated from the yes/no
data as compared to the observed parameter values estimated from the 2AFC data. This simple
linear regression thus produced a percent variance accounted for value that was used to compare
the models. Although we adopted the same procedures as Smith and Duncan (2004) used, we
note that these procedures could just as easily take parameters from 2AFC data and convert
them to equivalent yes/no parameters, thus performing regression with equivalent yes/no
parameters. This would presumably produce similar, but not necessarily identical results
depending on the error in estimating parameters from yes/no versus the error in estimating
parameters from 2AFC. Nevertheless, this highlights the fact that neither direction for the
transformation and comparison is more predictive than the other. For this reason, we adopt the
more neutral descriptive term, parameter regression in referring to this model generalization
procedure.

Next, we consider the theoretical conversion from yes/no parameters to equivalent 2AFC
parameters. The SDT model assumes that the relation between yes/no and 2AFC data is as
follows:

2d

d, _ Yes/No

NI

where dyeg/No IS the difference between the means measured in units of the target distribution
standard deviation, and s is the slope of the ROC based on the yes/no data (dveg/no iS equal to
d'ves/No When s = 1). Unlike the decision axis of yes/no which is memory strength (or
familiarity), the decision axis of 2AFC is the difference between the memory response to the
left choice versus the right choice (rather than comparison to a criterion). Therefore, this model
assumes a symmetrical 2AFC ROC even if the yes/no ROC is asymmetrical (i.e., even if s is
less than 1). If s is equal to 1 in the yes/no data, then the UVSD model reduces to the EVSD
model, and the relation between the two tasks is summarized by the well-known V2 d'
conversion (Macmillan & Creelman, 2005). For the DPSD model, its recollection parameter
should be the same across test formats (i.e., Roarc = Ryes/No), and the familiarity parameter
is converted by the V2 rule d',arc = V2 d'yes/No

3ROCs for the 2AFC test format are found by considering left/right position of the test alternatives. For instance, a false alarm is found
when choosing the left item when the target is on the right and a hit is found when choosing the right item when the target is on the right.
The fit to the 2AFC data includes an individual’s left/right preference, but the 2AFC ROCs are typically symmetric because they are
created by collapsing over left and right (see also, Smith & Duncan, 2004).
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Using these procedures, Smith and Duncan (2004) found that the d' regression across test
formats of the UVSD model accounted for 66% of the variance. In contrast, the DPSD model
performed much worse, especially the recollection component; the familiarity parameter d'
only accounted for 31% of the variance and the recollection parameter accounted for less than
1% of the variance. Based on these results, Smith and Duncan (2004) rejected the DPSD model
in favor of the UVSD model. However, it is important to note that parameter regressions were
performed on a single parameter (d') for the UVSD model, whereas 2 different regressions
were performed for the DPSD model (d' and R). As explained next, this occurred because the
UVSD model is more constrained in fitting 2AFC data, and this greater constraint may have
produced more reliable parameter estimates, which serves as confounding factor in using the
method of parameter regressions.

More generally, the technique of separately fitting yes/no and 2AFC data and then examining
parameter regressions is flawed both because it is a test of parameter recovery rather than model
recovery, and because 2AFC ROC data are symmetric and are therefore less able to constrain
the parameters. Figure 2 illustrates why parameter regressions across tasks may not be an
appropriate method of model comparison. As indicated in the figure, model flexibility and
parameter reliability are inversely related such that the fewer parameters involved, the higher
is parameter reliability. As such, a model with low flexibility (e.g., the one-parameter EVSD
model) may yield highly reliable parameters values, and thus good parameter regressions
across tasks (e.g., people with high d' in one task have high d' in the other task), even though
the EVSD model is known to produce consistently poor fits to yes/no ROC data (i.e., the EVSD
model is rejected based on goodness-of-fit). These considerations may explain why the DPSD
model performed so poorly in terms of parameter regressions across test formats. Although the
DPSD model and UVSD model have the same number of free parameters when they are fit to
a yes/no ROC, the UVSD maodel effectively has one fewer parameter when the models are fit
to 2AFC ROC data. For both of the EVSD and UVSD models, 2AFC ROCs should be
symmetric, which means that the UVSD slope parameter will always be 1 (except for random
error). Thus, for the UVSD model (as well as the EVSD model), only one parameter (d") is
needed to provide a good fit. For the DPSD model, 2AFC ROCs are either symmetric (when
R = 0) or very slightly asymmetric with other parameter values (a very subtle difference from
the 2AFC ROC symmetry, and perhaps not noticeably so). Thus, the parameters of the DPSD
model as applied to 2AFC ROC data are not easily identifiable (i.e., low parameter reliability).
As a consequence, it is not surprising that the parameters of the DPSD model yielded a low
regression between yes/no and 2AFC tasks; for the DPSD model, 2 parameters from the yes/
no fit were regressed onto the 2 parameters from the 2AFC fit. In contrast, for the UVSD model,
2 parameters from the yes/no fit (d' and slope) were used together to produce a single regression
for the single parameter from the 2AFC fit (d', with slope assumed to be 1). Given the greater
parametric complexity of the DPSD model for 2AFC ROC data, the reliability of its parameter
estimates might be worse even if it is the correct model (similar to the SAT example discussed
earlier).

In light of these potential drawbacks to the parameter regression analysis, we adopted a
different approach to determine which model was best able to account for yes/no and 2AFC
performance on a recognition memory task. First, we replicated and re-examined part of the
Smith and Duncan (2004) method by presenting subjects with a single list of words and then
testing their memory using the two recognition test formats (yes/no for some items, and 2AFC
for others). In this way, we held memory constant while changing the decision rule. However,
instead of using the parameter regression approach that Smith and Duncan (2004) used for
model comparison, we fit each model to the two ROC data sets simultaneously.

