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ABSTRACT Despite many diverse theories that address
closely related themes—e.g., probability theory, algorithmic
complexity, cryptoanalysis, and pseudorandom number gen-
eration—a near-void remains in constructive methods certi-
fied to yield the desired ‘‘random’’ output. Herein, we provide
explicit techniques to produce broad sets of both highly
irregular finite and normal infinite sequences, based on
constructions and properties derived from approximate en-
tropy (ApEn), a computable formulation of sequential irreg-
ularity. Furthermore, for infinite sequences, we considerably
refine normality, by providing methods for constructing di-
verse classes of normal numbers, classified by the extent to
which initial segments deviate from maximal irregularity.

There is a critical and ubiquitous need for general techniques
to produce broad sets of both highly irregular finite and
putatively ‘‘random’’ infinite sequences. Early this century,
Borel (1) introduced the notion of normal number, whose base
b expansions are equidistributed in the limit, for all individual
digits, pairs of digits, triples, . . . As such, the sequences of digits
of normal numbers have often been viewed (2, 3) as reasonable
candidates for broad collections of ‘‘random sequences.’’ How-
ever, demonstrations of the existence of uncountably many
normal numbers (1, 4) and of the fact that they constitute a set
of Lebesgue measure 1 in the unit interval have been unac-
companied by general methods to explicitly construct them.
Indeed, the difficulty of proving normality for any specific
number is remarkably severe. Among the very few sets of
known explicitly computable normal numbers, probably best
known is Champernowne’s number 0.1234567891011. . . (5),
which was thematically generalized by Copeland and Erdös (6).

A primary step toward filling this near-void was the intro-
duction of the notion of a C-random (computationally ran-
dom) sequence (7), an equivalent characterization of normal-
ity based on a measure of irregularity among successive digits,
approximate entropy (ApEn). Applying this formulation, in
ref. 7 we presented a perturbation strategy for generating large
sets of normal numbers, starting from one such number.

Two advantages accrue from the ApEn formulation: an
ability to identify finite maximally irregular sequences as
fundamental building blocks for construction of normal num-
bers; and subsequently, an ability to quantify the magnitude of
deviation of any sequence from maximal irregularity.

The purposes of this paper are specifications of constructive
methods for generating: (i) large classes of finite maximally
irregular sequences; (ii) large classes of normal numbers by
appropriate concatenations of finite maximally irregular se-
quences; and (iii) diverse classes of normal numbers, classified
by the (asymptotic behavior of the) extent to which initial
segments deviate from maximal irregularity.

We emphasize that herein, we focus on equidistribution as
the central notion of ‘‘randomness,’’ discussed further in
endnote 1 below. The extreme limitations in attempting to
utilize algorithmic complexity (an alternative notion of ‘‘ran-
domness’’) for actual constructions of highly irregular se-
quences have been previously described (7, 8).

The central result below is Theorem 10, our recipe for
constructing normal sequences, with the next section, Varieties
of Normal Numbers, indicating how to apply Theorem 10 to
refine normal numbers into the aforementioned subclasses.
The primary results that lead directly to Theorem 10 are (i)
Theorem 1, relating maximal irregularity to most equidistrib-
uted; (ii) Theorem 3 and Algorithm 1, providing means to
realize maximally irregular finite sequences; and (iii) Theorems
8 and 9, reconsidering and merging poignant, yet nonconstruc-
tive (abstract theoretical), developments by Besicovitch and
Hanson with the present context of maximally irregular se-
quences to achieve the desired constructive methodology.

In the core text, we primarily analyze binary sequences;
generalizations to the k-state alphabet are straightforward.

Approximate Entropy (ApEn) and Wrap-Around ApEn. We
quantify irregularity utilizing approximate entropy, ApEn,
formally defined in refs. 7 and 8. The intuitive idea is that for
a sequence of real numbers u :5 (u(1), u(2), . . . u(N)),
ApEn(m, r, N)(u) measures the logarithmic frequency with
which blocks (subsequences of contiguous sequence points) of
length m that are close together—i.e., within a tolerance range
r—remain close together for blocks augmented by one posi-
tion. Larger values of ApEn imply greater irregularity in u,
while smaller values correspond to more instances of recog-
nizable patterns in the sequence. Further intuition about
ApEn, as quantifying degrees of irregularity, can be obtained
by reviewing binary sequences of lengths 5 and 6, a comparison
of two binary sequences of length N 5 20, and the first N digits
(for large values of N) in the binary and decimal expansions of
e, p, =3, and =2 (7, 9).

Formally, we have
Definition 1: Given a positive integer N and nonnegative

integer m, with m # N, a positive real number r and a sequence
of real numbers u :5 (u(1), u(2), . . . u(N)), let the distance
between two blocks x(i) and x( j), where x(i) 5 (u(i), u(i 1 1),
. . . u(i 1 m 2 1)), be defined by d(x(i), x( j)) 5 maxk 5 1,2,. . .,m
(uu(i 1 k 2 1) 2 u( j 1 k 2 1)u). Then let Ci

m(r) 5 (number of
j # N 2 m 1 1 such that d(x(i), x( j)) # r)y(N 2 m 1 1).
Now define

Fm~r! 5
1

N 2 m 1 1 O
i51

N2m11

log Ci
m(r), and

ApEn(m, r, N)(u) 5 Fm(r) 2 Fm11(r), m $ 1; ApEn(0, r, N)(u)
5 2F1(r).

While restricting attention to binary sequences of 0s and 1s,
we set r , 1 as our measure of resolution. Thus we areThe publication costs of this article were defrayed in part by page charge
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monitoring precise matches in the blocks x(i) and x( j). In this
setting we suppress the dependence of ApEn on r below.