Beyond replacing Smith and Duncan’s (2004) method — that is, replacing separate fits and
parameter regressions with simultaneous fits — the other change was that we included the MSD
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model as a third detection model capable of fitting asymmetric yes/no ROCs. We also added
the EVSD model to help clarify the issues of model flexibility and parameter reliability; even
though the EVSD model is known to produce a bad fit to yes/no ROC data, if our hypotheses
regarding complexity and parameter reliability are correct, then the EVSD model should
produce the highest parameter regression across test formats, even while producing the worst
simultaneous fit to the data of both formats. As indicated earlier, the assumed relationship
between d'yes/No and d'yarc for the EVSD model is the V2 rule (i.e., d'sarc = V2 d'ves/no)-
For the MSD model, the parametric relationships between yes/no and 2AFC are as follows;
the means of the two target distributions should be related by the V2 rule (i.e., d*pagc = V2
d"yes/No» @and d'aarc = V2 d'yes/no), and the attention parameter should be the same (i.e.,
MAFC = XYQS/NO).4 In contrast to the greater parameter reliability with the simplicity of the
EVSD model, it is expected that the MSD model’s parameters will be even less reliable because
d”, d', and A are all estimated from the same ROC data. For the MSD model, 2AFC ROCs are
either symmetric (when A =0, .5, or 1) or very slightly asymmetric (like those for the DPSD
model). In other words, 2AFC ROCs do not constrain the parameters of the MSD model, and
so the model has two redundant parameters to fit the shape of the 2AFC ROC. Thus, the MSD
model is expected to produce the worst parameter regressions even though it can potentially
produce the best simultaneous fit to the data of both test formats.

To validate our approach, we additionally quantified model mimicry, which is defined as the
ability of a model to account for data generated by a competing model (for the issue of model
mimicry, see e.g., Navarro, Pitt, & Myung, 2004; van Zandt & Ratcliff, 1995; Wagenmakers,
Ratcliff, Gomez, & lverson, 2004). Even if a model fits a set of data better than competitor
models, this need not indicate that the winning model is closest to the true generative process
underlying the data, particularly if the winning model is overly flexible. As such, a choice
between models should be based on a measure that takes into account and properly adjusts for
the flexibility of the models. The approach we used can be illustrated as follows. Given two
models A and B, suppose that model B is found to provide a superior fit. Before concluding
that it is the superior model, we generate artificial simulated data sets from both models and
then fit both models to the artificial data produced by model B as well as produced by the
alternative model. Suppose we find that model B is better able to account for data than model
A even when the data were generated by model A. In that case, the observed goodness-of-fit
advantage for model B when fitting the real data should be reinterpreted as possibly resulting
from model B’s inherent flexibility (not its theoretical validity). We used just this artificial data
approach to determine the appropriate criterion (e.g., AIC and BIC) in comparing goodness of
for the EVSD, UVSD, DPSD, and MSD models as simultaneously applied to yes/no and 2AFC
recognition data. These artificial data simulations also demonstrate that the technique of
parameter regressions is flawed (which involves the issue of parameter recovery), and that a
simultaneous fitting method is more appropriate for model selection (which validates model
recovery).

To perform the simultaneous yes/no and 2AFC fits to real data, we obtained the data from
Smith and Duncan’s (2004) Experiment 2. We also conducted the following similar
experiment.

4The author of the MSD model (e.g., DeCarlo, 2002) did not specify the manner in which the MSD model is applied to 2AFC data

(personal communication). However, this relationship between 2AFC and yes/no parameters follows if one assumes that the mixing of
distributions in the MSD maodel is entirely due to encoding, in which case some targets in 2AFC should provide the appropriate higher
familiarity value (d') while other targets provide the lower familiarity value (d ), and the probability of mixing is the same as with yes/

no testing.
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Thirty-four undergraduate students at the University of California, San Diego were recruited
and received credit for psychology courses in return for their participation.

Stimuli for the experimental trials consisted of 490 moderately high-frequency (an average of
80 times per million; norms from Kucera & Francis, 1967), singular noun words from 5 to 8

letters in length. Two hundred and eighty of the 490 words were randomly assigned as study
items. Seventy and 140 of the 280 study items were randomly assigned as old for yes/no task
and for 2AFC task, respectively. Seventy and 140 of the remaining 210 words were randomly
assigned as new for yes/no task and for 2AFC task, respectively. For the practice trials, there
were 9 study items (3 and 6 as old for yes/no task and for 2AFC task, respectively) and 9 new
items (3 and 6 for yes/no task and for 2AFC task, respectively), which were not included for

data analyses.

The procedure was identical to that of Smith and Duncan’s (2004) Experiment 2 except as
noted. During the study, participants were told that they would be asked to remember a word
list. The 280 study items were presented, and each word appeared in the center of the computer
screen at a time for 5 s. After the study, test instructions were presented. For the yes/no test
trials, participants were told that they would be given a single word and asked to press one of
the response keys, “certain no’, ‘probably no’, ‘guess no’, ‘guess yes’, ‘probably yes’, and
‘certain yes’ (we put the labels on the keyboard), depending on whether or not they thought
the item was the one they studied. For the 2AFC test trials, participants were told that they
would be given two words and asked to press one of the response keys, ‘certain left’, ‘probably
left’, “guess left’, ‘guess right’, ‘probably right’, and ‘certain right’, depending on which left/
right choice word they believed to be the studied item. After they understood the instructions,
one of the tests was given per trial at the test phase. The participants of Smith and Duncan
(2004) were asked to try to use each response key an equal number of times to scale their
confidence judgments. By contrast, the participants in this study did not receive such
instructions and were allowed to press whatever they wanted; asking participants to spread
their responses evenly across the confidence categories might seem contrary to the DPSD
model in which recollected items demand high-confidence responses (Parks & Yonelinas,
2007; Wixted, 2007a; 2007b). The assignment of study and test items and the test order for
yes/no and 2AFC were randomized anew for each participant.

We fitted the three signal-detection models to both the data of Smith and Duncan’s (2004)
Experiment 2 and the data of our experiment, and report here both sets of findings.®> The data
of one participant from Smith and Duncan’s experiment and one participant from our
experiment were excluded because there were too many missing response categories to allow
for model fitting.

SThe fitting procedure of Smith and Duncan (2004) contained several constraints such that the lowest confidence criterion should be
equal to or less than 1, the rest of the confidence criteria should be greater than 0, and the standard deviation of the target distribution of
the UVSD model should be greater than .5. We refitted the three models to their data without these constraints. Although the precise
values of parameter estimates of the UVSD and DPSD models from individual data fits they reported slightly differ from those we report
here, the pattern of the results is similar to each other (e.g., none of the 1/s values of the UVSD model is less than .5).
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We first briefly report the overall results of ROC analyses. Then, generalization across the two
recognition tasks is evaluated in two different ways, first, by regressing the expected proportion
correct in 2AFC based on model fits of the yes/no ROC data, as Kroll et al. (2002) did, and
second, by examining parameter regressions, as Smith and Duncan (2004) did. The limitations
of these methods are then described. Finally, simultaneous fits across the two tasks are
performed to determine the best model, which is a method that we validate through a simulation
study.

ROC analyses

Parameter estimates from both group data and individual data were computed. Figure 3 shows
the group ROC fits and parameter estimates for the UVSD, DPSD, and MSD models. For the
yes/no test (left-hand side), the group data were well fit by the UVSD and MSD models, x2(3)
=1.88, p = .60; and ¥2(2) = 2.11, p = .35, respectively, whereas the DPSD model showed
significant statistical deviation from the data, ¥3(3) = 19.82, p < .001. From the individual data
analysis, 93.94%, 78.79%, and 89.28% of the data were well fit by the UVSD, DPSD, and
MSD models, respectively. For completeness, only 58.62% and 60.61% of the data were well
fit by the EVSD model for Smith and Duncan’s experiment and ours, respectively. For the
2AFC test (right-hand side), the group data were well fit by the DPSD and MSD models,
¥2(3) =5.59, p = .13; and ¥2(2) = 5.59, p = .06, respectively, and the UVSD model showed
marginal deviation, 2(3) = 7.83, p = .05. From the individual data analysis, 93.94%, 96.43%,
and 92.86% of the data were well fit (i.e., observed deviations did not exceed chance) by the
UVSD, DPSD, and MSD models, respectively.6 Not surprisingly, 93.10% and 93.94% of the
data were well fit by the EVSD model for Smith and Duncan’s experiment and ours,
respectively. These findings show that the UVSD, DPSD, and MSD models somewhat equally
well account for both yes/no and 2AFC ROC data, and that 2AFC ROCs do not constrain the
parameters of these models at all (i.e., the extra component of each model is not needed to fit
the shape of the 2AFC ROC). These are goodness-of-fit results to each task separately; next
we turn to the various techniques for assessing generalization across test format.

Accuracy regression

Observed proportion correct in 2AFC (M = .73, SD = .13) was regressed onto the expected

proportion correct based on the yes/no data as determined by each of the models. All models
including the EVSD model produced nearly identical regressions: R2(31) = .69, p <.001, using
the data from our experiment; and R2(27) = .69~.70, p < .001, using the data from Smith and
Duncan’s (2004) Experiment 2. These findings suggest that regressing expected accuracy onto
observed accuracy, as Kroll et al. (2002) did, may not be a useful way to differentiate models.

Parameter regressions

Figure 4 shows the 2AFC parameters expected from yes/no data for each participant plotted
against parameters estimated from the 2AFC data. The figure also shows the results of a
regression analysis performed on each scatter plot. The regression analysis of d' for each of
the UVSD and DPSD models produced a significant linear relationship (Figure 4A and C,
respectively), but estimates of R for the DPSD model from yes/no did not match R in 2AFC
(Figure 4D). These findings are consistent with those of Smith and Duncan’s (2004)
Experiment 2. The regression analyses of d', d*, and A for the MSD model did not produce
significant linear relationships (Figure 4E, F, and G, respectively). When d” was set to zero,
the analysis of A for the MSD* model yielded a significantly improved regression line but that

6The finding that the MSD maodel fit worse than the DPSD and EVSD models even though both of these models are nested under the
MSD model is purely due to different degrees of freedom; i.e., the MSD model has fewer degrees of freedom than the DPSD and EVSD
models. The accuracy of the nested relationship between these models was confirmed by comparing the raw chi-square values for each
fit to an individual’s data.
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of d' did not (Figure 41 and H, respectively). However, the regression analysis of d' for the
EVSD model yielded a significant linear relationship (Figure 4B), producing the highest
percent variance accounted for, R2,

We next conducted the regression analysis using simulated data under the situation that the
DPSD model was true to examine whether the DPSD model could produce reasonable
parameter regression in the best case scenario where the data was generated by the DPSD
model. A failure to find good regression in this case would demonstrate that parameter
regression might be misleading due to low parameter reliability. Using parameter values of the
DPSD model that resulted from the separate fits to observed 2AFC data and yes/no data for
each of our 33 participants, we then generated 33 artificial data sets for equivalent simulated
participants, with a set of artificial 2AFC and yes/no data per simulated participant. Finally,
we fit both the DPSD and UVSD models to the yes/no and 2AFC simulated data and performed
regression analyses on the parameters estimated from each test format (just as we did for the
empirical data).