A length N sequence u is defined as {m, N}-irregular if it
achieves the maximal ApEn(m, N) value among all sequences
of length N; and it is defined as N-irregular (N-random) if it is
{m, N}-irregular for m 5 0, 1, 2, . . . , mcrit(N). In ref. 7, we
employed the choice mcrit(N) 5 max(m: 22m

# N), motivated
by the methods of Ornstein and Weiss (10), which can be used
to show that for uN 5 (u(1), u(2), . . . u(N)), N $ 1, a so-called
‘‘typical realization’’ of a Bernoulli process, then limN3`

ApEn(mcrit(N), N) (uN) 5 h 5 entropy of the process. Super-
exponential growth of N as a function of mcrit(N) thus is a
useful criterion for aligning maximally irregular finite se-
quences with ergodic theory technology. However, our normal
number constructions require tighter control over irregularity
in blocks of length m for more values of m than is imposed by
mcrit(N) 5 max(m: 22m

# N). For all developments below, we
specify mcrit(N) 5 max(m: 2m , N).¶ Both choices of mcrit(N)
are consistent with the idea of finite ‘‘random sequence,’’ as
exemplified by the following theorem, proved in ref. 9:

THEOREM 1. A sequence u is N-random if and only if for 1 #
m # mcrit(N) 1 1, the expression

max$v1, v2, . . . ,vm%Z 1
N 2 m 1 1

~no. of $v1, v2, . . . , vm%

blocks in the sequence u) 2 1y2mZ [1]

is a minimum (among length-N sequences), where the max is
evaluated over all blocks {v1, v2, . . . , vm} where vi 5 0 or 1 for
all 1 # i # m.

Thus maximal ApEn agrees with intuition for maximally
equidistributed sequences, while allowing us to grade the
remaining sequences in terms of proximity to maximality.

For infinite sequences u 5 (u(1), u(2), . . .) and r , 1, define
u(N) 5 (u(1), u(2), . . . , u(N)), ApEn(m, N)(u) :5 ApEn(m,
N)(u(N)), and ApEn(m)(u) :5 limN3` ApEn(m, N)(u(N)).
Asymptotic ApEn(m) values converge to log 2 along maximally
irregular binary sequences (7). This fact motivates the follow-
ing formulation of an infinite ‘‘random sequence.’’

Definition 2: An infinite binary sequence u is called com-
putationally random, denoted as C-random, if and only if
ApEn(m)(u) 5 log 2 for all m $ 0.

As pointed out in ref. 7, joint independence in probability
theory for binary random variables reduces to C-randomness
of realizations with probability one.

Our constructions of C-random sequences are facilitated by
introducing a wrap-around version of approximate entropy,
denoted by ApEnw. The intuitive idea is to consider sequences
of length N in a circular arrangement. Then for all m, blocks
of length m are defined beyond the end of the original
sequence by periodic extension. Thus averages in the calcula-
tion of ApEnw are always over N consecutive blocks. Formally,
we introduce

Definition 3: Given a positive integer N, a nonnegative
integer m, a positive real number r, and a sequence of real
numbers u :5 (u(1), u(2), . . . u(N)), define the block xw(i) 5
(u(i), u(i 1 1), . . . u(i 1 m 2 1)), with u(N 1 k) :5 u(k) for
1 # k # N. For all 1 # i, j # N, define the distance between
two blocks by d(xw(i), xw( j)) 5 maxk51,2,. . .,m (uu(i 1 k 2 1) 2
u( j 1 k 2 1)u). Then let Ci,w

m (r) 5 (number of j # N such that
d(xw(i), xw( j)) # r)yN. Now define Fw

m(r) 5 1yN (i51
N log Ci,w

m (r),
and ApEnw(m, r, N)(u) 5 Fw

m(r) 2 Fw
m11(r), m $ 1; ApEnw(0,

r, N)(u) 5 2 Fw
1 (r).

Here we again set r , 1 and suppress the dependence of
ApEnw(m, r, N) on r, and simply write it as ApEnw(m, N).

Analogous to the original ApEn setting, for binary se-
quences of length N, we define {m, N} wr-random (wr-
irregular) sequences as those that achieve max ApEnw(m, N)(u)
where the maximum is evaluated over the set of all binary
sequences of length N. Corresponding definitions ensue for N
wr-random and Cw-random.

Some properties are now noted regarding ApEnw.
(i) Virtually the same criterion as that given by Theorem 1

characterizes the maximally wr-irregular ApEnw sequences, via
the same proof—-the only changes in the wrap-around setting
are that all sums go from 1 to N (not N 2 m 1 1), since
evaluation of the number of {v1, v2, . . . , vm} blocks in the
sequence u includes consideration of the wrap-around sub-
blocks. Accordingly, in the expression corresponding to Eq. 1,
we average by dividing by N, rather than N 2 m 1 1.

(ii) For any sequence, ApEn and ApEnw values will be
reasonably close—i.e., O(log NyN), as their definitions differ
only in the treatment of endpoint effects. Precisely, we have:

THEOREM 2. For any length N sequence u,

uApEn~m!~u! 2 ApEnw~m!~u!u # 2m12S m
N 2 mD log N.

Proof: First, we recast Fm(0) in the ApEn definition in an
alternative form, based on state space frequencies. Let X(m)
:5 {all blocks {v1, v2, . . . , vm} where vi 5 0 or 1 for all 1 #
i # m}; and define fv1,v2, . . . ,vm as the frequency of occurrences
of {v1, v2, . . . , vm} in u—i.e., (no. of such occurrences)y(N 2
m 1 1). Then it is straightforward to see that Fm(0) 5 (X(m)
fv1,v2, . . . ,vm log fv1,v2, . . . ,vm. Similarly, we have Fw

m(0) 5 (X(m)
f w

v1,v2, . . . ,vm log f w
v1,v2, . . . ,vm, where f w

v1,v2, . . . ,vm 5 (no. of
occurrences, including wrap-around instances, of {v1, v2, . . . ,
vm})yN.