The results from the parameter regression analyses for the DSPD model were somewhat better
for the simulated data than they were for the real data, specifically, for d', R%(31) = .49, p <.
001; and for R, R%(31) = .17, p < .05. However, the regression analysis for d' in fitting the
UVSD model to these artificial data generated from the DPSD model also showed a significant
linear relationship, R2(31) = .81, p < .001, and, more importantly, provided a much higher
R2 than the DPSD model. In other words, the parameter regression for the UVSD model was
better than for the DPSD model even though the DPSD model was the true model for these
simulated data. We next performed the same analyses for the 29 subjects of Smith and Duncan’s
(2004) Experiment 2. As reported by Smith and Duncan (2004), the regression for the DPSD
model based on the actual data for the d' and R parameters was R2(27) = .32, p < .05, and
R2(27) = .002, p > .05, respectively (p. 621). Using parameter values of the DPSD model, we
generated 29 artificial data sets and found modest improvements in the d' and R regression
analyses, R%(27) = .43, p < .001, and R2(27) = .43, p < .001, respectively. For d' of the UVSD
model, the regression based on true data produced R?(27) = .55, p < .05 (p. 621), whereas our
simulated data (as generated by the DPSD model) showed a similarly high value for d', R2(27)
= .68, p <.001. Thus, using a parameter regression test, the UVSD model outperformed the
DPSD model even when the DPSD model generated the data. These findings suggest that the
regression test is not a useful way to differentiate between these models, particularly
considering that different numbers of parameters are estimated from the 2AFC data, which is
likely to influence parameter reliability. Similar considerations would apply to the MSD model,
which is likely to perform even worse in a regression analysis because it has yet another
parameter to estimate from the 2AFC ROCs.

Simultaneous fits

The method we used to test the models was to simultaneously fit them to the yes/no and 2AFC
data for each subject while requiring that the expected relationship between the parameters
holds true. Thus, for example, when the EVSD model was fit to the data from a particular
subject, all of the criteria were free to differ with test formats except that d', agc Was constrained
to equal V2 d'ves/no. We performed these simultaneous fits for each model using our data as
well as the data from Smith and Duncan’s (2004) Experiment 2. For each fit, the only constraint
was that the theoretical relationship between a 2AFC parameter and its yes/no counterpart was
enforced.

Before concluding that one of the models is the best based only on goodness-of-fit to empirical
data, we generated simulated data on a per participant basis for each model using the model’s
parameter estimates obtained from that model's simultaneous fit of the real data (the simulated
data per individual had the same number of observations).” That is, we fit each model
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simultaneously to the yes/no and 2AFC data of each individual, and then we used these best
fitting parameters to generate one artificial data set according to each of the 3 models (the
UVSD, DPSD, and MSD model). In parametric bootstrap simulations (Efron, 1979: Efron &
Tibshirani, 1993), a model with a single set of parameters is used to generate many simulated
data sets. Our simulations also produced many simulated data sets, but this was done as a
function of individual differences (i.e., one artificial data set per individual based on fits of the
models to each individual). In this manner, we generated data for 3 different artificial
experiments, with each of these 3 artificial experiments in accord with a particular model (the
UVSD, DPSD, or MSD model). Finally, we fit each of these 3 artificial experiments 4 different
ways (including the EVSD model), to see if we could recover the true model that generated
the data. If a model is best able to simultaneously account for the yes/no and 2AFC data that
were in fact generated by that model, then goodness-of-fit for simultaneous fits is appropriate
for model selection. Because these models differ in number of parameters, rather than using
raw goodness-of-fit, we examined both AIC and BIC values, which correct for the number of
parameters. As reported next, AlIC produced values that allowed for recovery of the model that
generated the data, and so we report the AIC values belows8; for completeness, the BIC values
are available at Appendix A.

Table 1 shows the AIC results of the parametric bootstrap analysis by summing across
individuals. For both Smith and Duncan’s (2004) Experiment 2 and our experiment, the models
were successfully recovered. That is, each model provided the best fit to its own simulated
data. These findings suggest that the simultaneous fitting method using the AIC correction
provides a valid method of identifying the true underlying model (unlike the regression analysis
discussed earlier). Thus, we turn now to a discussion of the simultaneous fits of the competing
models to real data, considering goodness-of-fit according to AIC, which was demonstrated to
recover the true model.

As shown in Table 2, for the empirical data from two experiments (i.e., Smith & Duncan’s
Experiment 2 and our data), the UVSD model was best able to describe the relationship between
yes/no and 2AFC recognition performance, providing the lowest AIC value. For Smith and
Duncan’s data, the UVSD model provided the best fit for 65% of the participants. The DPSD
model was second best, providing the best fit to 21% of the participants, and the MSD model
was third in terms of AIC value (but providing the best fit for 0% of the participants). We also
computed Akaike weights (Akaike, 1978;Wagenmakers & Farrell, 2004), which are calculated
by using the raw AIC values and can be interpreted as conditional probabilities for each model.
From an inspection of the Akaike weights in Table 2, the UVSD model is 1.88 and 3.50 times
more likely to be the best model than are the DPSD and MSD models, respectively (i.e., .49/.26
and .49/.14). For our data, the UVSD model provided the best fit for the largest group of
participants (40%). The DPSD model was third in terms of AIC value, providing the best fit
to 24% of the participants. The MSD model was second in terms of AIC value but provided
the best fit for the smallest group of participants (12%). The UVSD model is 1.38 and 1.56
times more likely to be the best model than are the DPSD and MSD models, respectively (i.e., .