Then uApEn(m)(u) 2 ApEnw(m)(u)u # zFm(0) 2 Fw
m(0)z 1

zFm11(0) 2 Fw
m11(0)z # (X(m)z fv1,v2,. . . ,vm log fv1,v2,. . . ,vm 2

f w
v1,v2, . . . ,vm log f w

v1,v2, . . . ,vmz 1 (X(m11)zfv1,v2, . . . ,vm11 log
fv1,v2, . . . ,vm11 2 f w

v1,v2, . . . ,vm11 log f w
v1,v2, . . . ,vm11z. We bound

all terms on the right side of this inequality by the mean value
theorem, applied to f(x) 5 x log x, observing that zf(x) 2 f(x*)z
# maxt[[x,x*]z(x 2 x*)(1 1 log t)z. Applied to the above, for x 5
fv1,v2, . . . ,vk and x* 5 f w

v1,v2, . . . ,vk, we deduce that uApEn(m)(u)
2 ApEnw(m)(u)u # 2m [(m 2 1)y(N 2 m 1 1)]log N 1
2m11[my(N 2 m)]log N # 2m12[my(N 2 m)]log N, which
completes the proof.

In particular, for large N, N-wr-irregular ApEnw sequences
will be nearly N-irregular ApEn sequences, and conversely.

(iii) ApEnw is u-shift invariant (mod N)—i.e., for any u :5
(u(1), u(2), . . . u(N)) and any k # N, ApEnw(u) 5 ApEnw(v),
where v :5 (v(1), v(2), . . . v(N)) 5 (u(1 1 k(mod N)), (u(2 1
k(mod N)), . . . , u(N 1 k (mod N))). The proof of this
observation is straightforward.

(iv) Given this shift invariance, as well as ApEnw invariance
to sequence negation and reversal, the number of distinct
equivalence classes comprising all N-wr-irregular sequences
appears to be relatively small, an important property. For
example, a single generator suffices to produce all N-wr-
irregular sequences for N 5 4 (4 maximal sequences) and N 5
5 (10 maximal sequences), and all 18 6-wr-irregular sequences
come from the above actions applied to 2 generators (e.g.,
{1, 1, 1, 0, 0, 0} and {1, 1, 0, 1, 0, 0}).

Construction of Highly Irregular Sequences. We first con-
sider the 2k-wr-irregular sequences, since they have an elegant
characterization and are central to our other constructions.
For this case, some directly transferable theory has been
developed, in the study of shift registers, which have been
extensively applied to communications and coding problems
(11–13). One class of shift register sequences that has received
special focus is full-length nonlinear shift register sequences

¶However, despite the utility seen herein, it would be unwise to employ
this choice of mcrit(N) in general statistical analyses of length-N data
sets. The ‘‘curse of dimensionality’’ would be manifested in estima-
tions of underlying length log2N joint frequencies, many of which
would have 0 or 1 observed occurrences.
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(‘‘full cycles’’)—i.e., periodic sequences of length 2k such that
all different binary k-tuples appear exactly once in a periodic
portion of a sequence (14). The existence of full cycles for all
k was shown by Good (15) and deBruijn (16). For one period
u of a full cycle, it is immediate upon aggregation that any
length-m block with m # k occurs precisely 2k2m times in u.
Thus, by the wrap-around version of Theorem 1, we infer that
the periods of full cycles constitute the 2k-wr-irregular se-
quences, restated as

THEOREM 3. For any 2k-wr-irregular sequence u, each binary
k-tuple occurs as a length-k block precisely once in u.

We next resolve whether any given length k sequence can be
the initial segment of some wr-irregular sequence.

THEOREM 4. Given any length k sequence v :5 {v(1), v(2), . . . ,
v(k)}, there exists a 2k-wr-irregular sequence u for which the
initial segment of u is v—i.e., u(i) 5 v(i) for 1 # i # k.

Proof: Choose an arbitrary 2k-wr-irregular sequence {s(i)}.
By Theorem 3, the block {v(i)}1#i#k occurs precisely once in
{s(i)}. Define {u(i)} as the result of successive 1-shifts of {s(i)}
that leaves {v(i)} as the initial block in {u(i)}. Since ApEnw is
shift-invariant, we infer the 2k-wr-irregularity of {u(i)}.

Notably, deBruijn (16) showed that the number of full
2k-length cycles N(k) :5 22k-12k. Upon recognizing that all 2k

translations of one period of a full cycle are distinct from one
another and from any period from another full cycle, we infer

THEOREM 5. There are precisely 2kN(k) 5 22k-1
2k-wr-irregular

sequences.
Thus for N 5 2k, precisely 1y=no. length-N sequences 5

1y=2N are N-wr-irregular. Also, note that this fraction of
N-wr-irregular sequences is much smaller than the coarse
upper bound given in ref. 7, p. 2085, of 1y=pNy2.

Moreover, the proofs of both Good and deBruijn provide a
direct bridge to the combinatorial study of rooted trees,
directed graphs, and necklaces. However, these proofs were
nonconstructive, so the need remained for algorithmic ‘‘reci-
pes’’ to construct full cycles. An outstanding source for many
such algorithms is Fredricksen (ref. 14, section 3). We now
briefly describe the two best-known such algorithms. Also
readily usable from ref. 14 are the algorithms given by ‘‘prefer
same,’’ by ‘‘cross-join pairs,’’ and by the method of appropri-
ately splicing mirrored full cycles of span k 2 1 to generate full
cycles of span k (ref. 14, section 3e).