TThe reported simulation study used a single shot version of the parametric bootstrap simulation applied to the data of each individual,
which could be criticized as not including a sufficient number of stochastic samples. In comparison, some papers have used a more
complicated simulation technique that not only involves multiple stochastic parametric samples but also multiple nonparametric samples
from the observed data (e.g., Myung, Pitt, & Navarro, 2007; Wagenmakers et al., 2004). However, it is not clear how to apply the results
of that technique to situations involving more than 2 models. In results to be reported elsewhere, we applied this more complicated
technique to the data of each individual from the current two experiments by focusing on the UVSD and DPSD models. This application
produced nearly identical model recovery probabilities to those reported here, which reduces concern for the small number of stochastic
samples used in the current situation.

Because AIC penalizes model flexibility according to the number of free parameters and is valid for large data sets, we also calculated

2V(V+1)

AIC¢, which includes the sample size (n) correction: AIC.=—2log L+2V+ n — V — 1)- Theresults between AIC and AIC¢ were
not different across all individual data sets of the two experiments, and therefore we report only the results of AIC.
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36/.26 and .36/.23). On the whole, our results support Smith and Duncan’s (2004) conclusion
that the UVSD model is best able to account for yes/no and 2AFC recognition performance
even though we take issue with the method they used to arrive at that conclusion. Somewhat
surprisingly, the MSD model performed poorly, capturing 12% of the participants in our data
but none of the participants in Smith and Duncan’s data. However, AIC penalizes the MSD
model for including an additional parameter, and so this is not the same as saying that the MSD
model fit the data poorly in terms of chi-square goodness-of-fit.

Furthermore, we followed the same procedure to compare the models, the UVSD, DPSD, and
MSD* models. We generated data for 3 different artificial experiments, with each of these 3
artificial experiments in accord with a particular model, and fit each of these 3 artificial
experiments 3 different ways. Because these models have the same number of parameters, we
used raw goodness-of-fit. Table 3 shows the goodness-of-fit by summing across individuals.
For both Smith and Duncan’s (2004) Experiment 2 and our experiment, the models were
successfully recovered, and therefore we report the simultaneous fits of the competing models
to real data.

As shown in Table 4, for the empirical data from two experiments, the UVSD model was best
able to describe the relationship between yes/no and 2AFC recognition performance, which is
consistent with the findings when the full version of the MSD model was compared with the
UVSD and DPSD models.® For Smith and Duncan’s data, the UVSD model provided the best
fit for 69% of the participants. The DPSD model was second best, providing the best fit to 17%
of the participants, and the MSD model was third, providing the best fit for 14% of the
participants. For our data, the UVSD model provided the best fit for the largest group of
participants (43%). The DPSD model was third in terms of chi-square goodness-of-fit,
providing the best fit to 36% of the participants. The MSD model was second in terms of chi-
square goodness-of-fit but provided the best fit for the smallest group of participants (21%).
These results also show that the UVSD model is best able to account for yes/no and 2AFC
recognition performance even when the MSD model is reasonably constrained to have only
two free parameters (i.e., the MSD* model), like the UVSD and DPSD models.

Finally, we consider the 4 possible nested model comparisons according to Figure 2, not only
to provide a method based on statistical analyses for quantifying the degree of misfit in light
of the number of free parameters, but also to examine whether we find converging evidence
in concert with the AIC results. First, the DPSD and MSD models were compared by taking
advantage of the fact that the DPSD model is nested under the MSD model.10 I there is no
significant difference in chi-square value between these two models with one degree of freedom
for each participant, then the conclusion would be that adding a free parameter to the MSD
model cannot be justified and may merely capture random error. Comparing the fit across
participants in Smith and Duncan’s (2004) Experiment 2 for the DPSD model revealed no
significant improvement in the fit for the MSD model, ¥2(29) = 35.09, p = .20. However, there
was a significant improvement of the MSD model compared to the DPSD model for the data

9Although all models are rejected for our data, this is the expected result given enough power. Only in the unlikely case in which the
winning model fully and accurately characterized the performance of every participant would the data not be expected to significantly
deviate from the model given enough power. The goodness-of-fit statistics in this case have high power considering that the simultaneous
fit used fewer parameters per condition than the fit of the data from a typical 6-confidence scale yes/no recognition memory experiment.