(i) Linear shift registers are sequences defined by a recur-
rence relation of order n, s(i 1 n) 5 ( j50

n21 c( j)s(i 1 j).
Associated is a characteristic polynomial f(x) 5 1 1 c(1)x 1 . . .
1 c(n 2 1)xn21 1 xn. If f(0) Þ 0, f has exponent k if f(x) u xk 1
1 but f(x)ł x j 1 1 for any 0 , j , k (where u denotes divides).
It is known from Galois theory (13) that [over the 2 element
field GF(2)] if f(x) has degree k, then f(x) has an exponent #
2k 2 1. An irreducible polynomial of degree k is called
primitive if its exponent 5 2k 2 1. Primitive polynomials exist
for all degrees k (ref. 13). The key result is that for a linear shift
register corresponding to a primitive polynomial of degree k,
the output sequence is an ‘‘m(k)-sequence’’—i.e., the shift
register goes through each of its 2k 2 1 nonnull states before
it repeats (11). Upon insertion of a 0 prior to the unique k block
{0 0 0 . . . 0 1} in one period of an m(k)-sequence, the resultant
length 2k sequence is directly seen to be a full cycle.

Tables of primitive polynomials exist—e.g., appendix C of
ref. 13 for degree # 34. However, the set of primitive poly-
nomials supplies us with only some, but not nearly all, 2k-wr-
irregular sequences. Indeed, there are f(2k 2 1)yk primitive
polynomials of degree k over GF(2), for f(m) the Euler
f-function (12). Thus, e.g., there are 2 primitive polynomials
of degree 4 over GF(2), f1 5 1 1 x 1 x4 and f2 5 1 1 x3 1 x4,
in contrast to 16 full cycles of length 16.

(ii) ‘‘Prefer 1’’ Algorithm: (A) Write k 0s. (B) For the nth
sequence bit, n . k, write 1 if the newly formed k-tuple has not
previously appeared in the sequence. Increase n and repeat B;
otherwise (C) for the nth sequence bit, write 0. If the newly

formed k-tuple has not previously appeared, increase n and go
to B; otherwise stop.

This algorithm produces a full cycle. Notably, all full cycles
can be generated by using ‘‘Prefer 1’’ repeatedly via ‘‘back-
tracking’’ (14); i.e., after we have generated the Prefer 1
sequence, succeeding sequences are determined by changing
the final 1 to 0, and by using the algorithm, electing to place
a 1 if the k-tuple formed is new but placing a 0 if 1 is prohibited.
In this mode, the algorithm may terminate before the sequence
is full length. If it terminates early, continue by again changing
the final 1 to 0, proceeding as above.

For N Þ 2k, both a theoretical description of and construc-
tive algorithms for N-wr-irregular sequences appear to be
much less elegant and relatively less straightforward, com-
pared with the N 5 2k setting. Insight into some of the
complications are apparent from considering the 12-wr-
irregular sequence u :5 {1 1 0 1 1 1 0 0 1 0 0 0}. It can be readily
seen that (i) no length-4 block can be inserted into u to form
a 16-wr-irregular sequence; (ii) u cannot be produced by
insertion of a length-4 block to some 8-wr-irregular sequence;
and notably, (iii) u provides a counterexample to the conjec-
ture that each N-wr-irregular sequence can be derived from
some (N 2 1)-wr-irregular sequence by appropriate insertion
of a 0 or 1.

Point (iii) suggests that producing recursive techniques to
generate (all) N-wr-irregular sequences for N Þ 2k may be
quite challenging. Below, we give a recursive procedure that is
part of a general strategy of building up longer N-wr-irregular
sequences from shorter such sequences via concatenation.
First, we formalize concatenation by

Definition 4: Given finite sequences a :5 (a(1), . . . a(d)) and
b :5 (b(1), . . . b(e)), the concatenated sequence, of length d 1
e, is a ∨ b :5 (a(1), . . . a(d), b(1), . . . b(e)).

Given a set of 2k-wr-irregular sequences, Algorithm 1 below
generates {m, N}-wr-irregular sequences for 2k , N , 2k11, for
all m , k. Within a general protocol of building up via
concatenation, two points are critical to achieving maximality:
(i) at least one concatenate should have length 2k (so that slight
excesses of particular blocks are not augmented); (ii) final
segments of the concatenates must match exactly. To illustrate
the need for i, consider z :5 v ∨ v, for v :5 {0 0 1 1 1} – z is
not even {0, 10}-wr-irregular, with 6 1s and 4 0s. To illustrate
ii, let v be as above, with w :5 {1 1 1 0 0 0 1 0}. Then z :5 v
∨ w is not {1, 13}-wr-irregular, with 5 (1, 1) occurrences, yet
2 occurrences each of both (1, 0) and (0, 1). However, upon
translating w by successive 1-shifts to w9 :5 {0 0 0 1 0 1 1 1 },
matching a final 3-block to v, we deduce that z9 :5 v ∨ w9 is {m,
13}-wr-irregular, for all m , 3. More generally, we have

Algorithm 1: Given 2k , N , 2k11, let t :5 N 2 2k. Choose
any t-wr-irregular sequence w. We break the construction into
two subcases: (I) t $ k; (II) t , k. In the primary case (I),
consider the end portion of w, the length k block wend :5
(w(t 2 k 1 1), w(t 2 k 1 2), . . . w(t)). Choose any 2k-wr-
irregular sequence s. By Theorem 3, s contains one occurrence
of wend. Define x :5 (x(1), x(2), . . . , x(2k)) as a shift of s, so
that the block wend is final in x. By shift-invariance, x is
2k-wr-irregular, and by the above, any length-m block with m #
k occurs precisely 2k2m times in x. Consider the length-N
sequence u :5 w ∨ x: a straightforward counting argument then
establishes that u is {m, N}-wr-irregular for all m , k.

In Case II, with t , k, a slightly modified construction is
required. Given the t-wr-irregular sequence w, let y :5
w ∨ w ∨ . . . w
Ç

[kyt]11 times
, and let z :5 the length k segment of the final k

digits of y. Choose a 2k-wr-irregular sequence x such that z is
final in x, then define u :5 w ∨ x. A virtually identical counting
argument to Case I establishes the result in this case as well.