0The DPSD model is nested under the MSD model by setting d' of the MSD maodel to infinity. This may appear to be problematic in
terms of parameter distributions. However, the use of chi-square in nested model comparison does not assume anything regarding the
form of the models and is instead based on data distributions. Nevertheless, there may be a concern that the data were at the extremes of
the probability space. To validate the use of the chi-square test, we confirmed that the difference in likelihood between the DPSD and
MSD models is distributed as a chi-square distribution with df = 1. This was done by generating 1,000 simulated data from the DPSD
model and then fitting both the DPSD and MSD models to the simulated data to calculate the likelihood difference. We found the use of
the chi-square test is warranted; i.e., the histogram of the likelihood difference between the two models was nearly identical to the chi-
square distribution with df = 1.
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of our experiment, ¥2(33) = 83.90, p < .001. Second, we applied the same analysis to the MSD
versus MSD* models. Adding the free parameter, d” to the full version of the MSD model was
justified, ¥2(29) = 68.40, p < .001; ¥2(33) = 62.98, p < .01, for Smith and Duncan’s data and
our data, respectively. Third, we applied the same analysis to the DPSD versus EVSD models.
Adding a free parameter to the DPSD model compared to the EVSD model was justified,
¥2(29) = 336.40, p <.001; ¥%(33) = 274.46, p < .001, for Smith and Duncan’s data and our data,
respectively. The last nested model comparison was conducted between the UVSD versus
EVSD models. There was also a significant improvement of the UVSD model compared to
the EVSD model, ¥2(29) = 384.95, p < .001; ¥4(33) = 319.41, p < .001, for Smith and Duncan’s
data and our data, respectively. These findings provide the same conclusions as found with
AlC.

Discussion

The present study used various methods to examine signal-detection models of recognition
memory using data that were obtained from two different tasks, yes/no and 2AFC. First, we
found that using the parameters estimated from yes/no ROC to make model-specific predictions
of proportion correct on the 2AFC task was not an appropriate method of model selection. The
EVSD model as well as all three of the considered SDT model variants predicted proportion
correct equally well. Second, a theory-driven comparison of parameters using regression
analyses based on separate ROC fits of the two tasks merely served to identify the least flexible
model (with the best parameter recovery), not the most valid model. In fact, using that method,
the EVSD model provided the best account. Moreover, in our simulation studies, this method
failed to identify the DPSD model even when the simulated data were generated by that model.
These findings confirm that parameter regressions are inadequate as a method for comparing
the models in terms of their ability to generalize across test format. By contrast, our simulation
studies indicated that simultaneous fits of both tasks successfully recovered the true model
(good model recovery). Using that method, we determined that the UVSD model produced the
most parsimonious interpretation of performance on the yes/no and 2AFC tasks.

The role of parameter reliability in model selection

The testing of quantitatively instantiated models is one of the most important aspects of
scientific inquiry. The goal is to select the most parsimonious model that gives an accurate
description of psychological phenomena. Goodness-of-fit measures are extensively used to
measure the adequacy of a model to account for the data, and the model that provides the
smallest deviation is often preferred. A possible problem with this method of model selection
is that flexible models can fit data well even if they are invalid. Taking a different approach,
Smith and Duncan (2004) argued that best-fitting parameter estimates may not generalize
across tasks if a model fits well only because it is highly flexible. They instead tested the ability
of competing models to produce expected parameter estimates across two different tasks that
were theoretically related to each other, namely, yes/no and 2AFC recognition, and they found
that the UVSD model exhibited the best expected relationship according to linear regression.

However, a model that produces the best expected relationship between its estimated
parameters in different situations is not necessarily the most valid model. Instead, such a model
may simply be the least flexible model, thus producing the most reliable parameter estimates.
In Smith and Duncan’s (2004) regression technique, the EVSD model enjoys an advantage
even though it is not likely to be a viable model of recognition memory. In fact, this result is
hardly surprising because reliability is maximized when it is measured through the total
variability in the instrument. This also explains why all models (including the EVSD model)
predicted proportion correct equally well; all models were compared in terms of a single entire
measure, proportion correct. Indeed, we found highly reliable parameter values of the UVSD
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model even when it was fit to data generated by the DPSD model. It should be noted that it is
not because the UVSD model is more flexible than the DPSD model (and therefore the UVSD
model mimics the DPSD model). It is instead because a single parametric prediction of the
UVSD model (namely, d'>arc) is derived from both d'yes/no @nd slope, whereas the predicted
d'sarc and Roarc of the DPSD model were each calculated separately from the corresponding
yes/no parameters.

Although the use of parameter reliability is not appropriate for model selection, it is true that
reliability sets a limit on validity. If a measure is unreliable, it obviously cannot be shown to
be valid. Indeed, the regression coefficient indicates the extent of the tradeoff between
parameters in a model. In other words, parameters play off against one another for the better
fit, which can happen more often to more flexible models. Although the focus of this paper is
on model recovery, not on parameter recovery as indicated earlier, the parameter reliability
can be examined. Appendix B shows the regressions between the generating and recovered
parameter values of the simultaneous fits, which reveals overall good parameter recovery for
the simultaneous fitting technique (except for d' of the MSD model of Smith and Duncan’s
data).

Model flexibility

Any goodness-of-fit measure reflects the model’s ability to approximate the underlying
cognitive process as well as its ability to fit random error. The process of model selection is
complicated because in most cases, a model with more free parameters provides better fits but
is more flexible and may therefore overfit the data. In the worst-case scenario, a good fit can
be accomplished by a model that is extremely good at fitting noise even though it provides a
poor approximation of the cognitive process. It is undesirable to refer to the most complex
model as the best, and instead it is generally accepted that the best model is the one that provides
an adequate account of the data while using a minimum number of parameters (e.g., Myung,
2000; Pitt & Myung, 2002; Wagenmakers & Farrell, 2004).