The output of Algorithm 1 is thus a selective list of highly
irregular sequences. We then extract N-wr-irregular sequences
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from this list by direct evaluation of each sequence for {k,
N}-wr-irregularity. This final step provides functional triage;
e.g., {1 1 0 1 0 0} ∨ {0 1 0 1 1 1 0 0} is {3, 14}- and thus
14-wr-irregular; whereas {1 1 0 1 0 0} ∨ {0 1 1 1 0 1 0 0} is not
{3, 14}-wr-irregular, as some 4-blocks occur twice, others not
at all.

Finally, our normal number constructions below require
some bounds on the distribution of m-blocks for N-wr-irregular
and N-irregular sequences. First, given a sequence u, let Nw(u,
v1v2 . . . vk) :5 no. of occurrences of the block {v1, v2, . . . , vk}
in u, including wrap-around instances; and let N(u, v1v2 . . .
vk) :5 no. of occurrences of the block {v1, v2, . . . , vk},
excluding wrap-around instances. Two coarse inequalities,
sufficient for our purposes, are as follows:

THEOREM 6. Choose an N-wr-irregular sequence u. Then for
any k # [log N] and any k-block {v1, v2, . . . , vk},

uNw~u, v1v2 . . . vk! 2 @Ny2k#u # 2k. [2]

Proof: We need only show that for any given k, there exists
at least one length-N sequence v satisfying Eq. 2 for all
k-blocks, by the wrap-around version of Theorem 1, in con-
junction with the all-sequence minimality imposed by the
wrap-around analog of Eq. 1. We do so constructively. Choose
a 2k-wr-irregular w with {1 1 . . . 1} as the initial length k

segment. Let P :5 FN
2kG and let w*(P) :5

w ∨ w ∨ . . . w
Ç

P times
. As

above, for any P $ 1, w*(P) is seen to be {k, P2k}-wr-irregular,
indeed exactly equidistributed for all r-blocks, r # k. Now
define v :5 w*(P) ∨ x, where x is a length N 2 P2k sequence
of all 1s. It follows at once that v satisfies Eq. 2, as desired.

THEOREM 7. Choose an N-irregular sequence u. Then for
any k # [log N] and any k-block {v1, v2, . . . , vk},
uN~u, v1v2 . . . vk! 2 @~N 2 k 1 1!/2k#u # 2k 1 k.

Proof: This estimate follows at once by mimicking the proof
of Theorem 6 (again comparing to v), in conjunction with two
arithmetic observations. First, uN(u, v1v2 . . . vk) 2 Nw (u, v1v2
. . . vk)u # k 2 1. Second, u@N/2k# 2 @~N 2 k 1 1!/2k#u
# 1.

Normal Numbers. Our objective is to provide explicit rules
for concatenating maximally irregular sequences of increasing
length such that the limiting infinite sequences are normal
numbers. A priori it seems plausible that the length of the ith
concatenate should increase very rapidly (e.g., superexponen-
tially) as a function of i (7, 10). However, we demonstrate via
a counterexample that concatenating N-wr-irregular se-
quences with very rapidly growing lengths can lead to se-
quences where the frequency of occurrences of special blocks
of digits is badly skewed over arbitrarily long segments, thus
violating normality. Subtle restrictions on growth lengths of
concatenates are necessary to ensure that the resulting infinite
sequence is a normal number.

A Counterexample: Let Lt(v) denote the length of sequence v.
For a concatenated sequence v1 ∨ v2 ∨ . . . vm, let Lcat(m) 5 (i51

m

Lt(vi). Now define v1 5 (1, 0, 0, 1). Recursively, starting with v1
∨ v2 ∨ . . . vm of length Lcat(m), define sm to be a sequence of 1s
of length (Lcat(m))2. Then apply Theorem 4 to obtain vm11 as a
2(Lcat(m))2

-wr-irregular sequence with sm as an initial segment.
Finally, define u :5 limm3` v1 ∨ v2 ∨ . . . vm. Intuitively, in this
construction, we are imposing intermediate biasing runs (via the
s-blocks) of exponentially increasing length.

Now consider the subsequences u*m :5 {u(1), u(2), . . . ,
u((Lcat(m))2 1 Lcat(m))}. Clearly, the fraction of 1s in u*m $
Lcat(m)2y(Lcat(m)2 1 Lcat(m)), which converges to 1 as m3
`. Thus u is not a normal number, for if it were, then limm3`

[fraction of 1s in u*m] 5 1y2.
The goal of concatenating maximally irregular sequences to

produce normal numbers can be realized by bringing in two
additional results. These are as follows:

THEOREM 8. Given any positive integer k and any « . 0, there
exists Nk,« such that for all N . Nk,«, the N-wr-irregular and
N-irregular binary sequences are all (k, «)-normal in the sense of
Besicovitch (17).

THEOREM 9. Let {an} be a nondecreasing sequence of positive
integers having the property that, for any given k and « . 0, all
but finitely many an are (k, «)-normal in the base b. If the lengths
of the base b representations satisfy nLt(an) 5 O((i51

n Lt(ai)),
then the number x 5 .a1a2a3. . . is normal in base b.

Observe that in base 2, if we define the binary representa-
tions of a1, a2, . . . as the finite sequences v1, v2, . . . , then x is
just v1 ∨ v2 ∨ . . . .

Theorem 8, a critical observation central to our constructive
approach, provides the essential link between (k, «)-normal
integers and N-irregular sequences. Theorem 9 is a minor
adaptation of a little known theorem of Hanson (18). It
provides necessary restrictions on the lengths of N-irregular
sequences vi to ensure that u :5 limm3` v1 ∨ v2 ∨ . . . vm is
normal. To formalize these ideas we first require

Definition 5: (Besicovitch, ref. 17) An integer t 5 am-1 am-2 . . .
a1 a0 (am-1 Þ 0), where the ai are digits of some base b, is (k,
«)-normal in base b for a given positive integer k and real « .
0, if for every k-digit sequence c1c2 . . . ck, we have

ZN~t, c1c2 . . . ck!

m 2 k 1 1
2

1
bkZ , «, where N(t, c1c2 . . . ck) is the

number of occurrences of c1c2 . . . ck in t.
Specializing to base 2, we bring in
Proof of Theorem 8: Given k and «, set Nk,« :5 max(8z2ky«,

22k 1 1).
wr-Irregular case. For N $ Nk,«, choose any N-wr-irregular

sequence u and any k-block {v1, v2, . . . , vk}. Recall the
notation N(u, v1v2 . . . vk) and Nw(u, v1v2 . . . vk) from
Theorems 6 and 7, which we presently abbreviate by N(u), and
Nw(u), respectively. Now uN(u)y(N 2 k 1 1) 2 1y2ku #
uN(u)y(N 2 k 1 1) 2 Nw(u)y(N 2 k 1 1)u 1 uNw(u)y(N 2 k
1 1) 2 Nw(u)yNu 1 uNw(u)yN 2 1y2ku. To estimate the first
term on the right side of this inequality, since uN(u) 2 Nw(u)u
# k 2 1, it follows that uN(u)y(N 2 k 1 1) 2 Nw(u)y(N 2 k
1 1)u # u(k 21)y(N 2 k 1 1)u # 2kyN # «y4, from the
definition of Nk,«. To estimate the second term, since k , log
N, by Theorem 6 and Eq. 2, Nw(u) # Ny2k 1 2k, thus uNw(u)y(N
2 k 1 1) 2 Nw(u)yNu # Nw(u)u(k 2 1)y[N(N 2 k 1 1)]u # (Ny2k

1 2k)(2kyN2) # (2Ny2k)(2kyN2) 5 4ky(N2k) # 2yN # «y4. To
estimate the third term, from Eq. 2, uNw(u)yN 2 1y2ku # 2kyN
# «y4. Combining these estimates, uN(u)y(N 2 k 1 1) 2 1y2ku
, «y4 1 «y4 1 «y4 , «. Thus u is (k, «)-normal in base 2.

Irregular case. For N $ Nk,«, choose any N-irregular sequence
u and k-block {v1, v2, . . . , vk}. By Theorem 7, since k , log N,
zN(u)y(N 2 k 1 1) 2 1y2ku # (2k 1 k 1 1)y(N 2 k 1 1) , (4z2kyN)
# «, we conclude that u is (k, «)-normal in base 2.

With this machinery established, we invoke Hanson’s The-
orem as adapted to Theorem 9 to immediately deduce

THEOREM 10. Define the base 2 sequence u :5 limm3` v1 ∨
v2 ∨ . . . vm, with Lt(vi) a nondecreasing integer-valued function
of i. Let Sn :5 (i51

n Lt(vi). If for all i, (i) vi is either Lt(vi)-irregular
or Lt(vi)-wr-irregular, (ii) limi3` Lt(vi)3 `, and (iii) nLt(vn) 5
O(Sn), then u is normal in base 2.

Theorem 10 provides a means to produce large collections of
normal numbers, since diverse classes of functions f(i) :5 Lt(vi)
satisfy the conditions of the theorem. These include all poly-
nomials with nonnegative integer coefficients; f(i) 5 [A log i],
for A . 0; and f(i) 5 [kia] for positive k and a. We can extend
these classes by observing that if f satisfies condition iii, and if
there exist positive c and K such that c # uf(i)yg(i)u # K for all
i, then g also must satisfy iii—e.g., if cia , g(i) , Kia for all i,
where c, K, and a . 0. Basically, functions that violate iii are
either globally exponential or have locally, increasingly long
exponentially growing segments.
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Varieties of Normal Numbers. The length restrictions im-
posed by Theorem 10, while ensuring that limiting concatena-
tions are normal numbers, nevertheless allow for considerable
variation in sequence structure. We facilitate sequence assess-
ment by introducing the functions defm[u(N)] :5 maxuvu5N

ApEn(m, N)(v) 2 ApEn(m, N)(u(N)). For infinite sequences u
these functions measure how close an initial segment, u(N), of
length N is to being {m, N}-irregular (or wr-irregular when
ApEnw is utilized). Normality reduces to the condition that
limN3` defm[u(N)] 5 0 for all m $ 0 (ref. 7). Restricting primary
attention herein to m 5 0, we can already demonstrate sharp
distinctions among normal numbers.

We illustrate this perspective by comparing def0(N) for
several sequences. The binary sequences are (i) base 2
expansion of e; (ii) the binary version of Champernowne’s
number 0.1234567891011. . . , denoted by BinChamp :5
0.110111001011101111000. . . ; (iii) a perturbation of Bin-
Champ (denoted as pert-BinChamp) that imposes a bias of
excess 1s to BinChamp that decreases sufficiently rapidly with
increasing sequence length so that limiting frequencies are
unchanged; and (iv) a sequence denoted Seq(FIterLog-3), de-
fined below, where def0[u(N)] is extremely rapidly convergent
to 0—i.e., def0[u(N)] # (log log log N)2y4N2 for sufficiently
large N. Fig. 1 shows def0[u(N)] vs. N for values of N up to
300,000, with considerable differences among the sequences
quite apparent.