Because it has an extra parameter, it is clear that the MSD model is more flexible than the
DPSD model, and a relevant question is whether such flexibility is warranted. The MSD model
is mathematically identical to the DPSD model not only when the MSD model has an extremely
high value of d' but also under following situations: (1) when d' of the DPSD model is equal
to d' of the MSD model, which is also equal to d* of the MSD model, and R of the DPSD model
is zero; (2) when A of the MSD model is equal to 1, R is equal to 0, and d' of the DPSD model
is equal to d' of the MSD maodel; and (3) when A and R are equal to 0, and d' of the DPSD
model is equal to d' of the MSD model. Indeed, such cases were found in around 38% of Smith
and Duncan’s (2004, Experiment 2) data and 36% of our data. Moreover, the low reliability
of each parameter value but still good fits of the MSD model suggest that there are multiple
ways in which parameters conspire to capture the same or similar data. For example, because
both the DPSD and MSD models contain two types of target (recollected versus familiar targets
for the DPSD model, and low versus high attention targets for the MSD model), overall hit
rates can remain unchanged in these models while the mixture between the two types of target
trades off with the hit rate provided by each type of target. Such tradeoffs, or high
interchangeability between parameters, may in fact be psychologically valid and reflect
different shapes in the ROCs. However, without clear a priori theoretical grounds, it is difficult
to produce an unequivocal conclusion from the results.

There have been a handful of measures in model selection to dispel the problems of model
flexibility although there is no clear consensus as to which of these techniques is most accurate.
Furthermore, the definition of an accurate method for comparing models depends on the chosen
properties that are to be optimized in an application of a model. An early and well-known
measure that penalizes flexible models, AIC, addresses the most salient difference among
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models, namely the number of free parameters. The logic behind AIC is that the better fit
obtained with the more parameters should justify the necessity of those parameters in more
accurately capturing data. BIC is another popular measure of theoretical approaches. While
the aim of AIC is to reduce errors and to modify overestimation, the use of BIC is to interpret
data as a Bayesian measure that handles uncertainty based on probability distributions.
However, BIC sometimes penalizes a model having additional parameters too much (i.e., a
conservative criterion). Beyond this difference, both AIC and BIC ignore the functional form
of the models under consideration, and they both penalize models based on the number of free
parameters. Yet this is assuredly incorrect, and the ability of a model to fit data is not purely a
function of the number of parameters. The ability to fit data also depends on a model’s
functional form (e.g., for some models, an extra parameter may allow a higher degree of
additional freedom to capture data). To address the functional form of a model, another tool is
to investigate model mimicry (e.g., using simulation studies), which can help to identify the
relative flexibility of models even if they have the same number of free parameters. Assessing
model mimicry can be accomplished by using a parametric bootstrap based on the full sample
of the observed data, or perhaps in concert with a nonparametric bootstrap to incorporate
sampling error in the data. Furthermore, one could perform a parametric bootstrap without any
reference to observed data.11 In the current case, we used a simulation analysis to ask a specific
question; For these particular data, which goodness of fit measure (AIC or BIC) penalized for
the number of free parameters in such a way as to enable model recovery. However, the
conclusion from this simulation study is not expected to generalize to other models or even to
other data.

Finally, beyond the issue of goodness of fit, we also took it a step farther. Myung (2000) argued
that one way to improve model selection is to assess how well a model’s fit to one data sample
generalizes to other samples generated by the same process. In essence, that is the method that
we used in this study. That is, simultaneous fits were used to compare models in their ability
to generalize across different tasks that are theoretically closely related to each other, and the
UVSD model emerged as the most viable model.

The role of recollection and familiarity

In light of much evidence supporting the dual-process theory of recognition, one might wonder
how the models under consideration here can be reconciled with recollection and familiarity.
This question is especially relevant to the UVSD model in terms of its superior ability to
simultaneously account for yes/no and 2AFC recognition performance. The DPSD model is
inherently a dual-process model. In the DPSD model, recollection is viewed as a categorical,
threshold-based process, and familiarity is viewed as a continuous process (Yonelinas, 1994).
Participants are assumed to rely on the recollection process alone whenever possible (and it is
assumed to always support high confidence) and to otherwise rely on familiarity (which is
associated with varying degrees of confidence). The UVSD model, by contrast, is not as readily
reconciled with dual-process theory. However, Wixted (2007a; 2007b) proposed that
recognition memory decisions are based on memory strength, where strength is a function of
recollection and familiarity combined. The combined model views both recollection and
familiarity as continuous processes and suggests that different sources of evidence are summed
into an aggregate variable upon which the decision is based. According to this view, the UVSD
model is compatible with dual-process theory even though decisions are based on a
unidimensional memory strength variable.

More specifically, two parametric simulation methods exist: data informed versus data uninformed. The former depends on the observed
data (which is the one we used) and the latter does not (for implications of this distinction, see Navarro et al., 2004; and Wagenmakers

etal., 2004).
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The same logic can be applied to the MSD model because the MSD model also assumes dual
processes. The two old distributions in the MSD model are based on a unidimensional memory
strength variable (or familiarity), and they are mixed together on the basis of attention (DeCarlo,
2002). In similar vein, participants may rely on memory strength where familiarity and
attention processes are combined.

Conclusion

Our study investigated how well three different models of recognition memory can account
for data from two theoretically related tasks. The results are of both methodological and
theoretical interest. At the methodological level, our results suggest that one previously used
method based on regression analysis serves only to identify the least flexible model (not the
most valid model). By contrast, the simultaneous fitting method is better able to identify the
true model while maintaining the principle of parsimony. Our analysis also underscores the
importance of investigating model mimicry as a tool of model selection. At the theoretical
level, our findings suggest that, among the three models considered here, the UVSD model is
best able to describe the relationship between yes/no and 2AFC recognition performance.
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Appendix A

Model Recovery:

The BIC values are reported in Appendix A that we compared the models having different
numbers of parameters, the UVSD, DPSD, MSD, and EVSD models. As reported in Table A1,
BIC produced values that did not allow for recovery of the model that generated the data. BIC
penalizes the model having more parameters too much for including the additional parameters,
and sometimes the EVSD model even the best fit the data (it should be noted that this does not
mean that BIC is inappropriate in general to compare competitive models). For the empirical
data of the two experiments, the UVSD model was best able to describe the relationship
between yes/no and 2AFC recognition performance as shown in Table A2. Although this is
consistent with the finding of AIC, we do not discuss this BIC result because of its failure of
the model recovery.