Further analytic insight is gained by evaluation of asymptotic
behavior of the sequences, and by comparison to the LIL
asymptotic rate of convergence for def0(N). The LIL, an
‘‘almost sure’’ property of sums of independent, identically
distributed (i.i.d.) binary random variables, interpreted for
individual sequences, requires the following: Let Xi 5 1 if the
ith digit is 1, 0 otherwise, and let the partial sums Sn 5 (i51

n Xi

5 (no. 1s among the first n digits). Then lim supn3` (Sn 2
ny2)y=(ny2)log log n 5 1. In ref. 7 we showed that the LIL
holds for binary sequences u if and only if lim supN3`

def0[u(N)]y[(log log N)yN] 5 1.
Importantly, sequences ii, iii, and iv, all constructively de-

fined, are normal, yet each has considerably different one-
dimensional asymptotic behavior than the LIL mandate (as
indicated below). These examples clarify the diversity of
possible specifications of what one might mean by ‘‘random’’
(or highly irregular) sequence.

BinChamp is normal (5); yet observe a pronounced bias of
excess 1s in BinChamp; e.g., {4, 5, 6, 7}base 2 5 {100, 101, 110,
111}. Formally, integers {2k, 2k 1 1, . . . , 2k11 2 1}base 2

produce 2k segments, each length k 1 1, headed by 1, followed,
in aggregate, by all possible k-tuples of 1s and 0s. Thus

{fraction of 1s in the first O
k50

N

~k 1 1!2k digits of BinChamp}

$ 1y2 1 1y2~N 1 1!. [3]

Now recall from ref. 7 the following definition of excess, for a
binary sequence u: {excess of ‘‘0’’ over ‘‘1’’}N (u) 5 max(0, no.
0s in u(N) 2 no. 1s in u(N)), and symmetrically for {excess of ‘‘1’’
over ‘‘0’’}N (u). Let EXCN(u) 5 max({excess of ‘‘0’’ over ‘‘1’’}N
(u)}, {excess of ‘‘1’’ over ‘‘0’’}N(u)}). In ref. 7, p. 2086, we
established an easily derived relationship between def0 and
EXC (for small values of def0) given by def0[u(N)]

<
1
2SEXCN~u~N!!

N D2

. Upon translating Eq. 3 to a statement on

EXC, we readily derive that for u :5 BinChamp, lim supN3`

def0[u(N)] $ 1y(5 log2N). This convergence rate for def0(N)
thus quantifies the very slow extent to which the bias of excess
1s in BinChamp decreases toward asymptotic equidistribution.

We now specify sequences iii and iv. This also provides
explicit constructions of special classes of normal numbers. We
note as well that constructions similar to that of Theorem 11
below, obtained by suitably controlling the length function
Lt(vi) in the concatenations of finite maximally wr-irregular
sequences, will yield yet further classes of normal numbers with
prescribed asymptotic characteristics.

For sequence iii we perturb BinChamp, here denoted as u :5
(u(1), u(2), . . .), according to the following algorithm (a
specialization of theorem 3 in ref. 7):

Set v(1) 5 u(1). Given v(1), . . . , v(N 2 1), set v(N) 5 u(N)
if u(N) 5 1; set v(N) 5 1 if u(N) 5 0 and diff1(N 2 1)(u, v) #
f(N) 2 1, where diff1(N)(u, v) :5 the number of i # N such that
u(i) Þ v(i), with f(N) :5 [2N =g(N)], for g(N) :5 N20.3;
otherwise set v(N) 5 u(N) if u(N) 5 0.

Then define pert-BinChamp :5 v. By theorem 3 of ref. 7,
pert-BinChamp is normal, and lim supN3` def0[v(N)] . N20.3,
quantifying its very slow convergence of def0 to 0.

Sequence iv is Seq(FIterLog-3), a special case of the general
construction in Theorem 11, below. First, we require

Definition 6: Fix n. Define fn(N) :5
log(log(log . . . ~N!) . . .)
Ç

n times

for N $
exp(exp(exp . . . (1)) . . .)
Ç

n times
; fn(N) :5 0 otherwise.

Define gn(N) as the greatest even integer # fn(N). Then define
FIterLog-n(N) :5 max(6, gn(N)).

Next, for all i, select a maximally wr-irregular sequence vi of
length FIterLog-n(i). Let Seq(FIterLog-n) :5 limm3` wm, where wm
5 v1 ∨ v2 ∨ . . . vm. From the construction of FIterLog-n(N), it
follows from Theorem 10 that Seq(FIterLog-n) is normal in base
2. We now establish our fine-tuned result:

THEOREM 11. Define k(N) :5 (1y4N2)(FIterLog-n(N))2. Then
for u :5 Seq(FIterLog-n), for all sufficiently large N, def0[u(N)] #
k(N).

Proof: Fix N. We will show that for all p # Lt(wN), EXCp(u)
# 1⁄2(FIterLog-n(N)). Observe that u returns to precise 1-dimen-
sional equidistribution at the cutpoints p(k) :5 {Lt(wk)} for all
k—i.e., for all k, EXCp(k)(u) 5 0. This is immediate, since vi is
{0, Lt(vi)}-wr-irregular for all i (recalling that FIterLog-n(i)
adopts only even values). Therefore maxp#Lt(wN)EXCp(u) 5
max1#i#N maxp#Lt(vi)EXCp(vi) # max1#i#N max(no. 0s in vi, no.
1s in vi) 5 1⁄2(FIterLog-n(N)).

Since N , Lt(wN), it then follows that EXCN(u) #
1⁄2(FIterLog-n(N)). Since u is normal, limN3` def0[u(N)] 5 0,

hence for all sufficiently large N, def0[u(N)] # SEXCN~u~N!!

N D2

# (1y4N2)(FIterLog-n(N))2 5 k(N), which completes the proof.
Thus for any n $ 1, for u :5 Seq(FIterLog-n), lim supN3`

def0[u(N)] provides a much faster rate of convergence to 0 than
that for the LIL of (log log N)yN.

FIG. 1. One-dimensional deficit def0(N) from maximal irregularity
for base 2 sequence expansions of e and for the binary sequences
BinChamp (binary version of 0.1234567. . . ), pert-BinChamp, and
sequence iv :5 Seq(FIterLog-3), all compared with log log NyN, where
this last function is the asymptotic convergence rate of def0 for
sequences satisfying the law of the iterated logarithm (LIL).
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Finally, observe that these Seq(FIterLog-n) provide a nearly
‘‘best possible’’ class of normal numbers, insofar as rapidity of
convergence of lim supN3` def0 to 0. By the same argument as
in the proof of theorem 1 of ref. 7, for any binary normal
sequence u, there exists arbitrarily large k for which u(2k) fails
to have precisely k 0s and k 1s. For such k, EXC2k(u) $ 2; since

def0[u(N)] $ 0.4SEXCN~u~N!!

N D2

for sufficiently large N, we

conclude that def0[u(N)] $ 0.4yN2 for any such N 5 2k—i.e.,
lim supN3` def0[u(N)] must infinitely often be at least as large
as the order of 1yN2. By comparison, lim supN3` def0[u(N)] for
Seq(FIterLog-n) is bounded above by 1yN2 times a function that
can be chosen to increase arbitrarily slowly.

Endnotes. (i) In a vast preponderance of applications, the
requirement of a ‘‘random’’ sequence reduces to (for either finite
or infinite sequences) approximate equidistribution of m-blocks
for all m. Our primary goal herein, met above, was to produce
explicit sets of recipes to realize such sequences. Furthermore, the
construction of normal numbers via concatenation of maximally
irregular sequences, in conjunction with both the capability to
impose length restrictions on the concatenates and the technology
to assess resultant sequences via defm[u(N)], provides the basis for
understanding irregularity and ‘‘randomness’’ in a previously
unaddressed manner. The demonstration of pronounced quali-
tative differences among normal numbers above reinforces the
perspective that grouping all normal numbers into a single
asymptotically equidistributed category is often inadequately
nonspecific, for both theoretical mathematical and applications-
oriented considerations.

As well, a more subtle, yet arbitrary question concerns the
choice of a priori constraints beyond normality that one might
impose to designate a sequence as ‘‘random.’’ For instance, to
interpret a normal sequence as a typical realization of i.i.d. or
weakly dependent binary random variables, one might mandate
that the sequence satisfy the ‘‘almost sure’’ laws of axiomatic
probability theory (19)—e.g., the LIL, and possibly a Gaussian
distribution of 1-blocks. However, such mandates lead to conun-
drums; e.g., via Theorem 11, we now see that sequences satisfying
the LIL are, in fact, more regular (less asymptotically equidis-
tributed) than some classes of normal numbers. Additionally,
recall that as n3 ` the proportion of binary sequences of length
n that are maximally irregular converges to 0 (7). In contrast, a
basic desideratum in Kolmogorov’s algorithmic probability the-
ory (20) is that the set of sequences called ‘‘random’’ should
comprise a majority of the possible sequences. Thus the challenge
is exposed, namely, how to balance the somewhat conflicting
constraints imposed by maximal irregularity, typicality, and sat-
isfaction of almost sure properties, to achieve a single well-
defined class of constructable infinite ‘‘random’’ sequences.

(ii) Our explicit construction of normal numbers above is
critically dependent on two ideas that had not previously been
algorithmically formulated. First, the notion of (k, «) normal
number, as put forth by Besicovitch (17), was unaccompanied
by any methods to actually produce them. Second, Hanson’s
Theorem (18) specifying length restrictions on Lt(vi) to ensure
normality in a concatenation limm3` v1 ∨ v2 ∨ . . . vm was not
carried further to identify explicitly how to sequentially gen-
erate appropriate concatenates.

Among the very few previously constructed normal numbers
not indicated above, perhaps most striking are those given by
Stoneham (21, 22), who builds up transcendental non-Liouville
normal numbers via controlled sums of expansions of recip-
rocals of powers of ergodic primes. Also notable in this
development are some theorems concerning the distribution of
residues within the periods of the summands. However, the
considerable technologic effort required to achieve these
specialized results underscores the need for broadly applicable
methods to produce general classes of normal numbers.

(iii) In choosing normal sequences as specified by Definition
6, there is a tradeoff between limiting analytic excellence and
appropriateness of application. To vividly clarify this, while
Seq(FIterLog-4) produces asymptotically superb one-dimen-
sional equidistribution, by Theorem 11, note that the first
6,000,000 digits of Seq(FIterLog-4) is a single fixed length-6 block
concatenated 1,000,000 times, with a glaring and, for most
applications, very much undesired periodicity. While the above
technology refines the notion of normality, to our sensibilities,
the present example highlights that the deficit from maximal
equidistribution De[u(N)] :5 maxm#mcrit(N)(defm[u(N)]) is a
preferred quantity to minimize, compared with def0, in deter-
mining ‘‘limiting analytic excellence.’’ For Seq(FIterLog-4), once
N were sufficiently large so that mcrit(N) $ 5, this sequence
would be flagged as suboptimal, based on the lack of near-
equidistribution of 6-blocks in long initial segments.

(iv) Symbolic dynamics (the study of maps on the space of
infinite, typically binary sequences) has been extremely useful
in advancing dynamical systems theory. It would seem natural,
and highly worthwhile, to determine relationships between
degrees of irregularity and classes of (binary sequence) maps
and of dynamical systems. Such relationships may also provide
a complementary perspective to and abet understanding of
some ‘‘pathologies’’ within celestial mechanics—e.g., the ex-
istence of noncollision singularities in the Newtonian 5-body
(and n-body) problem—i.e., Painlevé’s conjecture (23). In
particular, Xia’s constructive proof of this (24), which critically
utilizes symbolic dynamics, bears at least a thematic resem-
blance to the above counterexample, in which differing sub-
sequences exhibit qualitatively dramatically different behavior,
at times showing wild oscillations from equilibrium (equidis-
tribution), at other times settling down to realize arbitrarily
close approximation to a collision.
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