Table Al
BIC Value and Rank Order of Simultaneous Fit to Simulated Data

Smith & Duncan’s Experiment 2 Our Experiment
Fitted model Fitted model

uVvsD DPSD MSD EVSD uUvsD DPSD MSD EVSD

True uUvsD 1 2 4 3 1 3 4 2
model 21689 21776 21861 21851 27107 27189 27305 27149

DPSD 3 1 4 2 3 2 4 1
22041 22011 22154 22040 27398 27363 27541 27353

MSD 2 1 4 3 2 3 4 1
21943 21939 22042 21950 27060 27083 27171 27039

Note. The number on the top per cell represents the rank order (i.e., 1 = the best, and 4 = the worst), and the number on the bottom represents the BIC (Bayesian
information criterion) value; BIC = —2log(L) + Vlog(n) where L, V, and n represent the maximum likelihood, number of free parameters, and number of
observations that enter into the likelihood calculation, respectively; UVSD = unequal-variance signal detection; DPSD = dual-process signal detection; MSD
= mixture signal detection; EVSD = equal-variance signal detection.
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Table A2

Model Comparison: BIC Value, Rank Order of Simultaneous Fit to Empirical Data Schwarz weight, and
Percentage of the Best Simultaneous Fit

Smith & Duncan’s Experiment 2 Our Experiment
UVvsD DPSD MSD EVSD UVvsD DPSD MSD EVSD
1 2 4 3 1 2 4 3
BIC 21903 21951 22085 22034 27309 27339 27454 27360
w(BIC) 45 22 .02 31 .35 .24 .05 .36
Best fit 48 % 45 % 0% 7% 40 % 36 % 0% 24 %

Note. The number on the top of the raw of BIC (Bayesian information criterion) represents the rank order (i.e., 1 = the best, and 4 = the worst); w(BIC) = the
Schwarz weight; UVSD = unequal-variance signal detection; DPSD = dual-process signal detection; MSD = mixture signal detection; EVSD = equal-variance
signal detection.

Appendix B

Model parameter estimates of simultaneous fit are reported in Appendix B. Additionally, the
proportion of variability between parameter estimate of empirical data and parameter estimate
of simulated data is presented.

Table B

Mean Parameter Estimate of Simultaneous Fit and Coefficient of Determination (R2) between Parameter Estimate
of Empirical Data and Parameter Estimate of Simulated Data

Smith & Duncan’s Experiment 2 Our Experiment
Model Parameter Empirical Simulated R2 Empirical Simulated R?
uVvsSD d 1.93 (11) 193(11) 94, 1.34 (.15) 130 (14) .98,
s .63 (.03) .62 (.03) 45 74 (.04) 75 (.04) 80,
DPSD d .92 (.10) .92 (.10) 76, .. 64 (.07) .68 (.08) 61,
R .39 (.03) 36 (.04) s 27 (.04) 24 (.04) 80,
MSD d 6.61 (.71) 511(72)  .08,., 6.27 (.85) 5.48(82)  .16,,,
d 54 (.13) 28 (.17) 76, .. .08 (.14) -09(16) .34,
A 51 (.04) .60 (.05) 64 45 (.05) .50 (.06) 61,
MSD* d 3.07 (.31) 338(60) 57, 3.68 (.52) 349(52) .18,
A .76 (.03) .78 (.03) 74 .60 (.05) 61 (.04) 51

Note. Standard errors of the mean are in parentheses; UVSD = unequal-variance signal detection; DPSD = dual-process signal detection; MSD = mixture

signal detection; MSD™ = mixture signal detection (with d*:O).
*kk

p <.001;
*
p <.05;

NSp =.14.
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Figure 1.

Three signal-detection models. (A) Unequal-variance signal-detection (UVSD) model; (B)
Dual-process signal-detection (DPSD) model; (C) Mixture signal-detection (MSD) model.
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MSD model
(d’, d’,and A)

UVSD model
(d’and s)

DPSD model
(d’and R)

MSD* model
(d’, d=0,and A)

Least flexible
(high reliability)

Figure 2.

EVSD model
(d)

Nested hierarchy for the signal-detection models. Unidirectional, solid line arrows between
models indicate subset relations between models. The bidirectional, dotted line arrow on the

left-hand side represents the degree of the flexibility and reliability.
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ROC curves for yes/no (left) and 2AFC (right) fits of the UVSD model (top: graphs A and B),
DPSD model (middle: graphs C and D), and MSD model (bottom: graphs E and F).
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Figure 4.

Scatter plots from the regression analysis. A = d'y)arc expected from d'yeg/no in the UVSD
model; B = d'oarc expected from d'yes/ng IN the EVSD model; C = d'oarc expected from
d'ves/No in the DPSD model; D = Ryarc expected from Ryeg/ng in the DPSD model; E =
d'2arc expected from d'yes/no in the MSD model; F = d"»sarc expected from d”yeg/no in the
MSD model; G = Aparc expected from Ayes/no iN the MSD model; H = d'yarc expected from
d'ves/No in the MSD™ model; | = Aparc expected from Ayes/no in the MSD™ model.
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